diff options
Diffstat (limited to 'site/datasets/final')
| -rw-r--r-- | site/datasets/final/adience.csv | 102 | ||||
| -rw-r--r-- | site/datasets/final/aflw.csv | 212 | ||||
| -rw-r--r-- | site/datasets/final/casia_webface.csv | 312 | ||||
| -rw-r--r-- | site/datasets/final/cofw.csv | 233 | ||||
| -rw-r--r-- | site/datasets/final/feret.csv | 639 | ||||
| -rw-r--r-- | site/datasets/final/ijb_c.csv | 141 | ||||
| -rw-r--r-- | site/datasets/final/images_of_groups.csv | 103 | ||||
| -rw-r--r-- | site/datasets/final/imdb_wiki.csv | 130 | ||||
| -rw-r--r-- | site/datasets/final/morph.csv | 286 | ||||
| -rw-r--r-- | site/datasets/final/morph_nc.csv | 286 | ||||
| -rw-r--r-- | site/datasets/final/msceleb.csv | 113 | ||||
| -rw-r--r-- | site/datasets/final/pipa.csv | 37 | ||||
| -rw-r--r-- | site/datasets/final/umd_faces.csv | 34 | ||||
| -rw-r--r-- | site/datasets/final/voc.csv | 401 | ||||
| -rw-r--r-- | site/datasets/final/yfcc_100m.csv | 69 | ||||
| -rw-r--r-- | site/datasets/final/youtube_poses.csv | 20 |
16 files changed, 3118 insertions, 0 deletions
diff --git a/site/datasets/final/adience.csv b/site/datasets/final/adience.csv new file mode 100644 index 00000000..9c9f2b76 --- /dev/null +++ b/site/datasets/final/adience.csv @@ -0,0 +1,102 @@ +index,dataset_name,key,lat,lng,loc,loc_type,paper_id,paper_type,paper_url,title,year +0,Adience,adience,0.0,0.0,,,1be498d4bbc30c3bfd0029114c784bc2114d67c0,main,http://www.openu.ac.il/home/hassner/Adience/EidingerEnbarHassner_tifs.pdf,Age and Gender Estimation of Unfiltered Faces,2014 +1,Adience,adience,28.5456282,77.2731505,"IIIT Delhi, India",edu,f726738954e7055bb3615fa7e8f59f136d3e0bdc,citation,https://arxiv.org/pdf/1803.07385.pdf,Are you eligible? Predicting adulthood from face images via class specific mean autoencoder,2018 +2,Adience,adience,37.43131385,-122.16936535,Stanford University,edu,16d6737b50f969247339a6860da2109a8664198a,citation,https://pdfs.semanticscholar.org/16d6/737b50f969247339a6860da2109a8664198a.pdf,Convolutional Neural Networks for Age and Gender Classification,2016 +3,Adience,adience,40.00229045,116.32098908,Tsinghua University,edu,2149d49c84a83848d6051867290d9c8bfcef0edb,citation,https://doi.org/10.1109/TIFS.2017.2746062,Label-Sensitive Deep Metric Learning for Facial Age Estimation,2018 +4,Adience,adience,51.5217668,-0.13019072,University of London,edu,31ea88f29e7f01a9801648d808f90862e066f9ea,citation,https://arxiv.org/pdf/1605.06391.pdf,Deep Multi-task Representation Learning: A Tensor Factorisation Approach,2016 +5,Adience,adience,40.0044795,116.370238,Chinese Academy of Sciences,edu,d492dbfaa42b4f8b8a74786d7343b3be6a3e9a1d,citation,https://pdfs.semanticscholar.org/d492/dbfaa42b4f8b8a74786d7343b3be6a3e9a1d.pdf,Deep Cost-Sensitive and Order-Preserving Feature Learning for Cross-Population Age Estimation,0 +6,Adience,adience,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,d492dbfaa42b4f8b8a74786d7343b3be6a3e9a1d,citation,https://pdfs.semanticscholar.org/d492/dbfaa42b4f8b8a74786d7343b3be6a3e9a1d.pdf,Deep Cost-Sensitive and Order-Preserving Feature Learning for Cross-Population Age Estimation,0 +7,Adience,adience,34.0224149,-118.28634407,University of Southern California,edu,29f298dd5f806c99951cb434834bc8dcc765df18,citation,https://doi.org/10.1109/ICPR.2016.7899837,Computationally efficient template-based face recognition,2016 +8,Adience,adience,45.5039761,-73.5749687,McGill University,edu,ed9d11e995baeec17c5d2847ec1a8d5449254525,citation,https://pdfs.semanticscholar.org/ed9d/11e995baeec17c5d2847ec1a8d5449254525.pdf,Efficient Gender Classification Using a Deep LDA-Pruned Net,2017 +9,Adience,adience,12.9551259,77.5741985,Bangalore Institute of Technology,edu,10126b467391e153d36f1a496ef5618097775ad1,citation,https://pdfs.semanticscholar.org/1012/6b467391e153d36f1a496ef5618097775ad1.pdf,An Active Age Estimation of Facial image using Anthropometric Model and Fast ICA,2017 +10,Adience,adience,42.36782045,-71.12666653,Harvard University,edu,0ba402af3b8682e2aa89f76bd823ddffdf89fa0a,citation,http://pdfs.semanticscholar.org/c0d8/4377168c554cb8e83099bed940091fe49dec.pdf,Squared Earth Mover's Distance-based Loss for Training Deep Neural Networks,2016 +11,Adience,adience,40.9153196,-73.1270626,Stony Brook University,edu,0ba402af3b8682e2aa89f76bd823ddffdf89fa0a,citation,http://pdfs.semanticscholar.org/c0d8/4377168c554cb8e83099bed940091fe49dec.pdf,Squared Earth Mover's Distance-based Loss for Training Deep Neural Networks,2016 +12,Adience,adience,38.8760446,115.4973873,North China Electric Power University,edu,56f86bef26209c85f2ef66ec23b6803d12ca6cd6,citation,http://arxiv.org/abs/1710.00307,Pyramidal RoR for image classification,2017 +13,Adience,adience,40.00229045,116.32098908,Tsinghua University,edu,51f626540860ad75b68206025a45466a6d087aa6,citation,https://doi.org/10.1109/ICIP.2017.8296595,Cluster convolutional neural networks for facial age estimation,2017 +14,Adience,adience,45.5039761,-73.5749687,McGill University,edu,407bb798ab153bf6156ba2956f8cf93256b6910a,citation,http://pdfs.semanticscholar.org/407b/b798ab153bf6156ba2956f8cf93256b6910a.pdf,Fisher Pruning of Deep Nets for Facial Trait Classification,2018 +15,Adience,adience,39.2899685,-76.62196103,University of Maryland,edu,81fc86e86980a32c47410f0ba7b17665048141ec,citation,http://pdfs.semanticscholar.org/81fc/86e86980a32c47410f0ba7b17665048141ec.pdf,Segment-based Methods for Facial Attribute Detection from Partial Faces,2018 +16,Adience,adience,22.304572,114.17976285,Hong Kong Polytechnic University,edu,dc2f16f967eac710cb9b7553093e9c977e5b761d,citation,https://doi.org/10.1109/ICPR.2016.7900141,Learning a lightweight deep convolutional network for joint age and gender recognition,2016 +17,Adience,adience,23.09461185,113.28788994,Sun Yat-Sen University,edu,dc2f16f967eac710cb9b7553093e9c977e5b761d,citation,https://doi.org/10.1109/ICPR.2016.7900141,Learning a lightweight deep convolutional network for joint age and gender recognition,2016 +18,Adience,adience,39.65404635,-79.96475355,West Virginia University,edu,7a65fc9e78eff3ab6062707deaadde024d2fad40,citation,http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w11/papers/Zhu_A_Study_on_ICCV_2015_paper.pdf,A Study on Apparent Age Estimation,2015 +19,Adience,adience,42.357757,-83.06286711,Wayne State University,edu,28d99dc2d673d62118658f8375b414e5192eac6f,citation,http://www.cs.wayne.edu/~mdong/cvpr17.pdf,Using Ranking-CNN for Age Estimation,2017 +20,Adience,adience,25.0410728,121.6147562,Institute of Information Science,edu,0951f42abbf649bb564a21d4ff5dddf9a5ea54d9,citation,https://arxiv.org/pdf/1806.02023.pdf,Joint Estimation of Age and Gender from Unconstrained Face Images Using Lightweight Multi-Task CNN for Mobile Applications,2018 +21,Adience,adience,34.0224149,-118.28634407,University of Southern California,edu,eb6ee56e085ebf473da990d032a4249437a3e462,citation,http://www-scf.usc.edu/~chuntinh/doc/Age_Gender_Classification_APSIPA_2017.pdf,Age/gender classification with whole-component convolutional neural networks (WC-CNN),2017 +22,Adience,adience,32.77824165,34.99565673,Open University of Israel,edu,0a34fe39e9938ae8c813a81ae6d2d3a325600e5c,citation,https://arxiv.org/pdf/1708.07517.pdf,FacePoseNet: Making a Case for Landmark-Free Face Alignment,2017 +23,Adience,adience,40.51865195,-74.44099801,State University of New Jersey,edu,d00e9a6339e34c613053d3b2c132fccbde547b56,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7791154,A cascaded convolutional neural network for age estimation of unconstrained faces,2016 +24,Adience,adience,39.2899685,-76.62196103,University of Maryland,edu,d00e9a6339e34c613053d3b2c132fccbde547b56,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7791154,A cascaded convolutional neural network for age estimation of unconstrained faces,2016 +25,Adience,adience,32.8536333,-117.2035286,Kyung Hee University,edu,9d4692e243e25eb465a0480376beb60a5d2f0f13,citation,https://doi.org/10.1109/ICCE.2016.7430617,Positional Ternary Pattern (PTP): An edge based image descriptor for human age recognition,2016 +26,Adience,adience,1.340216,103.965089,Singapore University of Technology and Design,edu,00823e6c0b6f1cf22897b8d0b2596743723ec51c,citation,https://arxiv.org/pdf/1708.07689.pdf,Understanding and Comparing Deep Neural Networks for Age and Gender Classification,2017 +27,Adience,adience,45.47567215,9.23336232,Università degli Studi di Milano,edu,a713a01971e73d0c3118d0409dc7699a24f521d6,citation,https://doi.org/10.1109/SSCI.2017.8285381,Age estimation based on face images and pre-trained convolutional neural networks,2017 +28,Adience,adience,37.2830003,127.04548469,Ajou University,edu,c43dc4ae68a317b34a79636fadb3bcc4d1ccb61c,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8369763,Age and gender estimation using deep residual learning network,2018 +29,Adience,adience,37.403917,127.159786,Korea Electronics Technology Institute,edu,c43dc4ae68a317b34a79636fadb3bcc4d1ccb61c,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8369763,Age and gender estimation using deep residual learning network,2018 +30,Adience,adience,37.26728,126.9841151,Seoul National University,edu,c43dc4ae68a317b34a79636fadb3bcc4d1ccb61c,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8369763,Age and gender estimation using deep residual learning network,2018 +31,Adience,adience,49.2767454,-122.91777375,Simon Fraser University,edu,975978ee6a32383d6f4f026b944099e7739e5890,citation,https://pdfs.semanticscholar.org/9759/78ee6a32383d6f4f026b944099e7739e5890.pdf,Privacy-Preserving Age Estimation for Content Rating,2018 +32,Adience,adience,49.8091536,-97.13304179,University of Manitoba,edu,975978ee6a32383d6f4f026b944099e7739e5890,citation,https://pdfs.semanticscholar.org/9759/78ee6a32383d6f4f026b944099e7739e5890.pdf,Privacy-Preserving Age Estimation for Content Rating,2018 +33,Adience,adience,33.7774349,-84.3973208,"College of Computing, Georgia Tech",edu,58df849378fbcfb6b1a8ebddfbe4caa450226b9d,citation,https://doi.org/10.1109/ICIP.2017.8296770,Head pose estimation using learned discretization,2017 +34,Adience,adience,39.95472495,-75.15346905,Temple University,edu,58df849378fbcfb6b1a8ebddfbe4caa450226b9d,citation,https://doi.org/10.1109/ICIP.2017.8296770,Head pose estimation using learned discretization,2017 +35,Adience,adience,36.1017956,-79.501733,Elon University,edu,58df849378fbcfb6b1a8ebddfbe4caa450226b9d,citation,https://doi.org/10.1109/ICIP.2017.8296770,Head pose estimation using learned discretization,2017 +36,Adience,adience,23.7289899,90.3982682,Institute of Information Technology,edu,2e58ec57d71b2b2a3e71086234dd7037559cc17e,citation,https://pdfs.semanticscholar.org/2e58/ec57d71b2b2a3e71086234dd7037559cc17e.pdf,A Gender Recognition System from Facial Image,2018 +37,Adience,adience,23.7316957,90.3965275,University of Dhaka,edu,2e58ec57d71b2b2a3e71086234dd7037559cc17e,citation,https://pdfs.semanticscholar.org/2e58/ec57d71b2b2a3e71086234dd7037559cc17e.pdf,A Gender Recognition System from Facial Image,2018 +38,Adience,adience,37.98782705,23.73179733,National Technical University of Athens,edu,bd572e9cbec095bcf5700cb7cd73d1cdc2fe02f4,citation,http://pdfs.semanticscholar.org/bd57/2e9cbec095bcf5700cb7cd73d1cdc2fe02f4.pdf,Deep Learning for Computer Vision: A Brief Review,2018 +39,Adience,adience,47.00646895,-120.5367304,Central Washington University,edu,56c2fb2438f32529aec604e6fc3b06a595ddbfcc,citation,http://pdfs.semanticscholar.org/56c2/fb2438f32529aec604e6fc3b06a595ddbfcc.pdf,Comparison of Recent Machine Learning Techniques for Gender Recognition from Facial Images,2016 +40,Adience,adience,32.77824165,34.99565673,Open University of Israel,edu,c75e6ce54caf17b2780b4b53f8d29086b391e839,citation,https://arxiv.org/pdf/1802.00542.pdf,"ExpNet: Landmark-Free, Deep, 3D Facial Expressions",2018 +41,Adience,adience,31.83907195,117.26420748,University of Science and Technology of China,edu,47cd161546c59ab1e05f8841b82e985f72e5ddcb,citation,https://doi.org/10.1109/ICIP.2017.8296552,Gender classification in live videos,2017 +42,Adience,adience,25.0410728,121.6147562,Institute of Information Science,edu,1862f2df2e278505c9ca970f9c5a25ea3aeb9686,citation,https://pdfs.semanticscholar.org/1862/f2df2e278505c9ca970f9c5a25ea3aeb9686.pdf,Merging Deep Neural Networks for Mobile Devices,0 +43,Adience,adience,45.42580475,-75.68740118,University of Ottawa,edu,16820ccfb626dcdc893cc7735784aed9f63cbb70,citation,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W12/papers/Azarmehr_Real-Time_Embedded_Age_2015_CVPR_paper.pdf,Real-time embedded age and gender classification in unconstrained video,2015 +44,Adience,adience,37.26728,126.9841151,Seoul National University,edu,282503fa0285240ef42b5b4c74ae0590fe169211,citation,http://pdfs.semanticscholar.org/2825/03fa0285240ef42b5b4c74ae0590fe169211.pdf,Feeding Hand-Crafted Features for Enhancing the Performance of Convolutional Neural Networks,2018 +45,Adience,adience,32.8536333,-117.2035286,Kyung Hee University,edu,854b1f0581f5d3340f15eb79452363cbf38c04c8,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7903648,Directional Age-Primitive Pattern (DAPP) for Human Age Group Recognition and Age Estimation,2017 +46,Adience,adience,24.7246403,46.62335012,King Saud University,edu,854b1f0581f5d3340f15eb79452363cbf38c04c8,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7903648,Directional Age-Primitive Pattern (DAPP) for Human Age Group Recognition and Age Estimation,2017 +47,Adience,adience,23.7289899,90.3982682,Institute of Information Technology,edu,854b1f0581f5d3340f15eb79452363cbf38c04c8,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7903648,Directional Age-Primitive Pattern (DAPP) for Human Age Group Recognition and Age Estimation,2017 +48,Adience,adience,53.21967825,6.56251482,University of Groningen,edu,361c9ba853c7d69058ddc0f32cdbe94fbc2166d5,citation,http://pdfs.semanticscholar.org/361c/9ba853c7d69058ddc0f32cdbe94fbc2166d5.pdf,Deep Reinforcement Learning of Video Games,2017 +49,Adience,adience,41.1664858,-73.1920564,University of Bridgeport,edu,ac9a331327cceda4e23f9873f387c9fd161fad76,citation,http://pdfs.semanticscholar.org/ac9a/331327cceda4e23f9873f387c9fd161fad76.pdf,Deep Convolutional Neural Network for Age Estimation based on VGG-Face Model,2017 +50,Adience,adience,53.21967825,6.56251482,University of Groningen,edu,4ff4c27e47b0aa80d6383427642bb8ee9d01c0ac,citation,https://doi.org/10.1109/SSCI.2015.37,Deep Convolutional Neural Networks and Support Vector Machines for Gender Recognition,2015 +51,Adience,adience,40.4319722,-86.92389368,Purdue University,edu,6193c833ad25ac27abbde1a31c1cabe56ce1515b,citation,https://pdfs.semanticscholar.org/5f25/7ca18a92c3595db3bda3224927ec494003a5.pdf,Trojaning Attack on Neural Networks,2018 +52,Adience,adience,40.4319722,-86.92389368,Purdue University,edu,b18858ad6ec88d8b443dffd3e944e653178bc28b,citation,http://pdfs.semanticscholar.org/b188/58ad6ec88d8b443dffd3e944e653178bc28b.pdf,Trojaning Attack on Neural Networks,2017 +53,Adience,adience,40.9153196,-73.1270626,Stony Brook University,edu,25bf288b2d896f3c9dab7e7c3e9f9302e7d6806b,citation,http://pdfs.semanticscholar.org/25bf/288b2d896f3c9dab7e7c3e9f9302e7d6806b.pdf,Neural Networks with Smooth Adaptive Activation Functions for Regression,2016 +54,Adience,adience,40.9153196,-73.1270626,Stony Brook University,edu,1190cba0cae3c8bb81bf80d6a0a83ae8c41240bc,citation,https://pdfs.semanticscholar.org/1190/cba0cae3c8bb81bf80d6a0a83ae8c41240bc.pdf,Squared Earth Mover ’ s Distance Loss for Training Deep Neural Networks on Ordered-Classes,2017 +55,Adience,adience,40.9153196,-73.1270626,Stony Brook University,edu,14e9158daf17985ccbb15c9cd31cf457e5551990,citation,http://pdfs.semanticscholar.org/14e9/158daf17985ccbb15c9cd31cf457e5551990.pdf,ConvNets with Smooth Adaptive Activation Functions for Regression,2017 +56,Adience,adience,40.90826665,-73.11520891,Stony Brook University Hospital,edu,14e9158daf17985ccbb15c9cd31cf457e5551990,citation,http://pdfs.semanticscholar.org/14e9/158daf17985ccbb15c9cd31cf457e5551990.pdf,ConvNets with Smooth Adaptive Activation Functions for Regression,2017 +57,Adience,adience,45.5039761,-73.5749687,McGill University,edu,13719bbb4bb8bbe0cbcdad009243a926d93be433,citation,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w6/papers/Tian_Deep_LDA-Pruned_Nets_CVPR_2017_paper.pdf,Deep LDA-Pruned Nets for Efficient Facial Gender Classification,2017 +58,Adience,adience,41.10427915,29.02231159,Istanbul Technical University,edu,fd53be2e0a9f33080a9db4b5a5e416e24ae8e198,citation,https://arxiv.org/pdf/1606.02909.pdf,Apparent Age Estimation Using Ensemble of Deep Learning Models,2016 +59,Adience,adience,47.3804685,8.5430355,"Disney Research, Zurich",edu,017e94ad51c9be864b98c9b75582753ce6ee134f,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7892240,Rapid one-shot acquisition of dynamic VR avatars,2017 +60,Adience,adience,34.1579742,-118.2894729,"Disney Research, UK",company,017e94ad51c9be864b98c9b75582753ce6ee134f,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7892240,Rapid one-shot acquisition of dynamic VR avatars,2017 +61,Adience,adience,34.1619174,-118.2883702,Walt Disney Imagineering,company,017e94ad51c9be864b98c9b75582753ce6ee134f,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7892240,Rapid one-shot acquisition of dynamic VR avatars,2017 +62,Adience,adience,49.2593879,-122.9151893,"AltumView Systems Inc., Burnaby, BC, Canada",company,b44f03b5fa8c6275238c2d13345652e6ff7e6ea9,citation,https://doi.org/10.1109/GlobalSIP.2017.8309138,Lapped convolutional neural networks for embedded systems,2017 +63,Adience,adience,37.2830003,127.04548469,Ajou University,edu,24286ef164f0e12c3e9590ec7f636871ba253026,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8369721,Age and gender classification using wide convolutional neural network and Gabor filter,2018 +64,Adience,adience,37.26728,126.9841151,Seoul National University,edu,24286ef164f0e12c3e9590ec7f636871ba253026,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8369721,Age and gender classification using wide convolutional neural network and Gabor filter,2018 +65,Adience,adience,47.6543238,-122.30800894,University of Washington,edu,96e0cfcd81cdeb8282e29ef9ec9962b125f379b0,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2016.527,The MegaFace Benchmark: 1 Million Faces for Recognition at Scale,2016 +66,Adience,adience,65.0592157,25.46632601,University of Oulu,edu,1fe121925668743762ce9f6e157081e087171f4c,citation,https://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W02/papers/Ylioinas_Unsupervised_Learning_of_2015_CVPR_paper.pdf,Unsupervised learning of overcomplete face descriptors,2015 +67,Adience,adience,23.0886214,-82.4481944,"Advanced Technologies Application Center, Havana, Cuba",edu,c5eba789aeb41904aa1b03fad1dc7cea5d0cd3b6,citation,https://doi.org/10.1109/BTAS.2017.8272773,Age and gender classification using local appearance descriptors from facial components,2017 +68,Adience,adience,40.7240176,8.5578947,University of Sassari,edu,c5eba789aeb41904aa1b03fad1dc7cea5d0cd3b6,citation,https://doi.org/10.1109/BTAS.2017.8272773,Age and gender classification using local appearance descriptors from facial components,2017 +69,Adience,adience,36.3697191,127.362537,Korea Advanced Institute of Science and Technology,edu,cb27b45329d61f5f95ed213798d4b2a615e76be2,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8329236,Deep Facial Age Estimation Using Conditional Multitask Learning With Weak Label Expansion,2018 +70,Adience,adience,37.2520226,127.0555019,"Samsung SAIT, Korea",company,cb27b45329d61f5f95ed213798d4b2a615e76be2,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8329236,Deep Facial Age Estimation Using Conditional Multitask Learning With Weak Label Expansion,2018 +71,Adience,adience,22.42031295,114.20788644,Chinese University of Hong Kong,edu,d80a3d1f3a438e02a6685e66ee908446766fefa9,citation,https://arxiv.org/pdf/1708.09687.pdf,Quantifying Facial Age by Posterior of Age Comparisons,2017 +72,Adience,adience,42.357757,-83.06286711,Wayne State University,edu,4f1249369127cc2e2894f6b2f1052d399794919a,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8239663,Deep Age Estimation: From Classification to Ranking,2018 +73,Adience,adience,35.2742655,137.01327841,Chubu University,edu,5fb5d9389e2a2a4302c81bcfc068a4c8d4efe70c,citation,http://pdfs.semanticscholar.org/5fb5/d9389e2a2a4302c81bcfc068a4c8d4efe70c.pdf,Multiple Facial Attributes Estimation Based on Weighted Heterogeneous Learning,2016 +74,Adience,adience,1.3484104,103.68297965,Nanyang Technological University,edu,d0471d5907d6557cf081edf4c7c2296c3c221a38,citation,https://pdfs.semanticscholar.org/d047/1d5907d6557cf081edf4c7c2296c3c221a38.pdf,A Constrained Deep Neural Network for Ordinal Regression,0 +75,Adience,adience,41.3868913,2.16352385,University of Barcelona,edu,500fbe18afd44312738cab91b4689c12b4e0eeee,citation,http://www.maia.ub.es/~sergio/linked/ijcnn_age_and_cultural_2015.pdf,ChaLearn looking at people 2015 new competitions: Age estimation and cultural event recognition,2015 +76,Adience,adience,45.4312742,12.3265377,University of Venezia,edu,500fbe18afd44312738cab91b4689c12b4e0eeee,citation,http://www.maia.ub.es/~sergio/linked/ijcnn_age_and_cultural_2015.pdf,ChaLearn looking at people 2015 new competitions: Age estimation and cultural event recognition,2015 +77,Adience,adience,40.47913175,-74.43168868,Rutgers University,edu,31f1e711fcf82c855f27396f181bf5e565a2f58d,citation,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2015.54,Unconstrained Age Estimation with Deep Convolutional Neural Networks,2015 +78,Adience,adience,39.2899685,-76.62196103,University of Maryland,edu,31f1e711fcf82c855f27396f181bf5e565a2f58d,citation,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2015.54,Unconstrained Age Estimation with Deep Convolutional Neural Networks,2015 +79,Adience,adience,32.77824165,34.99565673,Open University of Israel,edu,62e913431bcef5983955e9ca160b91bb19d9de42,citation,http://pdfs.semanticscholar.org/62e9/13431bcef5983955e9ca160b91bb19d9de42.pdf,Facial Landmark Detection with Tweaked Convolutional Neural Networks,2015 +80,Adience,adience,34.67567405,33.04577648,Cyprus University of Technology,edu,9f3c9e41f46df9c94d714b1f080dafad6b4de1de,citation,https://doi.org/10.1109/ICT.2017.7998260,On the detection of images containing child-pornographic material,2017 +81,Adience,adience,51.49887085,-0.17560797,Imperial College London,edu,54bb25a213944b08298e4e2de54f2ddea890954a,citation,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Moschoglou_AgeDB_The_First_CVPR_2017_paper.pdf,"AgeDB: The First Manually Collected, In-the-Wild Age Database",2017 +82,Adience,adience,51.59029705,-0.22963221,Middlesex University,edu,54bb25a213944b08298e4e2de54f2ddea890954a,citation,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Moschoglou_AgeDB_The_First_CVPR_2017_paper.pdf,"AgeDB: The First Manually Collected, In-the-Wild Age Database",2017 +83,Adience,adience,37.5600406,126.9369248,Yonsei University,edu,fde41dc4ec6ac6474194b99e05b43dd6a6c4f06f,citation,https://arxiv.org/pdf/1809.01990.pdf,Multi-Expert Gender Classification on Age Group by Integrating Deep Neural Networks,2018 +84,Adience,adience,23.143197,113.34009651,South China Normal University,edu,dc6ad30c7a4bc79bb06b4725b16e202d3d7d8935,citation,http://doi.org/10.1007/s11042-017-4646-5,Age classification with deep learning face representation,2017 +85,Adience,adience,23.0502042,113.39880323,South China University of Technology,edu,dc6ad30c7a4bc79bb06b4725b16e202d3d7d8935,citation,http://doi.org/10.1007/s11042-017-4646-5,Age classification with deep learning face representation,2017 +86,Adience,adience,34.2152538,117.1398541,China University of Mining and Technology,edu,bc6a7390135bf127b93b90a21b1fdebbfb56ad30,citation,https://doi.org/10.1109/TIFS.2017.2766039,Bimodal Vein Data Mining via Cross-Selected-Domain Knowledge Transfer,2018 +87,Adience,adience,31.2284923,121.40211389,East China Normal University,edu,bc6a7390135bf127b93b90a21b1fdebbfb56ad30,citation,https://doi.org/10.1109/TIFS.2017.2766039,Bimodal Vein Data Mining via Cross-Selected-Domain Knowledge Transfer,2018 +88,Adience,adience,25.0410728,121.6147562,Institute of Information Science,edu,337dd4aaca2c5f9b5d2de8e0e2401b5a8feb9958,citation,https://arxiv.org/pdf/1810.11160.pdf,Data-specific Adaptive Threshold for Face Recognition and Authentication,2018 +89,Adience,adience,28.3656193,75.5834953,"Central Electronics Research Institute, Pilani, India",edu,1aeef2ab062c27e0dbba481047e818d4c471ca57,citation,https://doi.org/10.1109/ICACCI.2015.7275860,Analyzing impact of image scaling algorithms on viola-jones face detection framework,2015 +90,Adience,adience,36.3697191,127.362537,Korea Advanced Institute of Science and Technology,edu,2911e7f0fb6803851b0eddf8067a6fc06e8eadd6,citation,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Jung_Joint_Fine-Tuning_in_ICCV_2015_paper.pdf,Joint Fine-Tuning in Deep Neural Networks for Facial Expression Recognition,2015 +91,Adience,adience,23.7317915,90.3805625,Dhaka University,edu,026e4ee480475e63ae68570d73388f8dfd4b4cde,citation,http://pdfs.semanticscholar.org/026e/4ee480475e63ae68570d73388f8dfd4b4cde.pdf,Evaluating gender portrayal in Bangladeshi TV,2017 +92,Adience,adience,40.0505672,-75.37109326,Eastern University,edu,026e4ee480475e63ae68570d73388f8dfd4b4cde,citation,http://pdfs.semanticscholar.org/026e/4ee480475e63ae68570d73388f8dfd4b4cde.pdf,Evaluating gender portrayal in Bangladeshi TV,2017 +93,Adience,adience,42.3583961,-71.09567788,MIT,edu,026e4ee480475e63ae68570d73388f8dfd4b4cde,citation,http://pdfs.semanticscholar.org/026e/4ee480475e63ae68570d73388f8dfd4b4cde.pdf,Evaluating gender portrayal in Bangladeshi TV,2017 +94,Adience,adience,-22.8148374,-47.0647708,University of Campinas (UNICAMP),edu,b161d261fabb507803a9e5834571d56a3b87d147,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8122913,Gender recognition from face images using a geometric descriptor,2017 +95,Adience,adience,58.38131405,26.72078081,University of Tartu,edu,1b248ed8e7c9514648cd598960fadf9ab17e7fe8,citation,https://pdfs.semanticscholar.org/1b24/8ed8e7c9514648cd598960fadf9ab17e7fe8.pdf,"From apparent to real age: gender, age, ethnic, makeup, and expression bias analysis in real age estimation",0 +96,Adience,adience,41.3868913,2.16352385,University of Barcelona,edu,1b248ed8e7c9514648cd598960fadf9ab17e7fe8,citation,https://pdfs.semanticscholar.org/1b24/8ed8e7c9514648cd598960fadf9ab17e7fe8.pdf,"From apparent to real age: gender, age, ethnic, makeup, and expression bias analysis in real age estimation",0 +97,Adience,adience,31.76909325,117.17795091,Anhui University,edu,b910590a0eb191d03e1aedb3d55c905129e92e6b,citation,http://doi.acm.org/10.1145/2808492.2808570,Robust gender classification on unconstrained face images,2015 +98,Adience,adience,40.0044795,116.370238,Chinese Academy of Sciences,edu,b910590a0eb191d03e1aedb3d55c905129e92e6b,citation,http://doi.acm.org/10.1145/2808492.2808570,Robust gender classification on unconstrained face images,2015 +99,Adience,adience,43.7743911,-79.50481085,York University,edu,ffe4bb47ec15f768e1744bdf530d5796ba56cfc1,citation,https://arxiv.org/pdf/1706.04277.pdf,AFIF4: Deep Gender Classification based on AdaBoost-based Fusion of Isolated Facial Features and Foggy Faces,2017 +100,Adience,adience,27.18794105,31.17009498,Assiut University,edu,ffe4bb47ec15f768e1744bdf530d5796ba56cfc1,citation,https://arxiv.org/pdf/1706.04277.pdf,AFIF4: Deep Gender Classification based on AdaBoost-based Fusion of Isolated Facial Features and Foggy Faces,2017 diff --git a/site/datasets/final/aflw.csv b/site/datasets/final/aflw.csv new file mode 100644 index 00000000..29cfe134 --- /dev/null +++ b/site/datasets/final/aflw.csv @@ -0,0 +1,212 @@ +index,dataset_name,key,lat,lng,loc,loc_type,paper_id,paper_type,paper_url,title,year +0,AFLW,aflw,0.0,0.0,,,a74251efa970b92925b89eeef50a5e37d9281ad0,main,http://lrs.icg.tugraz.at/pubs/koestinger_befit_11.pdf,"Annotated Facial Landmarks in the Wild: A large-scale, real-world database for facial landmark localization",2011 +1,AFLW,aflw,42.2942142,-83.71003894,University of Michigan,edu,860588fafcc80c823e66429fadd7e816721da42a,citation,https://arxiv.org/pdf/1804.04412.pdf,Unsupervised Discovery of Object Landmarks as Structural Representations,2018 +2,AFLW,aflw,22.42031295,114.20788644,Chinese University of Hong Kong,edu,433a6d6d2a3ed8a6502982dccc992f91d665b9b3,citation,http://pdfs.semanticscholar.org/433a/6d6d2a3ed8a6502982dccc992f91d665b9b3.pdf,Transferring Landmark Annotations for Cross-Dataset Face Alignment,2014 +3,AFLW,aflw,40.00229045,116.32098908,Tsinghua University,edu,433a6d6d2a3ed8a6502982dccc992f91d665b9b3,citation,http://pdfs.semanticscholar.org/433a/6d6d2a3ed8a6502982dccc992f91d665b9b3.pdf,Transferring Landmark Annotations for Cross-Dataset Face Alignment,2014 +4,AFLW,aflw,-27.47715625,153.02841004,Queensland University of Technology,edu,6342a4c54835c1e14159495373ab18b4233d2d9b,citation,http://pdfs.semanticscholar.org/6342/a4c54835c1e14159495373ab18b4233d2d9b.pdf,Towards Pose-robust Face Recognition on Video,2014 +5,AFLW,aflw,39.993008,116.329882,SenseTime,company,38183fe28add21693729ddeaf3c8a90a2d5caea3,citation,http://arxiv.org/abs/1706.09876,Scale-Aware Face Detection,2017 +6,AFLW,aflw,22.59805605,113.98533784,Shenzhen Institutes of Advanced Technology,edu,2c17d36bab56083293456fe14ceff5497cc97d75,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zhu_Unconstrained_Face_Alignment_CVPR_2016_paper.pdf,Unconstrained Face Alignment via Cascaded Compositional Learning,2016 +7,AFLW,aflw,22.42031295,114.20788644,Chinese University of Hong Kong,edu,2c17d36bab56083293456fe14ceff5497cc97d75,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zhu_Unconstrained_Face_Alignment_CVPR_2016_paper.pdf,Unconstrained Face Alignment via Cascaded Compositional Learning,2016 +8,AFLW,aflw,47.05821,15.46019568,Graz University of Technology,edu,4ab10174a4f98f7e2da7cf6ccfeb9bc64c8e7da8,citation,http://pdfs.semanticscholar.org/4ab1/0174a4f98f7e2da7cf6ccfeb9bc64c8e7da8.pdf,Efficient Metric Learning for Real-World Face Recognition,2013 +9,AFLW,aflw,22.53521465,113.9315911,Shenzhen University,edu,32ecbbd76fdce249f9109594eee2d52a1cafdfc7,citation,http://pdfs.semanticscholar.org/32ec/bbd76fdce249f9109594eee2d52a1cafdfc7.pdf,Object Specific Deep Learning Feature and Its Application to Face Detection,2016 +10,AFLW,aflw,52.9387428,-1.20029569,University of Nottingham,edu,32ecbbd76fdce249f9109594eee2d52a1cafdfc7,citation,http://pdfs.semanticscholar.org/32ec/bbd76fdce249f9109594eee2d52a1cafdfc7.pdf,Object Specific Deep Learning Feature and Its Application to Face Detection,2016 +11,AFLW,aflw,40.0044795,116.370238,Chinese Academy of Sciences,edu,4e6c17966efae956133bf8f22edeffc24a0470c1,citation,http://pdfs.semanticscholar.org/4e6c/17966efae956133bf8f22edeffc24a0470c1.pdf,Face Classification: A Specialized Benchmark Study,2016 +12,AFLW,aflw,22.15263985,113.56803206,Macau University of Science and Technology,edu,4e6c17966efae956133bf8f22edeffc24a0470c1,citation,http://pdfs.semanticscholar.org/4e6c/17966efae956133bf8f22edeffc24a0470c1.pdf,Face Classification: A Specialized Benchmark Study,2016 +13,AFLW,aflw,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,4e6c17966efae956133bf8f22edeffc24a0470c1,citation,http://pdfs.semanticscholar.org/4e6c/17966efae956133bf8f22edeffc24a0470c1.pdf,Face Classification: A Specialized Benchmark Study,2016 +14,AFLW,aflw,37.4102193,-122.05965487,Carnegie Mellon University,edu,f1b4583c576d6d8c661b4b2c82bdebf3ba3d7e53,citation,https://arxiv.org/pdf/1707.05653.pdf,Faster than Real-Time Facial Alignment: A 3D Spatial Transformer Network Approach in Unconstrained Poses,2017 +15,AFLW,aflw,29.6328784,-82.3490133,University of Florida,edu,441bf5f7fe7d1a3939d8b200eca9b4bb619449a9,citation,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W08/papers/Sundararajan_Head_Pose_Estimation_2015_CVPR_paper.pdf,Head pose estimation in the wild using approximate view manifolds,2015 +16,AFLW,aflw,37.4102193,-122.05965487,Carnegie Mellon University,edu,1ca815327e62c70f4ee619a836e05183ef629567,citation,http://www.humansensing.cs.cmu.edu/sites/default/files/Xiong_Global_Supervised_Descent_2015_CVPR_paper.pdf,Global supervised descent method,2015 +17,AFLW,aflw,31.20081505,121.42840681,Shanghai Jiao Tong University,edu,6495d989fe33b19d2b7755f9077d8b5bf3190151,citation,https://arxiv.org/pdf/1803.07835.pdf,Joint 3D Face Reconstruction and Dense Alignment with Position Map Regression Network,2018 +18,AFLW,aflw,40.62984145,22.9588935,Aristotle University of Thessaloniki,edu,ccebd3bf069f5c73ea2ccc5791976f894bc6023d,citation,https://doi.org/10.1109/ICPR.2016.7900186,Face detection based on deep convolutional neural networks exploiting incremental facial part learning,2016 +19,AFLW,aflw,51.24303255,-0.59001382,University of Surrey,edu,c146aa6d56233ce700032f1cb179700778557601,citation,https://arxiv.org/pdf/1708.07199.pdf,3D Morphable Models as Spatial Transformer Networks,2017 +20,AFLW,aflw,53.94540365,-1.03138878,University of York,edu,c146aa6d56233ce700032f1cb179700778557601,citation,https://arxiv.org/pdf/1708.07199.pdf,3D Morphable Models as Spatial Transformer Networks,2017 +21,AFLW,aflw,51.24303255,-0.59001382,University of Surrey,edu,438e7999c937b94f0f6384dbeaa3febff6d283b6,citation,https://arxiv.org/pdf/1705.02402v2.pdf,"Face Detection, Bounding Box Aggregation and Pose Estimation for Robust Facial Landmark Localisation in the Wild",2017 +22,AFLW,aflw,31.4854255,120.2739581,Jiangnan University,edu,438e7999c937b94f0f6384dbeaa3febff6d283b6,citation,https://arxiv.org/pdf/1705.02402v2.pdf,"Face Detection, Bounding Box Aggregation and Pose Estimation for Robust Facial Landmark Localisation in the Wild",2017 +23,AFLW,aflw,37.4102193,-122.05965487,Carnegie Mellon University,edu,b1fdd4ae17d82612cefd4e78b690847b071379d3,citation,https://pdfs.semanticscholar.org/4fc5/416b6c7173d3462e5be796bda3ad8d5645a1.pdf,Supervised Descent Method,2015 +24,AFLW,aflw,40.0044795,116.370238,Chinese Academy of Sciences,edu,a5f35880477ae82902c620245e258cf854c09be9,citation,http://doi.org/10.1016/j.imavis.2013.12.004,Face detection by structural models,2014 +25,AFLW,aflw,51.24303255,-0.59001382,University of Surrey,edu,96c6f50ce8e1b9e8215b8791dabd78b2bbd5f28d,citation,https://arxiv.org/pdf/1611.05396.pdf,Dynamic Attention-Controlled Cascaded Shape Regression Exploiting Training Data Augmentation and Fuzzy-Set Sample Weighting,2017 +26,AFLW,aflw,31.4854255,120.2739581,Jiangnan University,edu,96c6f50ce8e1b9e8215b8791dabd78b2bbd5f28d,citation,https://arxiv.org/pdf/1611.05396.pdf,Dynamic Attention-Controlled Cascaded Shape Regression Exploiting Training Data Augmentation and Fuzzy-Set Sample Weighting,2017 +27,AFLW,aflw,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,d3b0839324d0091e70ce34f44c979b9366547327,citation,https://arxiv.org/pdf/1804.10743.pdf,Precise Box Score: Extract More Information from Datasets to Improve the Performance of Face Detection,2018 +28,AFLW,aflw,47.5612651,7.5752961,University of Basel,edu,7caa3a74313f9a7a2dd5b4c2cd7f825d895d3794,citation,http://doi.org/10.1007/s11263-016-0967-5,Markov Chain Monte Carlo for Automated Face Image Analysis,2016 +29,AFLW,aflw,42.718568,-84.47791571,Michigan State University,edu,cd55fb30737625e86454a2861302b96833ed549d,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7139094,Annotating Unconstrained Face Imagery: A scalable approach,2015 +30,AFLW,aflw,38.95187,-77.363259,"Noblis, Falls Church, VA, U.S.A.",company,cd55fb30737625e86454a2861302b96833ed549d,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7139094,Annotating Unconstrained Face Imagery: A scalable approach,2015 +31,AFLW,aflw,51.7534538,-1.25400997,University of Oxford,edu,7117ed0be436c0291bc6fb6ea6db18de74e2464a,citation,https://pdfs.semanticscholar.org/7117/ed0be436c0291bc6fb6ea6db18de74e2464a.pdf,Spatial Transformations,2017 +32,AFLW,aflw,22.42031295,114.20788644,Chinese University of Hong Kong,edu,8a3c5507237957d013a0fe0f082cab7f757af6ee,citation,http://pdfs.semanticscholar.org/fcd7/1c18192928a2e0b264edd4d919ab2f8f652a.pdf,Facial Landmark Detection by Deep Multi-task Learning,2014 +33,AFLW,aflw,47.05821,15.46019568,Graz University of Technology,edu,5c8672c0d2f28fd5d2d2c4b9818fcff43fb01a48,citation,http://pdfs.semanticscholar.org/5c86/72c0d2f28fd5d2d2c4b9818fcff43fb01a48.pdf,Robust Face Detection by Simple Means,2012 +34,AFLW,aflw,30.642769,104.06751175,"Sichuan University, Chengdu",edu,5cbe1445d683d605b31377881ac8540e1d17adf0,citation,https://arxiv.org/pdf/1509.06161.pdf,On 3D face reconstruction via cascaded regression in shape space,2017 +35,AFLW,aflw,51.24303255,-0.59001382,University of Surrey,edu,3c6cac7ecf546556d7c6050f7b693a99cc8a57b3,citation,https://pdfs.semanticscholar.org/3c6c/ac7ecf546556d7c6050f7b693a99cc8a57b3.pdf,Robust facial landmark detection in the wild,2016 +36,AFLW,aflw,22.53521465,113.9315911,Shenzhen University,edu,287de191c49a3caa38ad7594093045dfba1eb420,citation,https://doi.org/10.23919/MVA.2017.7986829,Object specific deep feature and its application to face detection,2017 +37,AFLW,aflw,52.9387428,-1.20029569,University of Nottingham,edu,287de191c49a3caa38ad7594093045dfba1eb420,citation,https://doi.org/10.23919/MVA.2017.7986829,Object specific deep feature and its application to face detection,2017 +38,AFLW,aflw,40.0044795,116.370238,Chinese Academy of Sciences,edu,2f04ba0f74df046b0080ca78e56898bd4847898b,citation,http://arxiv.org/abs/1407.4023,Aggregate channel features for multi-view face detection,2014 +39,AFLW,aflw,33.6431901,-117.84016494,"University of California, Irvine",edu,65126e0b1161fc8212643b8ff39c1d71d262fbc1,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Ghiasi_Occlusion_Coherence_Localizing_2014_CVPR_paper.pdf,Occlusion Coherence: Localizing Occluded Faces with a Hierarchical Deformable Part Model,2014 +40,AFLW,aflw,38.99203005,-76.9461029,University of Maryland College Park,edu,4f36c14d1453fc9d6481b09c5a09e91d8d9ee47a,citation,http://pdfs.semanticscholar.org/4f36/c14d1453fc9d6481b09c5a09e91d8d9ee47a.pdf,Video-Based Face Recognition Using the Intra/Extra-Personal Difference Dictionary,2014 +41,AFLW,aflw,39.2899685,-76.62196103,University of Maryland,edu,4f36c14d1453fc9d6481b09c5a09e91d8d9ee47a,citation,http://pdfs.semanticscholar.org/4f36/c14d1453fc9d6481b09c5a09e91d8d9ee47a.pdf,Video-Based Face Recognition Using the Intra/Extra-Personal Difference Dictionary,2014 +42,AFLW,aflw,25.01353105,121.54173736,National Taiwan University of Science and Technology,edu,e4e07f5f201c6986e93ddb42dcf11a43c339ea2e,citation,https://doi.org/10.1109/BTAS.2017.8272722,Cross-pose landmark localization using multi-dropout framework,2017 +43,AFLW,aflw,32.87935255,-117.23110049,"University of California, San Diego",edu,a1e07c31184d3728e009d4d1bebe21bf9fe95c8e,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7900056,"On looking at faces in an automobile: Issues, algorithms and evaluation on naturalistic driving dataset",2016 +44,AFLW,aflw,22.42031295,114.20788644,Chinese University of Hong Kong,edu,329d58e8fb30f1bf09acb2f556c9c2f3e768b15c,citation,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Wu_Leveraging_Intra_and_CVPR_2017_paper.pdf,Leveraging Intra and Inter-Dataset Variations for Robust Face Alignment,2017 +45,AFLW,aflw,40.00229045,116.32098908,Tsinghua University,edu,329d58e8fb30f1bf09acb2f556c9c2f3e768b15c,citation,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Wu_Leveraging_Intra_and_CVPR_2017_paper.pdf,Leveraging Intra and Inter-Dataset Variations for Robust Face Alignment,2017 +46,AFLW,aflw,22.59805605,113.98533784,Shenzhen Institutes of Advanced Technology,edu,04661729f0ff6afe4b4d6223f18d0da1d479accf,citation,http://doi.ieeecomputersociety.org/10.1109/ICCV.2015.419,From Facial Parts Responses to Face Detection: A Deep Learning Approach,2015 +47,AFLW,aflw,22.42031295,114.20788644,Chinese University of Hong Kong,edu,04661729f0ff6afe4b4d6223f18d0da1d479accf,citation,http://doi.ieeecomputersociety.org/10.1109/ICCV.2015.419,From Facial Parts Responses to Face Detection: A Deep Learning Approach,2015 +48,AFLW,aflw,17.4454957,78.34854698,International Institute of Information Technology,edu,185263189a30986e31566394680d6d16b0089772,citation,https://pdfs.semanticscholar.org/1852/63189a30986e31566394680d6d16b0089772.pdf,Efficient Annotation of Objects for Video Analysis,2018 +49,AFLW,aflw,35.77184965,-78.67408695,North Carolina State University,edu,9bd35145c48ce172b80da80130ba310811a44051,citation,https://arxiv.org/pdf/1606.00850.pdf,Face Detection with End-to-End Integration of a ConvNet and a 3D Model,2016 +50,AFLW,aflw,39.9922379,116.30393816,Peking University,edu,9bd35145c48ce172b80da80130ba310811a44051,citation,https://arxiv.org/pdf/1606.00850.pdf,Face Detection with End-to-End Integration of a ConvNet and a 3D Model,2016 +51,AFLW,aflw,40.0044795,116.370238,Chinese Academy of Sciences,edu,45e616093a92e5f1e61a7c6037d5f637aa8964af,citation,http://www.cs.toronto.edu/~byang/papers/malf_fg15.pdf,Fine-grained evaluation on face detection in the wild,2015 +52,AFLW,aflw,32.7283683,-97.11201835,University of Texas at Arlington,edu,411dc8874fd7b3a9a4c1fd86bb5b583788027776,citation,https://pdfs.semanticscholar.org/701f/56f0eac9f88387de1f556acef78016b05d52.pdf,Direct Shape Regression Networks for End-to-End Face Alignment,2018 +53,AFLW,aflw,34.1235825,108.83546,Xidian University,edu,411dc8874fd7b3a9a4c1fd86bb5b583788027776,citation,https://pdfs.semanticscholar.org/701f/56f0eac9f88387de1f556acef78016b05d52.pdf,Direct Shape Regression Networks for End-to-End Face Alignment,2018 +54,AFLW,aflw,42.36782045,-71.12666653,Harvard University,edu,3cb057a24a8adba6fe964b5d461ba4e4af68af14,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6701391,Perceptual Annotation: Measuring Human Vision to Improve Computer Vision,2014 +55,AFLW,aflw,22.59805605,113.98533784,Shenzhen Institutes of Advanced Technology,edu,cf5c9b521c958b84bb63bea9d5cbb522845e4ba7,citation,http://pdfs.semanticscholar.org/cf5c/9b521c958b84bb63bea9d5cbb522845e4ba7.pdf,Towards Arbitrary-View Face Alignment by Recommendation Trees,2015 +56,AFLW,aflw,22.42031295,114.20788644,Chinese University of Hong Kong,edu,cf5c9b521c958b84bb63bea9d5cbb522845e4ba7,citation,http://pdfs.semanticscholar.org/cf5c/9b521c958b84bb63bea9d5cbb522845e4ba7.pdf,Towards Arbitrary-View Face Alignment by Recommendation Trees,2015 +57,AFLW,aflw,39.329053,-76.619425,Johns Hopkins University,edu,377f2b65e6a9300448bdccf678cde59449ecd337,citation,https://arxiv.org/pdf/1804.10275.pdf,Pushing the Limits of Unconstrained Face Detection: a Challenge Dataset and Baseline Results,2018 +58,AFLW,aflw,40.47913175,-74.43168868,Rutgers University,edu,377f2b65e6a9300448bdccf678cde59449ecd337,citation,https://arxiv.org/pdf/1804.10275.pdf,Pushing the Limits of Unconstrained Face Detection: a Challenge Dataset and Baseline Results,2018 +59,AFLW,aflw,39.2899685,-76.62196103,University of Maryland,edu,93420d9212dd15b3ef37f566e4d57e76bb2fab2f,citation,https://arxiv.org/pdf/1611.00851.pdf,An All-In-One Convolutional Neural Network for Face Analysis,2017 +60,AFLW,aflw,49.10184375,8.4331256,Karlsruhe Institute of Technology,edu,8ee5b1c9fb0bded3578113c738060290403ed472,citation,https://infoscience.epfl.ch/record/200452/files/wacv2014-RGE.pdf,Extending explicit shape regression with mixed feature channels and pose priors,2014 +61,AFLW,aflw,34.0224149,-118.28634407,University of Southern California,edu,43e99b76ca8e31765d4571d609679a689afdc99e,citation,http://arxiv.org/abs/1709.00536,Learning Dense Facial Correspondences in Unconstrained Images,2017 +62,AFLW,aflw,38.88140235,121.52281098,Dalian University of Technology,edu,f074e86e003d5b7a3b6e1780d9c323598d93f3bc,citation,http://pdfs.semanticscholar.org/f074/e86e003d5b7a3b6e1780d9c323598d93f3bc.pdf,Characteristic Number: Theory and Its Application to Shape Analysis,2014 +63,AFLW,aflw,38.99203005,-76.9461029,University of Maryland College Park,edu,1389ba6c3ff34cdf452ede130c738f37dca7e8cb,citation,http://pdfs.semanticscholar.org/1389/ba6c3ff34cdf452ede130c738f37dca7e8cb.pdf,A Convolution Tree with Deconvolution Branches: Exploiting Geometric Relationships for Single Shot Keypoint Detection,2017 +64,AFLW,aflw,22.42031295,114.20788644,Chinese University of Hong Kong,edu,85674b1b6007634f362cbe9b921912b697c0a32c,citation,http://pdfs.semanticscholar.org/8567/4b1b6007634f362cbe9b921912b697c0a32c.pdf,Optimizing Facial Landmark Detection by Facial Attribute Learning,2014 +65,AFLW,aflw,51.7534538,-1.25400997,University of Oxford,edu,8d9ffe9f7bf1ff3ecc320afe50a92a867a12aeb7,citation,https://arxiv.org/pdf/1809.02169.pdf,Turning a Blind Eye: Explicit Removal of Biases and Variation from Deep Neural Network Embeddings,2018 +66,AFLW,aflw,38.99203005,-76.9461029,University of Maryland College Park,edu,f7824758800a7b1a386db5bd35f84c81454d017a,citation,https://arxiv.org/pdf/1702.05085.pdf,KEPLER: Keypoint and Pose Estimation of Unconstrained Faces by Learning Efficient H-CNN Regressors,2017 +67,AFLW,aflw,17.4454957,78.34854698,International Institute of Information Technology,edu,156cd2a0e2c378e4c3649a1d046cd080d3338bca,citation,http://pdfs.semanticscholar.org/156c/d2a0e2c378e4c3649a1d046cd080d3338bca.pdf,Exemplar based approaches on Face Fiducial Detection and Frontalization,2017 +68,AFLW,aflw,39.7275037,39.47127034,Firat University,edu,5cfbeae360398de9e20e4165485837bd42b93217,citation,http://pdfs.semanticscholar.org/5cfb/eae360398de9e20e4165485837bd42b93217.pdf,Comparison Of Hog (Histogram of Oriented Gradients) and Haar Cascade Algorithms with a Convolutional Neural Network Based Face Detection Approaches,2017 +69,AFLW,aflw,29.5084174,106.57858552,Chongqing University,edu,a065080353d18809b2597246bb0b48316234c29a,citation,http://pdfs.semanticscholar.org/a065/080353d18809b2597246bb0b48316234c29a.pdf,FHEDN: A based on context modeling Feature Hierarchy Encoder-Decoder Network for face detection,2017 +70,AFLW,aflw,52.22165395,21.00735776,Warsaw University of Technology,edu,f27b8b8f2059248f77258cf8595e9434cf0b0228,citation,https://arxiv.org/pdf/1706.01789.pdf,Deep Alignment Network: A Convolutional Neural Network for Robust Face Alignment,2017 +71,AFLW,aflw,53.46600455,-2.23300881,University of Manchester,edu,68c1090f912b69b76437644dd16922909dd40d60,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6987312,Robust and Accurate Shape Model Matching Using Random Forest Regression-Voting,2012 +72,AFLW,aflw,32.77824165,34.99565673,Open University of Israel,edu,62e913431bcef5983955e9ca160b91bb19d9de42,citation,http://pdfs.semanticscholar.org/62e9/13431bcef5983955e9ca160b91bb19d9de42.pdf,Facial Landmark Detection with Tweaked Convolutional Neural Networks,2015 +73,AFLW,aflw,50.0764296,14.41802312,Czech Technical University,edu,f4ba07d2ae6c9673502daf50ee751a5e9262848f,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7284810,Real-time multi-view facial landmark detector learned by the structured output SVM,2015 +74,AFLW,aflw,35.6924853,139.7582533,"National Institute of Informatics, Japan",edu,f4ba07d2ae6c9673502daf50ee751a5e9262848f,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7284810,Real-time multi-view facial landmark detector learned by the structured output SVM,2015 +75,AFLW,aflw,40.00229045,116.32098908,Tsinghua University,edu,204f1cf56794bb23f9516b5f225a6ae00d3d30b8,citation,https://doi.org/10.1109/JSYST.2015.2418680,An AdaBoost-Based Face Detection System Using Parallel Configurable Architecture With Optimized Computation,2017 +76,AFLW,aflw,30.44235995,-84.29747867,Florida State University,edu,1ed6c7e02b4b3ef76f74dd04b2b6050faa6e2177,citation,http://pdfs.semanticscholar.org/6433/c412149382418ccd8aa966aa92973af41671.pdf,Face Detection with a 3D Model,2014 +77,AFLW,aflw,39.00041165,-77.10327775,National Institutes of Health,edu,1ed6c7e02b4b3ef76f74dd04b2b6050faa6e2177,citation,http://pdfs.semanticscholar.org/6433/c412149382418ccd8aa966aa92973af41671.pdf,Face Detection with a 3D Model,2014 +78,AFLW,aflw,42.718568,-84.47791571,Michigan State University,edu,37ce1d3a6415d6fc1760964e2a04174c24208173,citation,http://www.cse.msu.edu/~liuxm/publication/Jourabloo_Liu_ICCV2015.pdf,Pose-Invariant 3D Face Alignment,2015 +79,AFLW,aflw,42.718568,-84.47791571,Michigan State University,edu,ec8ec2dfd73cf3667f33595fef84c95c42125945,citation,https://arxiv.org/pdf/1707.06286.pdf,Pose-Invariant Face Alignment with a Single CNN,2017 +80,AFLW,aflw,43.07982815,-89.43066425,University of Wisconsin Madison,edu,2e091b311ac48c18aaedbb5117e94213f1dbb529,citation,http://pdfs.semanticscholar.org/b1a1/a049f1d78f6e3d072236237c467292ccd537.pdf,Collaborative Facial Landmark Localization for Transferring Annotations Across Datasets,2014 +81,AFLW,aflw,42.718568,-84.47791571,Michigan State University,edu,b53485dbdd2dc5e4f3c7cff26bd8707964bb0503,citation,http://doi.org/10.1007/s11263-017-1012-z,Pose-Invariant Face Alignment via CNN-Based Dense 3D Model Fitting,2017 +82,AFLW,aflw,22.42031295,114.20788644,Chinese University of Hong Kong,edu,abdd17e411a7bfe043f280abd4e560a04ab6e992,citation,https://arxiv.org/pdf/1803.00839.pdf,Pose-Robust Face Recognition via Deep Residual Equivariant Mapping,2018 +83,AFLW,aflw,42.718568,-84.47791571,Michigan State University,edu,085ceda1c65caf11762b3452f87660703f914782,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Jourabloo_Large-Pose_Face_Alignment_CVPR_2016_paper.pdf,Large-Pose Face Alignment via CNN-Based Dense 3D Model Fitting,2016 +84,AFLW,aflw,22.59805605,113.98533784,Shenzhen Institutes of Advanced Technology,edu,fcd3d557863e71dd5ce8bcf918adbe22ec59e62f,citation,http://doi.acm.org/10.1145/2502081.2502148,Facial landmark localization based on hierarchical pose regression with cascaded random ferns,2013 +85,AFLW,aflw,40.62984145,22.9588935,Aristotle University of Thessaloniki,edu,c00df53bd46f78ae925c5768d46080159d4ef87d,citation,https://arxiv.org/pdf/1707.08105.pdf,Learning Bag-of-Features Pooling for Deep Convolutional Neural Networks,2017 +86,AFLW,aflw,31.4854255,120.2739581,Jiangnan University,edu,d22dd4a6752a5ffa40aebd260ff63d2c2a9e1da1,citation,https://arxiv.org/pdf/1811.05295.pdf,Pose Invariant 3D Face Reconstruction,2018 +87,AFLW,aflw,28.59899755,-81.19712501,University of Central Florida,edu,c4fb2de4a5dc28710d9880aece321acf68338fde,citation,https://arxiv.org/pdf/1801.09092.pdf,Interactive Generative Adversarial Networks for Facial Expression Generation in Dyadic Interactions,2018 +88,AFLW,aflw,40.0044795,116.370238,Chinese Academy of Sciences,edu,c94b3a05f6f41d015d524169972ae8fd52871b67,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Yan_The_Fastest_Deformable_2014_CVPR_paper.pdf,The Fastest Deformable Part Model for Object Detection,2014 +89,AFLW,aflw,22.42031295,114.20788644,Chinese University of Hong Kong,edu,2a171f8d14b6b8735001a11c217af9587d095848,citation,http://doi.ieeecomputersociety.org/10.1109/ICCV.2015.414,Learning Social Relation Traits from Face Images,2015 +90,AFLW,aflw,23.09461185,113.28788994,Sun Yat-Sen University,edu,4c078c2919c7bdc26ca2238fa1a79e0331898b56,citation,http://pdfs.semanticscholar.org/4c07/8c2919c7bdc26ca2238fa1a79e0331898b56.pdf,Unconstrained Facial Landmark Localization with Backbone-Branches Fully-Convolutional Networks,2015 +91,AFLW,aflw,52.9387428,-1.20029569,University of Nottingham,edu,721e5ba3383b05a78ef1dfe85bf38efa7e2d611d,citation,http://pdfs.semanticscholar.org/74f1/9d0986c9d39aabb359abaa2a87a248a48deb.pdf,"BULAT, TZIMIROPOULOS: CONVOLUTIONAL AGGREGATION OF LOCAL EVIDENCE 1 Convolutional aggregation of local evidence for large pose face alignment",2016 +92,AFLW,aflw,47.5612651,7.5752961,University of Basel,edu,0c20fd90d867fe1be2459223a3cb1a69fa3d44bf,citation,http://pdfs.semanticscholar.org/0c20/fd90d867fe1be2459223a3cb1a69fa3d44bf.pdf,A Monte Carlo Strategy to Integrate Detection and Model-Based Face Analysis,2013 +93,AFLW,aflw,39.9041999,116.4073963,"Beijing FaceAll Co., Beijing, China",edu,c7cd490e43ee4ff81e8f86f790063695369c2830,citation,https://doi.org/10.1109/VCIP.2016.7805472,Use fast R-CNN and cascade structure for face detection,2016 +94,AFLW,aflw,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,c7cd490e43ee4ff81e8f86f790063695369c2830,citation,https://doi.org/10.1109/VCIP.2016.7805472,Use fast R-CNN and cascade structure for face detection,2016 +95,AFLW,aflw,47.05821,15.46019568,Graz University of Technology,edu,96a9ca7a8366ae0efe6b58a515d15b44776faf6e,citation,https://arxiv.org/pdf/1609.00129.pdf,Grid Loss: Detecting Occluded Faces,2016 +96,AFLW,aflw,49.2579566,7.04577417,Max Planck Institute for Informatics,edu,3b73f8a2b39751efb7d7b396bf825af2aaadee24,citation,https://arxiv.org/pdf/1712.01066.pdf,Connecting Pixels to Privacy and Utility: Automatic Redaction of Private Information in Images,2017 +97,AFLW,aflw,47.5612651,7.5752961,University of Basel,edu,043efe5f465704ced8d71a067d2b9d5aa5b59c29,citation,https://pdfs.semanticscholar.org/000a/c6b0865c79bcf0d6f7f069b3abfe229e1462.pdf,Occlusion-aware 3D Morphable Face Models,2016 +98,AFLW,aflw,40.62984145,22.9588935,Aristotle University of Thessaloniki,edu,ede5982980aa76deae8f9dc5143a724299d67742,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8081396,Lightweight two-stream convolutional face detection,2017 +99,AFLW,aflw,51.7534538,-1.25400997,University of Oxford,edu,a3d0ebb50d49116289fb176d28ea98a92badada6,citation,https://pdfs.semanticscholar.org/a3d0/ebb50d49116289fb176d28ea98a92badada6.pdf,Unsupervised Learning of Object Landmarks through Conditional Image Generation,2018 +100,AFLW,aflw,55.94951105,-3.19534913,University of Edinburgh,edu,a3d0ebb50d49116289fb176d28ea98a92badada6,citation,https://pdfs.semanticscholar.org/a3d0/ebb50d49116289fb176d28ea98a92badada6.pdf,Unsupervised Learning of Object Landmarks through Conditional Image Generation,2018 +101,AFLW,aflw,51.24303255,-0.59001382,University of Surrey,edu,ed07856461da6c7afa4f1782b5b607b45eebe9f6,citation,https://pdfs.semanticscholar.org/ed07/856461da6c7afa4f1782b5b607b45eebe9f6.pdf,D Morphable Models as Spatial Transformer Networks,2017 +102,AFLW,aflw,53.94540365,-1.03138878,University of York,edu,ed07856461da6c7afa4f1782b5b607b45eebe9f6,citation,https://pdfs.semanticscholar.org/ed07/856461da6c7afa4f1782b5b607b45eebe9f6.pdf,D Morphable Models as Spatial Transformer Networks,2017 +103,AFLW,aflw,37.4173931,-121.9475721,"ARM, Inc.",company,0974677f59e78649a40f0a1d85735410d21b906a,citation,https://doi.org/10.1109/ASPDAC.2017.7858282,A real-time 17-scale object detection accelerator with adaptive 2000-stage classification in 65nm CMOS,2017 +104,AFLW,aflw,30.19331415,120.11930822,Zhejiang University,edu,0974677f59e78649a40f0a1d85735410d21b906a,citation,https://doi.org/10.1109/ASPDAC.2017.7858282,A real-time 17-scale object detection accelerator with adaptive 2000-stage classification in 65nm CMOS,2017 +105,AFLW,aflw,33.30715065,-111.67653157,Arizona State University,edu,0974677f59e78649a40f0a1d85735410d21b906a,citation,https://doi.org/10.1109/ASPDAC.2017.7858282,A real-time 17-scale object detection accelerator with adaptive 2000-stage classification in 65nm CMOS,2017 +106,AFLW,aflw,23.04436505,113.36668458,Guangzhou University,edu,293d69d042fe9bc4fea256c61915978ddaf7cc92,citation,https://doi.org/10.1007/978-981-10-7302-1_6,Face Recognition by Coarse-to-Fine Landmark Regression with Application to ATM Surveillance,2017 +107,AFLW,aflw,23.09461185,113.28788994,Sun Yat-Sen University,edu,293d69d042fe9bc4fea256c61915978ddaf7cc92,citation,https://doi.org/10.1007/978-981-10-7302-1_6,Face Recognition by Coarse-to-Fine Landmark Regression with Application to ATM Surveillance,2017 +108,AFLW,aflw,51.24303255,-0.59001382,University of Surrey,edu,56e25056153a15eae2a6b10c109f812d2b753cee,citation,https://arxiv.org/pdf/1711.06753.pdf,Wing Loss for Robust Facial Landmark Localisation with Convolutional Neural Networks,2017 +109,AFLW,aflw,31.4854255,120.2739581,Jiangnan University,edu,56e25056153a15eae2a6b10c109f812d2b753cee,citation,https://arxiv.org/pdf/1711.06753.pdf,Wing Loss for Robust Facial Landmark Localisation with Convolutional Neural Networks,2017 +110,AFLW,aflw,-33.8809651,151.20107299,University of Technology Sydney,edu,ebc2a3e8a510c625353637e8e8f07bd34410228f,citation,https://doi.org/10.1109/TIP.2015.2502485,Dual Sparse Constrained Cascade Regression for Robust Face Alignment,2016 +111,AFLW,aflw,38.99203005,-76.9461029,University of Maryland College Park,edu,b2cd92d930ed9b8d3f9dfcfff733f8384aa93de8,citation,http://pdfs.semanticscholar.org/b2cd/92d930ed9b8d3f9dfcfff733f8384aa93de8.pdf,"HyperFace: A Deep Multi-task Learning Framework for Face Detection, Landmark Localization, Pose Estimation, and Gender Recognition",2016 +112,AFLW,aflw,39.2899685,-76.62196103,University of Maryland,edu,b2cd92d930ed9b8d3f9dfcfff733f8384aa93de8,citation,http://pdfs.semanticscholar.org/b2cd/92d930ed9b8d3f9dfcfff733f8384aa93de8.pdf,"HyperFace: A Deep Multi-task Learning Framework for Face Detection, Landmark Localization, Pose Estimation, and Gender Recognition",2016 +113,AFLW,aflw,47.5612651,7.5752961,University of Basel,edu,5789f8420d8f15e7772580ec373112f864627c4b,citation,http://doi.ieeecomputersociety.org/10.1109/ICCV.2017.417,Efficient Global Illumination for Morphable Models,2017 +114,AFLW,aflw,51.4293086,-0.2684044,Kingston University,edu,01125e3c68edb420b8d884ff53fb38d9fbe4f2b8,citation,http://openaccess.thecvf.com/content_ICCV_2017/papers/Jackson_Large_Pose_3D_ICCV_2017_paper.pdf,Large Pose 3D Face Reconstruction from a Single Image via Direct Volumetric CNN Regression,2017 +115,AFLW,aflw,52.9387428,-1.20029569,University of Nottingham,edu,01125e3c68edb420b8d884ff53fb38d9fbe4f2b8,citation,http://openaccess.thecvf.com/content_ICCV_2017/papers/Jackson_Large_Pose_3D_ICCV_2017_paper.pdf,Large Pose 3D Face Reconstruction from a Single Image via Direct Volumetric CNN Regression,2017 +116,AFLW,aflw,39.9808333,116.34101249,Beihang University,edu,86b6afc667bb14ff4d69e7a5e8bb2454a6bbd2cd,citation,https://pdfs.semanticscholar.org/86b6/afc667bb14ff4d69e7a5e8bb2454a6bbd2cd.pdf,Attentional Alignment Networks,2018 +117,AFLW,aflw,31.20081505,121.42840681,Shanghai Jiao Tong University,edu,86b6afc667bb14ff4d69e7a5e8bb2454a6bbd2cd,citation,https://pdfs.semanticscholar.org/86b6/afc667bb14ff4d69e7a5e8bb2454a6bbd2cd.pdf,Attentional Alignment Networks,2018 +118,AFLW,aflw,32.7283683,-97.11201835,University of Texas at Arlington,edu,86b6afc667bb14ff4d69e7a5e8bb2454a6bbd2cd,citation,https://pdfs.semanticscholar.org/86b6/afc667bb14ff4d69e7a5e8bb2454a6bbd2cd.pdf,Attentional Alignment Networks,2018 +119,AFLW,aflw,22.42031295,114.20788644,Chinese University of Hong Kong,edu,52d7eb0fbc3522434c13cc247549f74bb9609c5d,citation,https://arxiv.org/pdf/1511.06523.pdf,WIDER FACE: A Face Detection Benchmark,2016 +120,AFLW,aflw,32.0565957,118.77408833,Nanjing University,edu,b8978a5251b6e341a1171e4fd9177aec1432dd3a,citation,https://doi.org/10.1016/j.image.2016.04.004,FaceHunter: A multi-task convolutional neural network based face detector,2016 +121,AFLW,aflw,40.0044795,116.370238,Chinese Academy of Sciences,edu,3d18ce183b5a5b4dcaa1216e30b774ef49eaa46f,citation,https://arxiv.org/pdf/1511.07212.pdf,Face Alignment in Full Pose Range: A 3D Total Solution,2017 +122,AFLW,aflw,42.718568,-84.47791571,Michigan State University,edu,3d18ce183b5a5b4dcaa1216e30b774ef49eaa46f,citation,https://arxiv.org/pdf/1511.07212.pdf,Face Alignment in Full Pose Range: A 3D Total Solution,2017 +123,AFLW,aflw,51.6091578,-3.97934429,Swansea University,edu,d115c4a66d765fef596b0b171febca334cea15b5,citation,http://pdfs.semanticscholar.org/d115/c4a66d765fef596b0b171febca334cea15b5.pdf,Combining Stacked Denoising Autoencoders and Random Forests for Face Detection,2016 +124,AFLW,aflw,38.88140235,121.52281098,Dalian University of Technology,edu,19705579b8e7d955092ef54a22f95f557a455338,citation,https://doi.org/10.1109/ICIP.2014.7025277,Fiducial facial point extraction with cross ratio,2014 +125,AFLW,aflw,51.7534538,-1.25400997,University of Oxford,edu,79eb06c8acce1feef4a8654287d9cf5081e19600,citation,https://arxiv.org/pdf/1808.06882.pdf,Self-supervised learning of a facial attribute embedding from video,2018 +126,AFLW,aflw,37.4102193,-122.05965487,Carnegie Mellon University,edu,87e6cb090aecfc6f03a3b00650a5c5f475dfebe1,citation,https://pdfs.semanticscholar.org/87e6/cb090aecfc6f03a3b00650a5c5f475dfebe1.pdf,Holistically Constrained Local Model: Going Beyond Frontal Poses for Facial Landmark Detection,2016 +127,AFLW,aflw,34.0224149,-118.28634407,University of Southern California,edu,87e6cb090aecfc6f03a3b00650a5c5f475dfebe1,citation,https://pdfs.semanticscholar.org/87e6/cb090aecfc6f03a3b00650a5c5f475dfebe1.pdf,Holistically Constrained Local Model: Going Beyond Frontal Poses for Facial Landmark Detection,2016 +128,AFLW,aflw,40.0044795,116.370238,Chinese Academy of Sciences,edu,7fcfd72ba6bc14bbb90b31fe14c2c77a8b220ab2,citation,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2017.255,Robust FEC-CNN: A High Accuracy Facial Landmark Detection System,2017 +129,AFLW,aflw,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,7fcfd72ba6bc14bbb90b31fe14c2c77a8b220ab2,citation,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2017.255,Robust FEC-CNN: A High Accuracy Facial Landmark Detection System,2017 +130,AFLW,aflw,40.00229045,116.32098908,Tsinghua University,edu,3fb26f3abcf0d287243646426cd5ddeee33624d4,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2016.376,Joint Training of Cascaded CNN for Face Detection,2016 +131,AFLW,aflw,40.0044795,116.370238,Chinese Academy of Sciences,edu,055cd8173536031e189628c879a2acad6cf2a5d0,citation,https://doi.org/10.1109/BTAS.2017.8272740,Fast multi-view face alignment via multi-task auto-encoders,2017 +132,AFLW,aflw,31.9078499,34.81334092,Weizmann Institute of Science,edu,d4c2d26523f577e2d72fc80109e2540c887255c8,citation,http://pdfs.semanticscholar.org/d4c2/d26523f577e2d72fc80109e2540c887255c8.pdf,Face-space Action Recognition by Face-Object Interactions,2016 +133,AFLW,aflw,40.62984145,22.9588935,Aristotle University of Thessaloniki,edu,3251f40ed1113d592c61d2017e67beca66e678bb,citation,https://doi.org/10.1007/978-3-319-65172-9_17,Improving Face Pose Estimation Using Long-Term Temporal Averaging for Stochastic Optimization,2017 +134,AFLW,aflw,56.46255985,84.95565495,Tomsk Polytechnic University,edu,17ded725602b4329b1c494bfa41527482bf83a6f,citation,http://pdfs.semanticscholar.org/cb10/434a5d68ffbe9ed0498771192564ecae8894.pdf,Compact Convolutional Neural Network Cascade for Face Detection,2015 +135,AFLW,aflw,40.47913175,-74.43168868,Rutgers University,edu,c8ca6a2dc41516c16ea0747e9b3b7b1db788dbdd,citation,https://arxiv.org/pdf/1609.02825.pdf,Track Facial Points in Unconstrained Videos,2016 +136,AFLW,aflw,30.44235995,-84.29747867,Florida State University,edu,42ea8a96eea023361721f0ea34264d3d0fc49ebd,citation,https://arxiv.org/pdf/1608.04695.pdf,Parameterized Principal Component Analysis,2018 +137,AFLW,aflw,-27.49741805,153.01316956,University of Queensland,edu,de79437f74e8e3b266afc664decf4e6e4bdf34d7,citation,https://doi.org/10.1109/IVCNZ.2016.7804415,To face or not to face: Towards reducing false positive of face detection,2016 +138,AFLW,aflw,42.0551164,-87.67581113,Northwestern University,edu,7c953868cd51f596300c8231192d57c9c514ae17,citation,http://courses.cs.washington.edu/courses/cse590v/13au/CVPR13_FaceDetection.pdf,Detecting and Aligning Faces by Image Retrieval,2013 +139,AFLW,aflw,40.0044795,116.370238,Chinese Academy of Sciences,edu,19a9f658ea14701502d169dc086651b1d9b2a8ea,citation,http://www.cbsr.ia.ac.cn/users/zlei/papers/JJYan-FG2013.pdf,Structural models for face detection,2013 +140,AFLW,aflw,-27.47715625,153.02841004,Queensland University of Technology,edu,be632b206f1cd38eab0c01c5f2004d1e8fc72880,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6607601,Gradual training of cascaded shape regression for facial landmark localization and pose estimation,2013 +141,AFLW,aflw,33.6431901,-117.84016494,"University of California, Irvine",edu,0e986f51fe45b00633de9fd0c94d082d2be51406,citation,http://vision.ics.uci.edu/papers/ZhuR_CVPR_2012/ZhuR_CVPR_2012.pdf,"Face detection, pose estimation, and landmark localization in the wild",2012 +142,AFLW,aflw,39.9586652,116.30971281,Beijing Institute of Technology,edu,0ea7b7fff090c707684fd4dc13e0a8f39b300a97,citation,http://arxiv.org/abs/1711.06055,Integrated Face Analytics Networks through Cross-Dataset Hybrid Training,2017 +143,AFLW,aflw,33.5866784,-101.87539204,Electrical and Computer Engineering,edu,0ea7b7fff090c707684fd4dc13e0a8f39b300a97,citation,http://arxiv.org/abs/1711.06055,Integrated Face Analytics Networks through Cross-Dataset Hybrid Training,2017 +144,AFLW,aflw,1.2962018,103.77689944,National University of Singapore,edu,0ea7b7fff090c707684fd4dc13e0a8f39b300a97,citation,http://arxiv.org/abs/1711.06055,Integrated Face Analytics Networks through Cross-Dataset Hybrid Training,2017 +145,AFLW,aflw,41.21002475,-73.80407056,IBM Thomas J. Watson Research Center,company,eb87151fd2796ff5b4bbcf1906d41d53ac6c5595,citation,https://doi.org/10.1109/ICPR.2016.7899719,Enhanced face detection using body part detections for wearable cameras,2016 +146,AFLW,aflw,29.5357046,106.60482474,Chongqing University of Posts and Telecommunications,edu,35d272877b178aa97c678e3fcbb619ff512af4c2,citation,https://doi.org/10.1109/SMC.2017.8122743,A multi-scale fusion convolutional neural network for face detection,2017 +147,AFLW,aflw,52.7663577,-1.2292461,Loughborough University,edu,9e8f95503bebdfb623d4e5b51347f72677d89d99,citation,https://pdfs.semanticscholar.org/9e8f/95503bebdfb623d4e5b51347f72677d89d99.pdf,Multi-dimensional local binary pattern texture descriptors and their application for medical image analysis,2014 +148,AFLW,aflw,40.0044795,116.370238,Chinese Academy of Sciences,edu,492f41e800c52614c5519f830e72561db205e86c,citation,http://openaccess.thecvf.com/content_cvpr_2017/papers/Lv_A_Deep_Regression_CVPR_2017_paper.pdf,A Deep Regression Architecture with Two-Stage Re-initialization for High Performance Facial Landmark Detection,2017 +149,AFLW,aflw,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,492f41e800c52614c5519f830e72561db205e86c,citation,http://openaccess.thecvf.com/content_cvpr_2017/papers/Lv_A_Deep_Regression_CVPR_2017_paper.pdf,A Deep Regression Architecture with Two-Stage Re-initialization for High Performance Facial Landmark Detection,2017 +150,AFLW,aflw,42.718568,-84.47791571,Michigan State University,edu,c6382de52636705be5898017f2f8ed7c70d7ae96,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7139089,Unconstrained face detection: State of the art baseline and challenges,2015 +151,AFLW,aflw,38.95187,-77.363259,"Noblis, Falls Church, VA, U.S.A.",company,c6382de52636705be5898017f2f8ed7c70d7ae96,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7139089,Unconstrained face detection: State of the art baseline and challenges,2015 +152,AFLW,aflw,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,b11bb6bd63ee6f246d278dd4edccfbe470263803,citation,http://pdfs.semanticscholar.org/b11b/b6bd63ee6f246d278dd4edccfbe470263803.pdf,Joint Voxel and Coordinate Regression for Accurate 3D Facial Landmark Localization,2018 +153,AFLW,aflw,22.53521465,113.9315911,Shenzhen University,edu,66dcd855a6772d2731b45cfdd75f084327b055c2,citation,http://pdfs.semanticscholar.org/66dc/d855a6772d2731b45cfdd75f084327b055c2.pdf,Quality Classified Image Analysis with Application to Face Detection and Recognition,2018 +154,AFLW,aflw,38.5336349,-121.79077264,"University of California, Davis",edu,fdf8e293a7618f560e76bd83e3c40a0788104547,citation,https://arxiv.org/pdf/1704.04023.pdf,Interspecies Knowledge Transfer for Facial Keypoint Detection,2017 +155,AFLW,aflw,30.19331415,120.11930822,Zhejiang University,edu,fdf8e293a7618f560e76bd83e3c40a0788104547,citation,https://arxiv.org/pdf/1704.04023.pdf,Interspecies Knowledge Transfer for Facial Keypoint Detection,2017 +156,AFLW,aflw,51.49887085,-0.17560797,Imperial College London,edu,38cbb500823057613494bacd0078aa0e57b30af8,citation,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2017.252,Deep Face Deblurring,2017 +157,AFLW,aflw,22.2081469,114.25964115,University of Hong Kong,edu,fb87045600da73b07f0757f345a937b1c8097463,citation,https://pdfs.semanticscholar.org/5c54/2fef80a35a4f930e5c82040b52c58e96ce87.pdf,Reflective Regression of 2D-3D Face Shape Across Large Pose,2016 +158,AFLW,aflw,52.2380139,6.8566761,University of Twente,edu,71b07c537a9e188b850192131bfe31ef206a39a0,citation,http://pdfs.semanticscholar.org/71b0/7c537a9e188b850192131bfe31ef206a39a0.pdf,300 Faces In-The-Wild Challenge: database and results,2016 +159,AFLW,aflw,35.6924853,139.7582533,"National Institute of Informatics, Japan",edu,4dd71a097e6b3cd379d8c802460667ee0cbc8463,citation,http://www.dgcv.nii.ac.jp/Publications/Papers/2015/BWILD2015.pdf,Real-time multi-view facial landmark detector learned by the structured output SVM,2015 +160,AFLW,aflw,33.856111,-5.574391,Moulay Ismail University,edu,1fd7a17a6c630a122c1a3d1c0668d14c0c375de0,citation,https://doi.org/10.1109/CIST.2016.7805097,"Facial landmark localization: Past, present and future",2016 +161,AFLW,aflw,38.88140235,121.52281098,Dalian University of Technology,edu,940e5c45511b63f609568dce2ad61437c5e39683,citation,https://doi.org/10.1109/TIP.2015.2390976,Fiducial Facial Point Extraction Using a Novel Projective Invariant,2015 +162,AFLW,aflw,37.4102193,-122.05965487,Carnegie Mellon University,edu,6dbdb07ce2991db0f64c785ad31196dfd4dae721,citation,https://arxiv.org/pdf/1802.09058.pdf,Seeing Small Faces from Robust Anchor's Perspective,2018 +163,AFLW,aflw,30.04287695,31.23664139,American University in Cairo,edu,1a12eec3ceb1c81cde4ae6e8f27aac08b36317d4,citation,https://arxiv.org/pdf/1706.09498.pdf,Real-time Distracted Driver Posture Classification,2017 +164,AFLW,aflw,51.6091578,-3.97934429,Swansea University,edu,cc70fb1ab585378c79a2ab94776723e597afe379,citation,https://doi.org/10.1109/ICIP.2017.8297067,Detect face in the wild using CNN cascade with feature aggregation at multi-resolution,2017 +165,AFLW,aflw,51.49887085,-0.17560797,Imperial College London,edu,59d8fa6fd91cdb72cd0fa74c04016d79ef5a752b,citation,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Zafeiriou_The_Menpo_Facial_CVPR_2017_paper.pdf,The Menpo Facial Landmark Localisation Challenge: A Step Towards the Solution,2017 +166,AFLW,aflw,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,2f61d91033a06dd904ff9d1765d57e5b4d7f57a6,citation,https://doi.org/10.1109/ICIP.2016.7532953,FCFD: Teach the machine to accomplish face detection step by step,2016 +167,AFLW,aflw,40.47913175,-74.43168868,Rutgers University,edu,04ff69aa20da4eeccdabbe127e3641b8e6502ec0,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w28/papers/Peng_Sequential_Face_Alignment_CVPR_2016_paper.pdf,Sequential Face Alignment via Person-Specific Modeling in the Wild,2016 +168,AFLW,aflw,32.7283683,-97.11201835,University of Texas at Arlington,edu,04ff69aa20da4eeccdabbe127e3641b8e6502ec0,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w28/papers/Peng_Sequential_Face_Alignment_CVPR_2016_paper.pdf,Sequential Face Alignment via Person-Specific Modeling in the Wild,2016 +169,AFLW,aflw,31.2284923,121.40211389,East China Normal University,edu,83295bce2340cb87901499cff492ae6ff3365475,citation,https://arxiv.org/pdf/1808.01558.pdf,Deep Multi-Center Learning for Face Alignment,2018 +170,AFLW,aflw,31.20081505,121.42840681,Shanghai Jiao Tong University,edu,83295bce2340cb87901499cff492ae6ff3365475,citation,https://arxiv.org/pdf/1808.01558.pdf,Deep Multi-Center Learning for Face Alignment,2018 +171,AFLW,aflw,46.0658836,11.1159894,University of Trento,edu,f201baf618574108bcee50e9a8b65f5174d832ee,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8031057,Viewpoint-Consistent 3D Face Alignment,2018 +172,AFLW,aflw,13.65450525,100.49423171,Robotics Institute,edu,f201baf618574108bcee50e9a8b65f5174d832ee,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8031057,Viewpoint-Consistent 3D Face Alignment,2018 +173,AFLW,aflw,40.0044795,116.370238,Chinese Academy of Sciences,edu,4c6233765b5f83333f6c675d3389bbbf503805e3,citation,https://perceptual.mpi-inf.mpg.de/files/2015/03/Yan_Vis13.pdf,Real-time high performance deformable model for face detection in the wild,2013 +174,AFLW,aflw,40.51865195,-74.44099801,State University of New Jersey,edu,02820c1491b10a1ff486fed32c269e4077c36551,citation,https://arxiv.org/pdf/1610.07930v1.pdf,Active user authentication for smartphones: A challenge data set and benchmark results,2016 +175,AFLW,aflw,39.2899685,-76.62196103,University of Maryland,edu,02820c1491b10a1ff486fed32c269e4077c36551,citation,https://arxiv.org/pdf/1610.07930v1.pdf,Active user authentication for smartphones: A challenge data set and benchmark results,2016 +176,AFLW,aflw,33.776033,-84.39884086,Georgia Institute of Technology,edu,e659221538d256b2c3e0724deff749eda903fc7d,citation,https://arxiv.org/pdf/1710.00925.pdf,Fine-Grained Head Pose Estimation Without Keypoints,2017 +177,AFLW,aflw,49.20172,16.6033168,Brno University of Technology,edu,b55e70df03d9b80c91446a97957bc95772dcc45b,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8269329,MixedEmotions: An Open-Source Toolbox for Multimodal Emotion Analysis,2018 +178,AFLW,aflw,48.5670466,13.4517835,University of Passau,edu,b55e70df03d9b80c91446a97957bc95772dcc45b,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8269329,MixedEmotions: An Open-Source Toolbox for Multimodal Emotion Analysis,2018 +179,AFLW,aflw,50.7171497,7.12825184,"Deutsche Welle, Bonn, Germany",edu,b55e70df03d9b80c91446a97957bc95772dcc45b,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8269329,MixedEmotions: An Open-Source Toolbox for Multimodal Emotion Analysis,2018 +180,AFLW,aflw,44.6531692,10.8586228,"Expert Systems, Modena, Italy",company,b55e70df03d9b80c91446a97957bc95772dcc45b,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8269329,MixedEmotions: An Open-Source Toolbox for Multimodal Emotion Analysis,2018 +181,AFLW,aflw,53.27639715,-9.05829961,National University of Ireland Galway,edu,b55e70df03d9b80c91446a97957bc95772dcc45b,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8269329,MixedEmotions: An Open-Source Toolbox for Multimodal Emotion Analysis,2018 +182,AFLW,aflw,40.4402995,-3.7870076,"Paradigma Digital, Madrid, Spain",company,b55e70df03d9b80c91446a97957bc95772dcc45b,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8269329,MixedEmotions: An Open-Source Toolbox for Multimodal Emotion Analysis,2018 +183,AFLW,aflw,53.3498053,-6.2603097,"Siren Solutions, Dublin, Ireland",company,b55e70df03d9b80c91446a97957bc95772dcc45b,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8269329,MixedEmotions: An Open-Source Toolbox for Multimodal Emotion Analysis,2018 +184,AFLW,aflw,39.86742125,32.73519072,Hacettepe University,edu,9865fe20df8fe11717d92b5ea63469f59cf1635a,citation,https://arxiv.org/pdf/1805.07566.pdf,Wildest Faces: Face Detection and Recognition in Violent Settings,2018 +185,AFLW,aflw,39.87549675,32.78553506,Middle East Technical University,edu,9865fe20df8fe11717d92b5ea63469f59cf1635a,citation,https://arxiv.org/pdf/1805.07566.pdf,Wildest Faces: Face Detection and Recognition in Violent Settings,2018 +186,AFLW,aflw,47.3764534,8.54770931,ETH Zürich,edu,961a5d5750f18e91e28a767b3cb234a77aac8305,citation,http://pdfs.semanticscholar.org/961a/5d5750f18e91e28a767b3cb234a77aac8305.pdf,Face Detection without Bells and Whistles,2014 +187,AFLW,aflw,40.51865195,-74.44099801,State University of New Jersey,edu,0d746111135c2e7f91443869003d05cde3044beb,citation,https://doi.org/10.1109/ICIP.2016.7532908,Partial face detection for continuous authentication,2016 +188,AFLW,aflw,39.2899685,-76.62196103,University of Maryland,edu,0d746111135c2e7f91443869003d05cde3044beb,citation,https://doi.org/10.1109/ICIP.2016.7532908,Partial face detection for continuous authentication,2016 +189,AFLW,aflw,34.0224149,-118.28634407,University of Southern California,edu,eb6ee56e085ebf473da990d032a4249437a3e462,citation,http://www-scf.usc.edu/~chuntinh/doc/Age_Gender_Classification_APSIPA_2017.pdf,Age/gender classification with whole-component convolutional neural networks (WC-CNN),2017 +190,AFLW,aflw,40.0044795,116.370238,Chinese Academy of Sciences,edu,2a4153655ad1169d482e22c468d67f3bc2c49f12,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zhu_Face_Alignment_Across_CVPR_2016_paper.pdf,Face Alignment Across Large Poses: A 3D Solution,2016 +191,AFLW,aflw,42.718568,-84.47791571,Michigan State University,edu,2a4153655ad1169d482e22c468d67f3bc2c49f12,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zhu_Face_Alignment_Across_CVPR_2016_paper.pdf,Face Alignment Across Large Poses: A 3D Solution,2016 +192,AFLW,aflw,36.3697191,127.362537,Korea Advanced Institute of Science and Technology,edu,ca8f23d9b9a40016eaf0467a3df46720ac718e1d,citation,https://doi.org/10.1109/ICASSP.2015.7178214,Face detection using Local Hybrid Patterns,2015 +193,AFLW,aflw,33.5866784,-101.87539204,Electrical and Computer Engineering,edu,ebb3d5c70bedf2287f9b26ac0031004f8f617b97,citation,https://doi.org/10.1109/MSP.2017.2764116,"Deep Learning for Understanding Faces: Machines May Be Just as Good, or Better, than Humans",2018 +194,AFLW,aflw,39.2899685,-76.62196103,University of Maryland,edu,ebb3d5c70bedf2287f9b26ac0031004f8f617b97,citation,https://doi.org/10.1109/MSP.2017.2764116,"Deep Learning for Understanding Faces: Machines May Be Just as Good, or Better, than Humans",2018 +195,AFLW,aflw,-33.8809651,151.20107299,University of Technology Sydney,edu,bbf28f39e5038813afd74cf1bc78d55fcbe630f1,citation,https://arxiv.org/pdf/1803.04108.pdf,Style Aggregated Network for Facial Landmark Detection,2018 +196,AFLW,aflw,-33.95828745,18.45997349,University of Cape Town,edu,36e8ef2e5d52a78dddf0002e03918b101dcdb326,citation,http://www.milbo.org/stasm-files/multiview-active-shape-models-with-sift-for-300w.pdf,Multiview Active Shape Models with SIFT Descriptors for the 300-W Face Landmark Challenge,2013 +197,AFLW,aflw,42.7298459,-73.67950216,Rensselaer Polytechnic Institute,edu,1b794b944fd462a2742b6c2f8021fecc663004c9,citation,http://arxiv.org/abs/1709.05732,A Hierarchical Probabilistic Model for Facial Feature Detection,2014 +198,AFLW,aflw,40.47913175,-74.43168868,Rutgers University,edu,afdf9a3464c3b015f040982750f6b41c048706f5,citation,https://arxiv.org/pdf/1608.05477.pdf,A Recurrent Encoder-Decoder Network for Sequential Face Alignment,2016 +199,AFLW,aflw,50.3755269,-4.13937687,Plymouth University,edu,239958d6778643101ab631ec354ea1bc4d33e7e0,citation,http://doi.org/10.1016/j.patcog.2017.06.009,Head pose estimation in the wild using Convolutional Neural Networks and adaptive gradient methods,2017 +200,AFLW,aflw,39.2899685,-76.62196103,University of Maryland,edu,40c8cffd5aac68f59324733416b6b2959cb668fd,citation,http://arxiv.org/abs/1701.08341,Pooling Facial Segments to Face: The Shallow and Deep Ends,2017 +201,AFLW,aflw,-27.49741805,153.01316956,University of Queensland,edu,28646c6220848db46c6944967298d89a6559c700,citation,https://pdfs.semanticscholar.org/2864/6c6220848db46c6944967298d89a6559c700.pdf,It takes two to tango : Cascading off-the-shelf face detectors,2018 +202,AFLW,aflw,37.4102193,-122.05965487,Carnegie Mellon University,edu,48a9241edda07252c1aadca09875fabcfee32871,citation,https://arxiv.org/pdf/1611.08657v5.pdf,Convolutional Experts Constrained Local Model for Facial Landmark Detection,2017 +203,AFLW,aflw,52.2380139,6.8566761,University of Twente,edu,044d9a8c61383312cdafbcc44b9d00d650b21c70,citation,https://ibug.doc.ic.ac.uk/media/uploads/documents/sagonas_iccv_2013_300_w.pdf,300 Faces in-the-Wild Challenge: The First Facial Landmark Localization Challenge,2013 +204,AFLW,aflw,51.49887085,-0.17560797,Imperial College London,edu,044d9a8c61383312cdafbcc44b9d00d650b21c70,citation,https://ibug.doc.ic.ac.uk/media/uploads/documents/sagonas_iccv_2013_300_w.pdf,300 Faces in-the-Wild Challenge: The First Facial Landmark Localization Challenge,2013 +205,AFLW,aflw,53.22853665,-0.54873472,University of Lincoln,edu,044d9a8c61383312cdafbcc44b9d00d650b21c70,citation,https://ibug.doc.ic.ac.uk/media/uploads/documents/sagonas_iccv_2013_300_w.pdf,300 Faces in-the-Wild Challenge: The First Facial Landmark Localization Challenge,2013 +206,AFLW,aflw,52.9387428,-1.20029569,University of Nottingham,edu,4cd0da974af9356027a31b8485a34a24b57b8b90,citation,https://arxiv.org/pdf/1703.00862v2.pdf,Binarized Convolutional Landmark Localizers for Human Pose Estimation and Face Alignment with Limited Resources,2017 +207,AFLW,aflw,41.70456775,-86.23822026,University of Notre Dame,edu,17479e015a2dcf15d40190e06419a135b66da4e0,citation,https://arxiv.org/pdf/1610.08119.pdf,Predicting First Impressions With Deep Learning,2017 +208,AFLW,aflw,30.274084,120.15507,Alibaba,company,89497854eada7e32f06aa8f3c0ceedc0e91ecfef,citation,https://doi.org/10.1109/TIP.2017.2784571,Deep Context-Sensitive Facial Landmark Detection With Tree-Structured Modeling,2018 +209,AFLW,aflw,30.19331415,120.11930822,Zhejiang University,edu,89497854eada7e32f06aa8f3c0ceedc0e91ecfef,citation,https://doi.org/10.1109/TIP.2017.2784571,Deep Context-Sensitive Facial Landmark Detection With Tree-Structured Modeling,2018 +210,AFLW,aflw,32.77824165,34.99565673,Open University of Israel,edu,0a34fe39e9938ae8c813a81ae6d2d3a325600e5c,citation,https://arxiv.org/pdf/1708.07517.pdf,FacePoseNet: Making a Case for Landmark-Free Face Alignment,2017 diff --git a/site/datasets/final/casia_webface.csv b/site/datasets/final/casia_webface.csv new file mode 100644 index 00000000..2cbffd5d --- /dev/null +++ b/site/datasets/final/casia_webface.csv @@ -0,0 +1,312 @@ +index,dataset_name,key,lat,lng,loc,loc_type,paper_id,paper_type,paper_url,title,year +0,CASIA Webface,casia_webface,0.0,0.0,,,853bd61bc48a431b9b1c7cab10c603830c488e39,main,http://pdfs.semanticscholar.org/b8a2/0ed7e74325da76d7183d1ab77b082a92b447.pdf,Learning Face Representation from Scratch,2014 +1,CASIA Webface,casia_webface,39.2899685,-76.62196103,University of Maryland,edu,def2983576001bac7d6461d78451159800938112,citation,https://arxiv.org/pdf/1705.07426.pdf,The Do’s and Don’ts for CNN-Based Face Verification,2017 +2,CASIA Webface,casia_webface,38.5336349,-121.79077264,"University of California, Davis",edu,e94dfdc5581f6bc0338e21ad555b5f1734f8697e,citation,https://arxiv.org/pdf/1803.11556.pdf,Learning to Anonymize Faces for Privacy Preserving Action Detection,2018 +3,CASIA Webface,casia_webface,24.7925484,120.9951183,National Tsing Hua University,edu,68c3e61cefcfe4812df54be12625dabe66fb06a4,citation,https://pdfs.semanticscholar.org/68c3/e61cefcfe4812df54be12625dabe66fb06a4.pdf,A Compact Deep Learning Model for Robust Facial Expression Recognition,0 +4,CASIA Webface,casia_webface,23.0502042,113.39880323,South China University of Technology,edu,4bd3de97b256b96556d19a5db71dda519934fd53,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2016.529,Latent Factor Guided Convolutional Neural Networks for Age-Invariant Face Recognition,2016 +5,CASIA Webface,casia_webface,22.59805605,113.98533784,Shenzhen Institutes of Advanced Technology,edu,4bd3de97b256b96556d19a5db71dda519934fd53,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2016.529,Latent Factor Guided Convolutional Neural Networks for Age-Invariant Face Recognition,2016 +6,CASIA Webface,casia_webface,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,cd6aaa37fffd0b5c2320f386be322b8adaa1cc68,citation,https://arxiv.org/pdf/1804.06655.pdf,Deep Face Recognition: A Survey,2018 +7,CASIA Webface,casia_webface,36.3697191,127.362537,Korea Advanced Institute of Science and Technology,edu,2744e6d526b8f2c1b297ac2d2458aaa08b0cda11,citation,http://doi.org/10.1007/s11042-017-5571-3,Example image-based feature extraction for face recognition,2017 +8,CASIA Webface,casia_webface,37.2830003,127.04548469,Ajou University,edu,2744e6d526b8f2c1b297ac2d2458aaa08b0cda11,citation,http://doi.org/10.1007/s11042-017-5571-3,Example image-based feature extraction for face recognition,2017 +9,CASIA Webface,casia_webface,46.0501558,14.46907327,University of Ljubljana,edu,368d59cf1733af511ed8abbcbeb4fb47afd4da1c,citation,http://pdfs.semanticscholar.org/368d/59cf1733af511ed8abbcbeb4fb47afd4da1c.pdf,To Frontalize or Not To Frontalize: A Study of Face Pre-Processing Techniques and Their Impact on Recognition,2016 +10,CASIA Webface,casia_webface,41.70456775,-86.23822026,University of Notre Dame,edu,368d59cf1733af511ed8abbcbeb4fb47afd4da1c,citation,http://pdfs.semanticscholar.org/368d/59cf1733af511ed8abbcbeb4fb47afd4da1c.pdf,To Frontalize or Not To Frontalize: A Study of Face Pre-Processing Techniques and Their Impact on Recognition,2016 +11,CASIA Webface,casia_webface,32.1119889,34.80459702,Tel Aviv University,edu,63a6c256ec2cf2e0e0c9a43a085f5bc94af84265,citation,https://doi.org/10.1109/ICPR.2016.7899662,Complexity of multiverse networks and their multilayer generalization,2016 +12,CASIA Webface,casia_webface,42.3383668,-71.08793524,Northeastern University,edu,c9efcd8e32dced6efa2bba64789df8d0a8e4996a,citation,http://dl.acm.org/citation.cfm?id=2984060,Deep Convolutional Neural Network with Independent Softmax for Large Scale Face Recognition,2016 +13,CASIA Webface,casia_webface,31.846918,117.29053367,Hefei University of Technology,edu,f6e6b4d0b7c16112dcb71ff502033a2187b1ec9b,citation,https://doi.org/10.1109/TMM.2015.2476657,Understanding Blooming Human Groups in Social Networks,2015 +14,CASIA Webface,casia_webface,29.58333105,-98.61944505,University of Texas at San Antonio,edu,f6e6b4d0b7c16112dcb71ff502033a2187b1ec9b,citation,https://doi.org/10.1109/TMM.2015.2476657,Understanding Blooming Human Groups in Social Networks,2015 +15,CASIA Webface,casia_webface,1.2962018,103.77689944,National University of Singapore,edu,f6e6b4d0b7c16112dcb71ff502033a2187b1ec9b,citation,https://doi.org/10.1109/TMM.2015.2476657,Understanding Blooming Human Groups in Social Networks,2015 +16,CASIA Webface,casia_webface,48.8476037,2.2639934,"Université Paris-Saclay, France",edu,96e318f8ff91ba0b10348d4de4cb7c2142eb8ba9,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8364450,State-of-the-art face recognition performance using publicly available software and datasets,2018 +17,CASIA Webface,casia_webface,32.77824165,34.99565673,Open University of Israel,edu,870433ba89d8cab1656e57ac78f1c26f4998edfb,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2017.163,Regressing Robust and Discriminative 3D Morphable Models with a Very Deep Neural Network,2017 +18,CASIA Webface,casia_webface,51.5231607,-0.1282037,University College London,edu,c53352a4239568cc915ad968aff51c49924a3072,citation,http://pdfs.semanticscholar.org/c533/52a4239568cc915ad968aff51c49924a3072.pdf,Transfer Representation-Learning for Anomaly Detection,2016 +19,CASIA Webface,casia_webface,25.01682835,121.53846924,National Taiwan University,edu,17423fe480b109e1d924314c1dddb11b084e8a42,citation,https://pdfs.semanticscholar.org/1742/3fe480b109e1d924314c1dddb11b084e8a42.pdf,Deep Disguised Faces Recognition,0 +20,CASIA Webface,casia_webface,33.5866784,-101.87539204,Electrical and Computer Engineering,edu,ebb3d5c70bedf2287f9b26ac0031004f8f617b97,citation,https://doi.org/10.1109/MSP.2017.2764116,"Deep Learning for Understanding Faces: Machines May Be Just as Good, or Better, than Humans",2018 +21,CASIA Webface,casia_webface,39.2899685,-76.62196103,University of Maryland,edu,ebb3d5c70bedf2287f9b26ac0031004f8f617b97,citation,https://doi.org/10.1109/MSP.2017.2764116,"Deep Learning for Understanding Faces: Machines May Be Just as Good, or Better, than Humans",2018 +22,CASIA Webface,casia_webface,31.846918,117.29053367,Hefei University of Technology,edu,1ba9d12f24ac04f0309e8ff9b0162c6e18d97dc3,citation,http://doi.acm.org/10.1145/2964284.2984061,Robust Face Recognition with Deep Multi-View Representation Learning,2016 +23,CASIA Webface,casia_webface,1.2962018,103.77689944,National University of Singapore,edu,1ba9d12f24ac04f0309e8ff9b0162c6e18d97dc3,citation,http://doi.acm.org/10.1145/2964284.2984061,Robust Face Recognition with Deep Multi-View Representation Learning,2016 +24,CASIA Webface,casia_webface,41.70456775,-86.23822026,University of Notre Dame,edu,73ea06787925157df519a15ee01cc3dc1982a7e0,citation,https://arxiv.org/pdf/1811.01474.pdf,Fast Face Image Synthesis with Minimal Training,2018 +25,CASIA Webface,casia_webface,22.53521465,113.9315911,Shenzhen University,edu,1d7df3df839a6aa8f5392310d46b2a89080a3c25,citation,https://arxiv.org/pdf/1612.02295.pdf,Large-Margin Softmax Loss for Convolutional Neural Networks,2016 +26,CASIA Webface,casia_webface,23.0502042,113.39880323,South China University of Technology,edu,1d7df3df839a6aa8f5392310d46b2a89080a3c25,citation,https://arxiv.org/pdf/1612.02295.pdf,Large-Margin Softmax Loss for Convolutional Neural Networks,2016 +27,CASIA Webface,casia_webface,37.4102193,-122.05965487,Carnegie Mellon University,edu,edff76149ec44f6849d73f019ef9bded534a38c2,citation,https://arxiv.org/pdf/1704.02203.pdf,Privacy-Preserving Visual Learning Using Doubly Permuted Homomorphic Encryption,2017 +28,CASIA Webface,casia_webface,42.718568,-84.47791571,Michigan State University,edu,edff76149ec44f6849d73f019ef9bded534a38c2,citation,https://arxiv.org/pdf/1704.02203.pdf,Privacy-Preserving Visual Learning Using Doubly Permuted Homomorphic Encryption,2017 +29,CASIA Webface,casia_webface,35.9020448,139.93622009,University of Tokyo,edu,edff76149ec44f6849d73f019ef9bded534a38c2,citation,https://arxiv.org/pdf/1704.02203.pdf,Privacy-Preserving Visual Learning Using Doubly Permuted Homomorphic Encryption,2017 +30,CASIA Webface,casia_webface,37.4102193,-122.05965487,Carnegie Mellon University,edu,bd8f77b7d3b9d272f7a68defc1412f73e5ac3135,citation,https://arxiv.org/pdf/1704.08063.pdf,SphereFace: Deep Hypersphere Embedding for Face Recognition,2017 +31,CASIA Webface,casia_webface,33.776033,-84.39884086,Georgia Institute of Technology,edu,bd8f77b7d3b9d272f7a68defc1412f73e5ac3135,citation,https://arxiv.org/pdf/1704.08063.pdf,SphereFace: Deep Hypersphere Embedding for Face Recognition,2017 +32,CASIA Webface,casia_webface,23.09461185,113.28788994,Sun Yat-Sen University,edu,bd8f77b7d3b9d272f7a68defc1412f73e5ac3135,citation,https://arxiv.org/pdf/1704.08063.pdf,SphereFace: Deep Hypersphere Embedding for Face Recognition,2017 +33,CASIA Webface,casia_webface,33.776033,-84.39884086,Georgia Institute of Technology,edu,9b2a272d4526b3eeeda0beb0d399074d5380a2b3,citation,https://arxiv.org/pdf/1808.01424.pdf,Learning to Align Images Using Weak Geometric Supervision,2018 +34,CASIA Webface,casia_webface,47.6423318,-122.1369302,Microsoft,company,9b2a272d4526b3eeeda0beb0d399074d5380a2b3,citation,https://arxiv.org/pdf/1808.01424.pdf,Learning to Align Images Using Weak Geometric Supervision,2018 +35,CASIA Webface,casia_webface,40.51865195,-74.44099801,State University of New Jersey,edu,96e731e82b817c95d4ce48b9e6b08d2394937cf8,citation,http://arxiv.org/pdf/1508.01722v2.pdf,Unconstrained face verification using deep CNN features,2016 +36,CASIA Webface,casia_webface,39.2899685,-76.62196103,University of Maryland,edu,96e731e82b817c95d4ce48b9e6b08d2394937cf8,citation,http://arxiv.org/pdf/1508.01722v2.pdf,Unconstrained face verification using deep CNN features,2016 +37,CASIA Webface,casia_webface,36.3697191,127.362537,Korea Advanced Institute of Science and Technology,edu,75858dbee2c248a60741fbc64dcad4f8b63d51cb,citation,https://doi.org/10.1109/TIP.2015.2460464,Markov Network-Based Unified Classifier for Face Recognition,2015 +38,CASIA Webface,casia_webface,42.718568,-84.47791571,Michigan State University,edu,a2b4a6c6b32900a066d0257ae6d4526db872afe2,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8272466,Learning Face Image Quality From Human Assessments,2018 +39,CASIA Webface,casia_webface,32.1119889,34.80459702,Tel Aviv University,edu,7859667ed6c05a467dfc8a322ecd0f5e2337db56,citation,http://pdfs.semanticscholar.org/7859/667ed6c05a467dfc8a322ecd0f5e2337db56.pdf,Web-Scale Transfer Learning for Unconstrained 1:N Face Identification,2015 +40,CASIA Webface,casia_webface,22.59805605,113.98533784,Shenzhen Institutes of Advanced Technology,edu,b8084d5e193633462e56f897f3d81b2832b72dff,citation,http://pdfs.semanticscholar.org/b808/4d5e193633462e56f897f3d81b2832b72dff.pdf,DeepID3: Face Recognition with Very Deep Neural Networks,2015 +41,CASIA Webface,casia_webface,22.42031295,114.20788644,Chinese University of Hong Kong,edu,b8084d5e193633462e56f897f3d81b2832b72dff,citation,http://pdfs.semanticscholar.org/b808/4d5e193633462e56f897f3d81b2832b72dff.pdf,DeepID3: Face Recognition with Very Deep Neural Networks,2015 +42,CASIA Webface,casia_webface,30.19331415,120.11930822,Zhejiang University,edu,969fd48e1a668ab5d3c6a80a3d2aeab77067c6ce,citation,http://pdfs.semanticscholar.org/969f/d48e1a668ab5d3c6a80a3d2aeab77067c6ce.pdf,End-To-End Face Detection and Recognition,2017 +43,CASIA Webface,casia_webface,42.3889785,-72.5286987,University of Massachusetts,edu,368e99f669ea5fd395b3193cd75b301a76150f9d,citation,https://arxiv.org/pdf/1506.01342.pdf,One-to-many face recognition with bilinear CNNs,2016 +44,CASIA Webface,casia_webface,1.3484104,103.68297965,Nanyang Technological University,edu,b2470969e4fba92f7909eac26b77d08cc5575533,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8326475,Profit Maximization Mechanism and Data Management for Data Analytics Services,2018 +45,CASIA Webface,casia_webface,49.2579566,7.04577417,Max Planck Institute for Informatics,edu,0c59071ddd33849bd431165bc2d21bbe165a81e0,citation,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Oh_Person_Recognition_in_ICCV_2015_paper.pdf,Person Recognition in Personal Photo Collections,2015 +46,CASIA Webface,casia_webface,51.7534538,-1.25400997,University of Oxford,edu,eb027969f9310e0ae941e2adee2d42cdf07d938c,citation,https://arxiv.org/pdf/1710.08092.pdf,VGGFace2: A Dataset for Recognising Faces across Pose and Age,2018 +47,CASIA Webface,casia_webface,25.2873992,110.3324277,Guilin University of Electronic Technology Guangxi Guilin,edu,9989ad33b64accea8042e386ff3f1216386ba7f1,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8393320,Facial feature extraction method based on shallow and deep fusion CNN,2017 +48,CASIA Webface,casia_webface,51.49887085,-0.17560797,Imperial College London,edu,809ea255d144cff780300440d0f22c96e98abd53,citation,http://pdfs.semanticscholar.org/809e/a255d144cff780300440d0f22c96e98abd53.pdf,ArcFace: Additive Angular Margin Loss for Deep Face Recognition,2018 +49,CASIA Webface,casia_webface,29.7207902,-95.34406271,University of Houston,edu,38d8ff137ff753f04689e6b76119a44588e143f3,citation,http://pdfs.semanticscholar.org/38d8/ff137ff753f04689e6b76119a44588e143f3.pdf,When 3D-Aided 2D Face Recognition Meets Deep Learning: An extended UR2D for Pose-Invariant Face Recognition,2017 +50,CASIA Webface,casia_webface,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,fb1627ed224bf7b1e3d80c097316ed7703951df2,citation,https://doi.org/10.1109/VCIP.2017.8305094,Deep transfer network for face recognition using 3D synthesized face,2017 +51,CASIA Webface,casia_webface,39.65404635,-79.96475355,West Virginia University,edu,7a65fc9e78eff3ab6062707deaadde024d2fad40,citation,http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w11/papers/Zhu_A_Study_on_ICCV_2015_paper.pdf,A Study on Apparent Age Estimation,2015 +52,CASIA Webface,casia_webface,59.34986645,18.07063213,"KTH Royal Institute of Technology, Stockholm",edu,633101e794d7b80f55f466fd2941ea24595e10e6,citation,https://pdfs.semanticscholar.org/6331/01e794d7b80f55f466fd2941ea24595e10e6.pdf,Face Attribute Prediction with classification CNN,2016 +53,CASIA Webface,casia_webface,23.09461185,113.28788994,Sun Yat-Sen University,edu,80d42f74ee9bf03f3790c8d0f5a307deffe0b3b7,citation,https://doi.org/10.1109/TNNLS.2016.2522431,Learning Kernel Extended Dictionary for Face Recognition,2017 +54,CASIA Webface,casia_webface,39.329053,-76.619425,Johns Hopkins University,edu,4317856a1458baa427dc00e8ea505d2fc5f118ab,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8296449,Regularizing face verification nets for pain intensity regression,2017 +55,CASIA Webface,casia_webface,29.7207902,-95.34406271,University of Houston,edu,7fcd03407c084023606c901e8933746b80d2ad57,citation,https://doi.org/10.1109/BTAS.2017.8272694,Local classifier chains for deep face recognition,2017 +56,CASIA Webface,casia_webface,39.329053,-76.619425,Johns Hopkins University,edu,92be73dffd3320fe7734258961fe5a5f2a43390e,citation,https://pdfs.semanticscholar.org/92be/73dffd3320fe7734258961fe5a5f2a43390e.pdf,Transferring Face Verification Nets To Pain and Expression Regression,2017 +57,CASIA Webface,casia_webface,40.00229045,116.32098908,Tsinghua University,edu,92be73dffd3320fe7734258961fe5a5f2a43390e,citation,https://pdfs.semanticscholar.org/92be/73dffd3320fe7734258961fe5a5f2a43390e.pdf,Transferring Face Verification Nets To Pain and Expression Regression,2017 +58,CASIA Webface,casia_webface,50.7338124,7.1022465,Rheinische-Friedrich-Wilhelms University,edu,561ae67de137e75e9642ab3512d3749b34484310,citation,http://pdfs.semanticscholar.org/561a/e67de137e75e9642ab3512d3749b34484310.pdf,DeepGestalt - Identifying Rare Genetic Syndromes Using Deep Learning,2018 +59,CASIA Webface,casia_webface,32.1119889,34.80459702,Tel Aviv University,edu,561ae67de137e75e9642ab3512d3749b34484310,citation,http://pdfs.semanticscholar.org/561a/e67de137e75e9642ab3512d3749b34484310.pdf,DeepGestalt - Identifying Rare Genetic Syndromes Using Deep Learning,2018 +60,CASIA Webface,casia_webface,32.87935255,-117.23110049,"University of California, San Diego",edu,561ae67de137e75e9642ab3512d3749b34484310,citation,http://pdfs.semanticscholar.org/561a/e67de137e75e9642ab3512d3749b34484310.pdf,DeepGestalt - Identifying Rare Genetic Syndromes Using Deep Learning,2018 +61,CASIA Webface,casia_webface,43.7776426,11.259765,University of Florence,edu,746c0205fdf191a737df7af000eaec9409ede73f,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8423119,Investigating Nuisances in DCNN-Based Face Recognition,2018 +62,CASIA Webface,casia_webface,50.7791703,6.06728733,RWTH Aachen University,edu,c10b0a6ba98aa95d740a0d60e150ffd77c7895ad,citation,http://pdfs.semanticscholar.org/c10b/0a6ba98aa95d740a0d60e150ffd77c7895ad.pdf,Deep Fisher Faces,2017 +63,CASIA Webface,casia_webface,28.54632595,77.27325504,Indian Institute of Technology Delhi,edu,cbb27980eb04f68d9f10067d3d3c114efa9d0054,citation,https://arxiv.org/pdf/1807.03380.pdf,An Attention Model for Group-Level Emotion Recognition,2018 +64,CASIA Webface,casia_webface,39.9922379,116.30393816,Peking University,edu,8bf243817112ac0aa1348b40a065bb0b735cdb9c,citation,http://pdfs.semanticscholar.org/8bf2/43817112ac0aa1348b40a065bb0b735cdb9c.pdf,Learning a Repression Network for Precise Vehicle Search,2017 +65,CASIA Webface,casia_webface,51.7534538,-1.25400997,University of Oxford,edu,30180f66d5b4b7c0367e4b43e2b55367b72d6d2a,citation,http://www.robots.ox.ac.uk/~vgg/publications/2017/Crosswhite17/crosswhite17.pdf,Template Adaptation for Face Verification and Identification,2017 +66,CASIA Webface,casia_webface,40.0044795,116.370238,Chinese Academy of Sciences,edu,55fdff2881d43050a8c51c7fdc094dbfbbe6fa46,citation,https://doi.org/10.1109/ICB.2016.7550064,Transferring deep representation for NIR-VIS heterogeneous face recognition,2016 +67,CASIA Webface,casia_webface,59.34986645,18.07063213,"KTH Royal Institute of Technology, Stockholm",edu,6d07e176c754ac42773690d4b4919a39df85d7ec,citation,https://pdfs.semanticscholar.org/6d07/e176c754ac42773690d4b4919a39df85d7ec.pdf,Face Attribute Prediction Using Off-The-Shelf Deep Learning Networks,2016 +68,CASIA Webface,casia_webface,52.2380139,6.8566761,University of Twente,edu,fd9feb21b3d1fab470ff82e3f03efce6a0e67a1f,citation,http://pdfs.semanticscholar.org/fd9f/eb21b3d1fab470ff82e3f03efce6a0e67a1f.pdf,Deep Verification Learning,2016 +69,CASIA Webface,casia_webface,32.77824165,34.99565673,Open University of Israel,edu,1e6ed6ca8209340573a5e907a6e2e546a3bf2d28,citation,http://arxiv.org/pdf/1607.01450v1.pdf,Pooling Faces: Template Based Face Recognition with Pooled Face Images,2016 +70,CASIA Webface,casia_webface,51.49887085,-0.17560797,Imperial College London,edu,8e0ab1b08964393e4f9f42ca037220fe98aad7ac,citation,https://arxiv.org/pdf/1712.04695.pdf,UV-GAN: Adversarial Facial UV Map Completion for Pose-invariant Face Recognition,2017 +71,CASIA Webface,casia_webface,40.0044795,116.370238,Chinese Academy of Sciences,edu,68c4a1d438ea1c6dfba92e3aee08d48f8e7f7090,citation,http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w11/papers/Liu_AgeNet_Deeply_Learned_ICCV_2015_paper.pdf,AgeNet: Deeply Learned Regressor and Classifier for Robust Apparent Age Estimation,2015 +72,CASIA Webface,casia_webface,40.47913175,-74.43168868,Rutgers University,edu,76669f166ddd3fb830dbaacb3daa875cfedc24d9,citation,https://doi.org/10.1109/ICPR.2016.7899840,Learning face recognition from limited training data using deep neural networks,2016 +73,CASIA Webface,casia_webface,41.21002475,-73.80407056,IBM Thomas J. Watson Research Center,company,76669f166ddd3fb830dbaacb3daa875cfedc24d9,citation,https://doi.org/10.1109/ICPR.2016.7899840,Learning face recognition from limited training data using deep neural networks,2016 +74,CASIA Webface,casia_webface,37.5557271,127.0436642,Hanyang University,edu,946017d5f11aa582854ac4c0e0f1b18b06127ef1,citation,https://pdfs.semanticscholar.org/9460/17d5f11aa582854ac4c0e0f1b18b06127ef1.pdf,Tracking Persons-of-Interest via Adaptive Discriminative Features,2016 +75,CASIA Webface,casia_webface,37.36566745,-120.42158888,"University of California, Merced",edu,946017d5f11aa582854ac4c0e0f1b18b06127ef1,citation,https://pdfs.semanticscholar.org/9460/17d5f11aa582854ac4c0e0f1b18b06127ef1.pdf,Tracking Persons-of-Interest via Adaptive Discriminative Features,2016 +76,CASIA Webface,casia_webface,40.11116745,-88.22587665,"University of Illinois, Urbana-Champaign",edu,946017d5f11aa582854ac4c0e0f1b18b06127ef1,citation,https://pdfs.semanticscholar.org/9460/17d5f11aa582854ac4c0e0f1b18b06127ef1.pdf,Tracking Persons-of-Interest via Adaptive Discriminative Features,2016 +77,CASIA Webface,casia_webface,47.6423318,-122.1369302,Microsoft,company,291265db88023e92bb8c8e6390438e5da148e8f5,citation,http://pdfs.semanticscholar.org/4603/cb8e05258bb0572ae912ad20903b8f99f4b1.pdf,MS-Celeb-1M: A Dataset and Benchmark for Large-Scale Face Recognition,2016 +78,CASIA Webface,casia_webface,39.2899685,-76.62196103,University of Maryland,edu,24e82eaf3257e761d6ca0ffcc2cbca30dfca82e9,citation,https://doi.org/10.1109/GlobalSIP.2016.7906030,An analysis of the robustness of deep face recognition networks to noisy training labels,2016 +79,CASIA Webface,casia_webface,39.65404635,-79.96475355,West Virginia University,edu,24e82eaf3257e761d6ca0ffcc2cbca30dfca82e9,citation,https://doi.org/10.1109/GlobalSIP.2016.7906030,An analysis of the robustness of deep face recognition networks to noisy training labels,2016 +80,CASIA Webface,casia_webface,39.9808333,116.34101249,Beihang University,edu,a961f1234e963a7945fed70197015678149b37d8,citation,http://dl.acm.org/citation.cfm?id=3206068,Facial Expression Synthesis by U-Net Conditional Generative Adversarial Networks,2018 +81,CASIA Webface,casia_webface,29.82366295,106.42050016,Southwest University,edu,11a47a91471f40af5cf00449954474fd6e9f7694,citation,http://pdfs.semanticscholar.org/11a4/7a91471f40af5cf00449954474fd6e9f7694.pdf,NIRFaceNet: A Convolutional Neural Network for Near-Infrared Face Identification,2016 +82,CASIA Webface,casia_webface,25.2873992,110.3324277,Guilin University of Electronic Technology Guangxi Guilin,edu,ef2bb8bd93fa8b44414565b32735334fa6823b56,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8393076,An accurate and efficient face recognition method based on hash coding,2017 +83,CASIA Webface,casia_webface,39.2899685,-76.62196103,University of Maryland,edu,23dd8d17ce09c22d367e4d62c1ccf507bcbc64da,citation,https://pdfs.semanticscholar.org/23dd/8d17ce09c22d367e4d62c1ccf507bcbc64da.pdf,Deep Density Clustering of Unconstrained Faces ( Supplementary Material ),2018 +84,CASIA Webface,casia_webface,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,3dfb822e16328e0f98a47209d7ecd242e4211f82,citation,https://arxiv.org/pdf/1708.08197.pdf,Cross-Age LFW: A Database for Studying Cross-Age Face Recognition in Unconstrained Environments,2017 +85,CASIA Webface,casia_webface,40.0044795,116.370238,Chinese Academy of Sciences,edu,64b9ad39d115f3e375bde4f70fb8fdef5d681df8,citation,https://doi.org/10.1109/ICB.2016.7550088,Bootstrapping Joint Bayesian model for robust face verification,2016 +86,CASIA Webface,casia_webface,32.77824165,34.99565673,Open University of Israel,edu,c75e6ce54caf17b2780b4b53f8d29086b391e839,citation,https://arxiv.org/pdf/1802.00542.pdf,"ExpNet: Landmark-Free, Deep, 3D Facial Expressions",2018 +87,CASIA Webface,casia_webface,22.53521465,113.9315911,Shenzhen University,edu,66dcd855a6772d2731b45cfdd75f084327b055c2,citation,http://pdfs.semanticscholar.org/66dc/d855a6772d2731b45cfdd75f084327b055c2.pdf,Quality Classified Image Analysis with Application to Face Detection and Recognition,2018 +88,CASIA Webface,casia_webface,42.3383668,-71.08793524,Northeastern University,edu,e00d4e4ba25fff3583b180db078ef962bf7d6824,citation,http://pdfs.semanticscholar.org/e00d/4e4ba25fff3583b180db078ef962bf7d6824.pdf,Face Verification with Multi-Task and Multi-Scale Features Fusion,2017 +89,CASIA Webface,casia_webface,37.4102193,-122.05965487,Carnegie Mellon University,edu,831d661d657d97a07894da8639a048c430c5536d,citation,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2016.19,Weakly Supervised Facial Analysis with Dense Hyper-Column Features,2016 +90,CASIA Webface,casia_webface,39.2899685,-76.62196103,University of Maryland,edu,5865b6d83ba6dbbf9167f1481e9339c2ef1d1f6b,citation,https://doi.org/10.1109/ICPR.2016.7900278,Regularized metric adaptation for unconstrained face verification,2016 +91,CASIA Webface,casia_webface,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,e9c008d31da38d9eef67a28d2c77cb7daec941fb,citation,https://arxiv.org/pdf/1708.03769.pdf,Noisy Softmax: Improving the Generalization Ability of DCNN via Postponing the Early Softmax Saturation,2017 +92,CASIA Webface,casia_webface,23.09461185,113.28788994,Sun Yat-Sen University,edu,c675534be881e59a78a5986b8fb4e649ddd2abbe,citation,https://doi.org/10.1109/ICIP.2017.8296548,Face recognition by landmark pooling-based CNN with concentrate loss,2017 +93,CASIA Webface,casia_webface,40.51865195,-74.44099801,State University of New Jersey,edu,ea03a569272d329090fe60d6bff8d119e18057d7,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7532906,Fisher vector encoded deep convolutional features for unconstrained face verification,2016 +94,CASIA Webface,casia_webface,39.2899685,-76.62196103,University of Maryland,edu,ea03a569272d329090fe60d6bff8d119e18057d7,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7532906,Fisher vector encoded deep convolutional features for unconstrained face verification,2016 +95,CASIA Webface,casia_webface,40.0044795,116.370238,Chinese Academy of Sciences,edu,a73405038fdc0d8bf986539ef755a80ebd341e97,citation,https://doi.org/10.1109/TIP.2017.2698918,Conditional High-Order Boltzmann Machines for Supervised Relation Learning,2017 +96,CASIA Webface,casia_webface,36.20304395,117.05842113,Tianjin University,edu,5180df9d5eb26283fb737f491623395304d57497,citation,https://arxiv.org/pdf/1804.10899.pdf,Scalable Angular Discriminative Deep Metric Learning for Face Recognition,2018 +97,CASIA Webface,casia_webface,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,3ac3a714042d3ebc159546c26321a1f8f4f5f80c,citation,http://dl.acm.org/citation.cfm?id=3025149,Clustering lightened deep representation for large scale face identification,2017 +98,CASIA Webface,casia_webface,37.26728,126.9841151,Seoul National University,edu,282503fa0285240ef42b5b4c74ae0590fe169211,citation,http://pdfs.semanticscholar.org/2825/03fa0285240ef42b5b4c74ae0590fe169211.pdf,Feeding Hand-Crafted Features for Enhancing the Performance of Convolutional Neural Networks,2018 +99,CASIA Webface,casia_webface,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,29db046dd1f8100b279c3f5f5c5ef19bdbf5af9a,citation,https://arxiv.org/pdf/1706.04717.pdf,Recent Progress of Face Image Synthesis,2017 +100,CASIA Webface,casia_webface,39.2899685,-76.62196103,University of Maryland,edu,4f7b92bd678772552b3c3edfc9a7c5c4a8c60a8e,citation,https://pdfs.semanticscholar.org/4f7b/92bd678772552b3c3edfc9a7c5c4a8c60a8e.pdf,Deep Density Clustering of Unconstrained Faces,0 +101,CASIA Webface,casia_webface,30.40550035,-91.18620474,Louisiana State University,edu,9f65319b8a33c8ec11da2f034731d928bf92e29d,citation,http://pdfs.semanticscholar.org/9f65/319b8a33c8ec11da2f034731d928bf92e29d.pdf,Taking Roll: a Pipeline for Face Recognition,2018 +102,CASIA Webface,casia_webface,41.10427915,29.02231159,Istanbul Technical University,edu,d3d5d86afec84c0713ec868cf5ed41661fc96edc,citation,https://arxiv.org/pdf/1606.02894.pdf,A Comprehensive Analysis of Deep Learning Based Representation for Face Recognition,2016 +103,CASIA Webface,casia_webface,40.8927159,29.37863323,Sabanci University,edu,d3d5d86afec84c0713ec868cf5ed41661fc96edc,citation,https://arxiv.org/pdf/1606.02894.pdf,A Comprehensive Analysis of Deep Learning Based Representation for Face Recognition,2016 +104,CASIA Webface,casia_webface,31.76909325,117.17795091,Anhui University,edu,b910590a0eb191d03e1aedb3d55c905129e92e6b,citation,http://doi.acm.org/10.1145/2808492.2808570,Robust gender classification on unconstrained face images,2015 +105,CASIA Webface,casia_webface,40.0044795,116.370238,Chinese Academy of Sciences,edu,b910590a0eb191d03e1aedb3d55c905129e92e6b,citation,http://doi.acm.org/10.1145/2808492.2808570,Robust gender classification on unconstrained face images,2015 +106,CASIA Webface,casia_webface,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,b8bcf9c773da1c5ee76db4bf750c9ff5d159f1a0,citation,http://doi.acm.org/10.1145/2911996.2911999,Homemade TS-Net for Automatic Face Recognition,2016 +107,CASIA Webface,casia_webface,39.86742125,32.73519072,Hacettepe University,edu,9865fe20df8fe11717d92b5ea63469f59cf1635a,citation,https://arxiv.org/pdf/1805.07566.pdf,Wildest Faces: Face Detection and Recognition in Violent Settings,2018 +108,CASIA Webface,casia_webface,39.87549675,32.78553506,Middle East Technical University,edu,9865fe20df8fe11717d92b5ea63469f59cf1635a,citation,https://arxiv.org/pdf/1805.07566.pdf,Wildest Faces: Face Detection and Recognition in Violent Settings,2018 +109,CASIA Webface,casia_webface,46.0501558,14.46907327,University of Ljubljana,edu,69adbfa7b0b886caac15ebe53b89adce390598a3,citation,https://arxiv.org/pdf/1805.10938.pdf,Face hallucination using cascaded super-resolution and identity priors,2018 +110,CASIA Webface,casia_webface,41.70456775,-86.23822026,University of Notre Dame,edu,69adbfa7b0b886caac15ebe53b89adce390598a3,citation,https://arxiv.org/pdf/1805.10938.pdf,Face hallucination using cascaded super-resolution and identity priors,2018 +111,CASIA Webface,casia_webface,42.3383668,-71.08793524,Northeastern University,edu,feea73095b1be0cbae1ad7af8ba2c4fb6f316d35,citation,http://dl.acm.org/citation.cfm?id=3126693,Deep Face Recognition with Center Invariant Loss,2017 +112,CASIA Webface,casia_webface,35.9990522,-78.9290629,Duke University,edu,3f0c51989c516a7c5dee7dec4d7fb474ae6c28d9,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2017.720,Not Afraid of the Dark: NIR-VIS Face Recognition via Cross-Spectral Hallucination and Low-Rank Embedding,2017 +113,CASIA Webface,casia_webface,49.2579566,7.04577417,Max Planck Institute for Informatics,edu,91a4ebf1ca0314a74c436729700ef09bddaa6222,citation,https://arxiv.org/pdf/1808.01338.pdf,Detailed Human Avatars from Monocular Video,2018 +114,CASIA Webface,casia_webface,47.5612651,7.5752961,University of Basel,edu,0081e2188c8f34fcea3e23c49fb3e17883b33551,citation,http://pdfs.semanticscholar.org/0081/e2188c8f34fcea3e23c49fb3e17883b33551.pdf,Training Deep Face Recognition Systems with Synthetic Data,2018 +115,CASIA Webface,casia_webface,24.4399419,118.09301781,Xiamen University,edu,57ba4b6de23a6fc9d45ff052ed2563e5de00b968,citation,https://doi.org/10.1109/ICIP.2017.8296993,An efficient deep neural networks training framework for robust face recognition,2017 +116,CASIA Webface,casia_webface,40.0044795,116.370238,Chinese Academy of Sciences,edu,43fe03ec1acb6ea9d05d2b22eeddb2631bd30437,citation,https://doi.org/10.1109/ICIP.2017.8296394,Weakly supervised multiscale-inception learning for web-scale face recognition,2017 +117,CASIA Webface,casia_webface,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,0be418e63d111e3b94813875f75909e4dc27d13a,citation,https://doi.org/10.1109/ICB.2016.7550057,Fine-grained LFW database,2016 +118,CASIA Webface,casia_webface,40.51865195,-74.44099801,State University of New Jersey,edu,d00e9a6339e34c613053d3b2c132fccbde547b56,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7791154,A cascaded convolutional neural network for age estimation of unconstrained faces,2016 +119,CASIA Webface,casia_webface,39.2899685,-76.62196103,University of Maryland,edu,d00e9a6339e34c613053d3b2c132fccbde547b56,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7791154,A cascaded convolutional neural network for age estimation of unconstrained faces,2016 +120,CASIA Webface,casia_webface,42.718568,-84.47791571,Michigan State University,edu,450c6a57f19f5aa45626bb08d7d5d6acdb863b4b,citation,https://arxiv.org/pdf/1805.00611.pdf,Towards Interpretable Face Recognition,2018 +121,CASIA Webface,casia_webface,30.2931534,120.1620458,Zhejiang University of Technology,edu,cb9921d5fc4ffa50be537332e111f03d74622442,citation,https://doi.org/10.1007/978-3-319-46654-5_79,Face Occlusion Detection Using Cascaded Convolutional Neural Network,2016 +122,CASIA Webface,casia_webface,29.6328784,-82.3490133,University of Florida,edu,291de30ceecb5dcf0644c35e2b5935d341ea148b,citation,https://arxiv.org/pdf/1810.00024.pdf,Explainable Black-Box Attacks Against Model-based Authentication,2018 +123,CASIA Webface,casia_webface,42.3383668,-71.08793524,Northeastern University,edu,3f540faf85e1f8de6ce04fb37e556700b67e4ad3,citation,http://pdfs.semanticscholar.org/3f54/0faf85e1f8de6ce04fb37e556700b67e4ad3.pdf,Face Verification with Multi-Task and Multi-Scale Feature Fusion,2017 +124,CASIA Webface,casia_webface,29.7207902,-95.34406271,University of Houston,edu,8334da483f1986aea87b62028672836cb3dc6205,citation,https://arxiv.org/pdf/1805.06306.pdf,Fully Associative Patch-Based 1-to-N Matcher for Face Recognition,2018 +125,CASIA Webface,casia_webface,39.2899685,-76.62196103,University of Maryland,edu,0019925779bff96448f0c75492717e4473f88377,citation,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w3/papers/Reale_Deep_Heterogeneous_Face_CVPR_2017_paper.pdf,Deep Heterogeneous Face Recognition Networks Based on Cross-Modal Distillation and an Equitable Distance Metric,2017 +126,CASIA Webface,casia_webface,45.7413921,126.62552755,Harbin Institute of Technology,edu,05455f5e3c3989be4991cb74b73cdfd0d6522622,citation,https://arxiv.org/pdf/1804.04829.pdf,Learning Warped Guidance for Blind Face Restoration,2018 +127,CASIA Webface,casia_webface,23.09461185,113.28788994,Sun Yat-Sen University,edu,05455f5e3c3989be4991cb74b73cdfd0d6522622,citation,https://arxiv.org/pdf/1804.04829.pdf,Learning Warped Guidance for Blind Face Restoration,2018 +128,CASIA Webface,casia_webface,38.0333742,-84.5017758,University of Kentucky,edu,05455f5e3c3989be4991cb74b73cdfd0d6522622,citation,https://arxiv.org/pdf/1804.04829.pdf,Learning Warped Guidance for Blind Face Restoration,2018 +129,CASIA Webface,casia_webface,51.49887085,-0.17560797,Imperial College London,edu,54bb25a213944b08298e4e2de54f2ddea890954a,citation,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Moschoglou_AgeDB_The_First_CVPR_2017_paper.pdf,"AgeDB: The First Manually Collected, In-the-Wild Age Database",2017 +130,CASIA Webface,casia_webface,51.59029705,-0.22963221,Middlesex University,edu,54bb25a213944b08298e4e2de54f2ddea890954a,citation,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Moschoglou_AgeDB_The_First_CVPR_2017_paper.pdf,"AgeDB: The First Manually Collected, In-the-Wild Age Database",2017 +131,CASIA Webface,casia_webface,25.01682835,121.53846924,National Taiwan University,edu,81884e1de00e59f24bc20254584d73a1a1806933,citation,https://arxiv.org/pdf/1811.02328.pdf,Super-Identity Convolutional Neural Network for Face Hallucination,2018 +132,CASIA Webface,casia_webface,39.993008,116.329882,SenseTime,company,81884e1de00e59f24bc20254584d73a1a1806933,citation,https://arxiv.org/pdf/1811.02328.pdf,Super-Identity Convolutional Neural Network for Face Hallucination,2018 +133,CASIA Webface,casia_webface,30.284151,-97.73195598,University of Texas at Austin,edu,81884e1de00e59f24bc20254584d73a1a1806933,citation,https://arxiv.org/pdf/1811.02328.pdf,Super-Identity Convolutional Neural Network for Face Hallucination,2018 +134,CASIA Webface,casia_webface,47.6543238,-122.30800894,University of Washington,edu,405526dfc79de98f5bf3c97bf4aa9a287700f15d,citation,http://pdfs.semanticscholar.org/8a6c/57fcd99a77982ec754e0b97fd67519ccb60c.pdf,MegaFace: A Million Faces for Recognition at Scale,2015 +135,CASIA Webface,casia_webface,32.77824165,34.99565673,Open University of Israel,edu,582edc19f2b1ab2ac6883426f147196c8306685a,citation,http://pdfs.semanticscholar.org/be6c/db7b181e73f546d43cf2ab6bc7181d7d619b.pdf,Do We Really Need to Collect Millions of Faces for Effective Face Recognition?,2016 +136,CASIA Webface,casia_webface,36.3697191,127.362537,Korea Advanced Institute of Science and Technology,edu,076d3fc800d882445c11b9af466c3af7d2afc64f,citation,http://slsp.kaist.ac.kr/paperdata/Face_attribute_classification.pdf,Face attribute classification using attribute-aware correlation map and gated convolutional neural networks,2015 +137,CASIA Webface,casia_webface,31.83907195,117.26420748,University of Science and Technology of China,edu,e1256ff535bf4c024dd62faeb2418d48674ddfa2,citation,https://arxiv.org/pdf/1803.11182.pdf,Towards Open-Set Identity Preserving Face Synthesis,2018 +138,CASIA Webface,casia_webface,36.383765,127.36694,"Electronics and Telecommunications Research Institute, Daejeon, Korea",edu,77c5437107f8138d48cb7e10b2b286fa51473678,citation,https://doi.org/10.1109/URAI.2016.7734005,A pseudo ensemble convolutional neural networks,2016 +139,CASIA Webface,casia_webface,36.3851395,127.3683413,"University of Science and Technology, Korea",edu,77c5437107f8138d48cb7e10b2b286fa51473678,citation,https://doi.org/10.1109/URAI.2016.7734005,A pseudo ensemble convolutional neural networks,2016 +140,CASIA Webface,casia_webface,40.00229045,116.32098908,Tsinghua University,edu,93eb3963bc20e28af26c53ef3bce1e76b15e3209,citation,https://doi.org/10.1109/ICIP.2017.8296992,Occlusion robust face recognition based on mask learning,2017 +141,CASIA Webface,casia_webface,40.0141905,-83.0309143,University of Electronic Science and Technology of China,edu,16b9d258547f1eccdb32111c9f45e2e4bbee79af,citation,https://arxiv.org/pdf/1704.06369.pdf,NormFace: L2 Hypersphere Embedding for Face Verification,2017 +142,CASIA Webface,casia_webface,39.94976005,116.33629046,Beijing Jiaotong University,edu,7e2cfbfd43045fbd6aabd9a45090a5716fc4e179,citation,https://arxiv.org/pdf/1808.00435.pdf,Global Norm-Aware Pooling for Pose-Robust Face Recognition at Low False Positive Rate,2018 +143,CASIA Webface,casia_webface,40.0044795,116.370238,Chinese Academy of Sciences,edu,99facca6fc50cc30f13b7b6dd49ace24bc94f702,citation,https://arxiv.org/pdf/1609.03892.pdf,VIPLFaceNet: an open source deep face recognition SDK,2016 +144,CASIA Webface,casia_webface,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,99facca6fc50cc30f13b7b6dd49ace24bc94f702,citation,https://arxiv.org/pdf/1609.03892.pdf,VIPLFaceNet: an open source deep face recognition SDK,2016 +145,CASIA Webface,casia_webface,25.01682835,121.53846924,National Taiwan University,edu,b50edfea790f86373407a964b4255bf8e436d377,citation,http://doi.acm.org/10.1145/3136755.3143008,Group emotion recognition with individual facial emotion CNNs and global image based CNNs,2017 +146,CASIA Webface,casia_webface,1.2962018,103.77689944,National University of Singapore,edu,c17c7b201cfd0bcd75441afeaa734544c6ca3416,citation,https://doi.org/10.1109/TCSVT.2016.2587389,Layerwise Class-Aware Convolutional Neural Network,2017 +147,CASIA Webface,casia_webface,32.0575279,118.78682252,Southeast University,edu,c17c7b201cfd0bcd75441afeaa734544c6ca3416,citation,https://doi.org/10.1109/TCSVT.2016.2587389,Layerwise Class-Aware Convolutional Neural Network,2017 +148,CASIA Webface,casia_webface,22.3386304,114.2620337,Hong Kong University of Science and Technology,edu,585260468d023ffc95f0e539c3fa87254c28510b,citation,http://pdfs.semanticscholar.org/5852/60468d023ffc95f0e539c3fa87254c28510b.pdf,Cardea: Context-Aware Visual Privacy Protection from Pervasive Cameras,2016 +149,CASIA Webface,casia_webface,39.65404635,-79.96475355,West Virginia University,edu,3b9b200e76a35178da940279d566bbb7dfebb787,citation,http://pdfs.semanticscholar.org/3b9b/200e76a35178da940279d566bbb7dfebb787.pdf,Learning Channel Inter-dependencies at Multiple Scales on Dense Networks for Face Recognition,2017 +150,CASIA Webface,casia_webface,39.65404635,-79.96475355,West Virginia University,edu,8bfada57140aa1aa22a575e960c2a71140083293,citation,http://pdfs.semanticscholar.org/8bfa/da57140aa1aa22a575e960c2a71140083293.pdf,Can we match Ultraviolet Face Images against their Visible Counterparts?,2015 +151,CASIA Webface,casia_webface,40.0044795,116.370238,Chinese Academy of Sciences,edu,72a7eb68f0955564e1ceafa75aeeb6b5bbb14e7e,citation,https://pdfs.semanticscholar.org/72a7/eb68f0955564e1ceafa75aeeb6b5bbb14e7e.pdf,Face Recognition with Contrastive Convolution,2018 +152,CASIA Webface,casia_webface,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,72a7eb68f0955564e1ceafa75aeeb6b5bbb14e7e,citation,https://pdfs.semanticscholar.org/72a7/eb68f0955564e1ceafa75aeeb6b5bbb14e7e.pdf,Face Recognition with Contrastive Convolution,2018 +153,CASIA Webface,casia_webface,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,44b827df6c433ca49bcf44f9f3ebfdc0774ee952,citation,https://doi.org/10.1109/LSP.2017.2726105,Deep Correlation Feature Learning for Face Verification in the Wild,2017 +154,CASIA Webface,casia_webface,22.42031295,114.20788644,Chinese University of Hong Kong,edu,58d76380d194248b3bb291b8c7c5137a0a376897,citation,https://pdfs.semanticscholar.org/58d7/6380d194248b3bb291b8c7c5137a0a376897.pdf,FaceID-GAN : Learning a Symmetry Three-Player GAN for Identity-Preserving Face Synthesis,2018 +155,CASIA Webface,casia_webface,22.59805605,113.98533784,Shenzhen Institutes of Advanced Technology,edu,58d76380d194248b3bb291b8c7c5137a0a376897,citation,https://pdfs.semanticscholar.org/58d7/6380d194248b3bb291b8c7c5137a0a376897.pdf,FaceID-GAN : Learning a Symmetry Three-Player GAN for Identity-Preserving Face Synthesis,2018 +156,CASIA Webface,casia_webface,39.2899685,-76.62196103,University of Maryland,edu,b6f758be954d34817d4ebaa22b30c63a4b8ddb35,citation,http://arxiv.org/abs/1703.04835,A Proximity-Aware Hierarchical Clustering of Faces,2017 +157,CASIA Webface,casia_webface,28.2290209,112.99483204,"National University of Defense Technology, China",edu,511a8cdf2127ef8aa07cbdf9660fe9e0e2dfbde7,citation,https://pdfs.semanticscholar.org/511a/8cdf2127ef8aa07cbdf9660fe9e0e2dfbde7.pdf,A Community Detection Approach to Cleaning Extremely Large Face Database,2018 +158,CASIA Webface,casia_webface,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,cdef0eaff4a3c168290d238999fc066ebc3a93e8,citation,https://arxiv.org/pdf/1707.07391.pdf,Contrastive-center loss for deep neural networks,2017 +159,CASIA Webface,casia_webface,30.2810654,120.02139087,"Alibaba Group, Hangzhou, China",edu,1e62ca5845a6f0492574a5da049e9b43dbeadb1b,citation,https://doi.org/10.1109/LSP.2016.2637400,Cross-Modality Face Recognition via Heterogeneous Joint Bayesian,2017 +160,CASIA Webface,casia_webface,40.0044795,116.370238,Chinese Academy of Sciences,edu,1e62ca5845a6f0492574a5da049e9b43dbeadb1b,citation,https://doi.org/10.1109/LSP.2016.2637400,Cross-Modality Face Recognition via Heterogeneous Joint Bayesian,2017 +161,CASIA Webface,casia_webface,47.6543238,-122.30800894,University of Washington,edu,96e0cfcd81cdeb8282e29ef9ec9962b125f379b0,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2016.527,The MegaFace Benchmark: 1 Million Faces for Recognition at Scale,2016 +162,CASIA Webface,casia_webface,40.9153196,-73.1270626,Stony Brook University,edu,40883844c1ceab95cb92498a92bfdf45beaa288e,citation,https://arxiv.org/pdf/1709.02848.pdf,Improving Heterogeneous Face Recognition with Conditional Adversarial Networks,2017 +163,CASIA Webface,casia_webface,51.7534538,-1.25400997,University of Oxford,edu,8ec82da82416bb8da8cdf2140c740e1574eaf84f,citation,http://pdfs.semanticscholar.org/8ec8/2da82416bb8da8cdf2140c740e1574eaf84f.pdf,Lip Reading in Profile,2017 +164,CASIA Webface,casia_webface,35.9042272,-78.85565763,"IBM Research, North Carolina",company,61efeb64e8431cfbafa4b02eb76bf0c58e61a0fa,citation,https://arxiv.org/pdf/1809.01604.pdf,Merging datasets through deep learning,2018 +165,CASIA Webface,casia_webface,39.2899685,-76.62196103,University of Maryland,edu,a8748a79e8d37e395354ba7a8b3038468cb37e1f,citation,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2016.47,Seeing the Forest from the Trees: A Holistic Approach to Near-Infrared Heterogeneous Face Recognition,2016 +166,CASIA Webface,casia_webface,39.65404635,-79.96475355,West Virginia University,edu,a8748a79e8d37e395354ba7a8b3038468cb37e1f,citation,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2016.47,Seeing the Forest from the Trees: A Holistic Approach to Near-Infrared Heterogeneous Face Recognition,2016 +167,CASIA Webface,casia_webface,37.3936717,-122.0807262,Facebook,company,628a3f027b7646f398c68a680add48c7969ab1d9,citation,https://pdfs.semanticscholar.org/628a/3f027b7646f398c68a680add48c7969ab1d9.pdf,Plan for Final Year Project : HKU-Face : A Large Scale Dataset for Deep Face Recognition,2017 +168,CASIA Webface,casia_webface,38.88140235,121.52281098,Dalian University of Technology,edu,052f994898c79529955917f3dfc5181586282cf8,citation,https://arxiv.org/pdf/1708.02191.pdf,Unsupervised Domain Adaptation for Face Recognition in Unlabeled Videos,2017 +169,CASIA Webface,casia_webface,37.4102193,-122.05965487,Carnegie Mellon University,edu,d35534f3f59631951011539da2fe83f2844ca245,citation,https://arxiv.org/pdf/1705.07904.pdf,Semantically Decomposing the Latent Spaces of Generative Adversarial Networks,2017 +170,CASIA Webface,casia_webface,37.43131385,-122.16936535,Stanford University,edu,d35534f3f59631951011539da2fe83f2844ca245,citation,https://arxiv.org/pdf/1705.07904.pdf,Semantically Decomposing the Latent Spaces of Generative Adversarial Networks,2017 +171,CASIA Webface,casia_webface,32.87935255,-117.23110049,"University of California, San Diego",edu,d35534f3f59631951011539da2fe83f2844ca245,citation,https://arxiv.org/pdf/1705.07904.pdf,Semantically Decomposing the Latent Spaces of Generative Adversarial Networks,2017 +172,CASIA Webface,casia_webface,23.0502042,113.39880323,South China University of Technology,edu,6880013eb0b91a2b334e0be0dced0a1a79943469,citation,https://arxiv.org/pdf/1810.11809.pdf,Discrimination-aware Channel Pruning for Deep Neural Networks,2018 +173,CASIA Webface,casia_webface,32.7283683,-97.11201835,University of Texas at Arlington,edu,6880013eb0b91a2b334e0be0dced0a1a79943469,citation,https://arxiv.org/pdf/1810.11809.pdf,Discrimination-aware Channel Pruning for Deep Neural Networks,2018 +174,CASIA Webface,casia_webface,39.65404635,-79.96475355,West Virginia University,edu,9fb93b7c2bae866608f26c4254e5bd69cc5031d6,citation,https://arxiv.org/pdf/1809.08999.pdf,Fast Geometrically-Perturbed Adversarial Faces,2018 +175,CASIA Webface,casia_webface,32.1638824,34.8115862,FDNA Israel,company,92de9a54515f4ac8cc8e4e6b0dfab20e5e6bb09d,citation,https://doi.org/10.1109/ICIP.2016.7533062,Quality scores for deep regression systems,2016 +176,CASIA Webface,casia_webface,39.2899685,-76.62196103,University of Maryland,edu,2d748f8ee023a5b1fbd50294d176981ded4ad4ee,citation,http://pdfs.semanticscholar.org/2d74/8f8ee023a5b1fbd50294d176981ded4ad4ee.pdf,Triplet Similarity Embedding for Face Verification,2016 +177,CASIA Webface,casia_webface,40.51865195,-74.44099801,State University of New Jersey,edu,5495e224ac7b45b9edc5cfeabbb754d8a40a879b,citation,http://pdfs.semanticscholar.org/5495/e224ac7b45b9edc5cfeabbb754d8a40a879b.pdf,Feature Reconstruction Disentangling for Pose-invariant Face Recognition Supplementary Material,2017 +178,CASIA Webface,casia_webface,32.87935255,-117.23110049,"University of California, San Diego",edu,5495e224ac7b45b9edc5cfeabbb754d8a40a879b,citation,http://pdfs.semanticscholar.org/5495/e224ac7b45b9edc5cfeabbb754d8a40a879b.pdf,Feature Reconstruction Disentangling for Pose-invariant Face Recognition Supplementary Material,2017 +179,CASIA Webface,casia_webface,42.718568,-84.47791571,Michigan State University,edu,cd55fb30737625e86454a2861302b96833ed549d,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7139094,Annotating Unconstrained Face Imagery: A scalable approach,2015 +180,CASIA Webface,casia_webface,38.95187,-77.363259,"Noblis, Falls Church, VA, U.S.A.",company,cd55fb30737625e86454a2861302b96833ed549d,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7139094,Annotating Unconstrained Face Imagery: A scalable approach,2015 +181,CASIA Webface,casia_webface,22.2081469,114.25964115,University of Hong Kong,edu,7ffef9f26c39377ee937d29b8990580266a7a8a5,citation,https://arxiv.org/pdf/1810.06951.pdf,Deep Metric Learning with Hierarchical Triplet Loss,2018 +182,CASIA Webface,casia_webface,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,565f7c767e6b150ebda491e04e6b1de759fda2d4,citation,https://doi.org/10.1016/j.patcog.2016.11.023,"Fine-grained face verification: FGLFW database, baselines, and human-DCMN partnership",2017 +183,CASIA Webface,casia_webface,1.3484104,103.68297965,Nanyang Technological University,edu,0d8cec1b3f9b6e25d9d31eeb54d8894a1f2ef84f,citation,https://doi.org/10.1109/LSP.2018.2810121,Deep Coupled ResNet for Low-Resolution Face Recognition,2018 +184,CASIA Webface,casia_webface,31.30104395,121.50045497,Fudan University,edu,862d17895fe822f7111e737cbcdd042ba04377e8,citation,http://pdfs.semanticscholar.org/862d/17895fe822f7111e737cbcdd042ba04377e8.pdf,Semi-Latent GAN: Learning to generate and modify facial images from attributes,2017 +185,CASIA Webface,casia_webface,42.718568,-84.47791571,Michigan State University,edu,4b605e6a9362485bfe69950432fa1f896e7d19bf,citation,http://biometrics.cse.msu.edu/Publications/Face/BlantonAllenMillerKalkaJain_CVPRWB2016_HID.pdf,A Comparison of Human and Automated Face Verification Accuracy on Unconstrained Image Sets,2016 +186,CASIA Webface,casia_webface,39.9586652,116.30971281,Beijing Institute of Technology,edu,14d72dc9f78d65534c68c3ed57305f14bd4b5753,citation,http://openaccess.thecvf.com/content_ICCV_2017/papers/Yan_Exploiting_Multi-Grain_Ranking_ICCV_2017_paper.pdf,Exploiting Multi-grain Ranking Constraints for Precisely Searching Visually-similar Vehicles,2017 +187,CASIA Webface,casia_webface,39.9922379,116.30393816,Peking University,edu,14d72dc9f78d65534c68c3ed57305f14bd4b5753,citation,http://openaccess.thecvf.com/content_ICCV_2017/papers/Yan_Exploiting_Multi-Grain_Ranking_ICCV_2017_paper.pdf,Exploiting Multi-grain Ranking Constraints for Precisely Searching Visually-similar Vehicles,2017 +188,CASIA Webface,casia_webface,35.0274996,135.78154513,University of Caen,edu,0ad8149318912b5449085187eb3521786a37bc78,citation,http://arxiv.org/abs/1604.02975,CP-mtML: Coupled Projection Multi-Task Metric Learning for Large Scale Face Retrieval,2016 +189,CASIA Webface,casia_webface,1.3484104,103.68297965,Nanyang Technological University,edu,47190d213caef85e8b9dd0d271dbadc29ed0a953,citation,https://arxiv.org/pdf/1807.11649.pdf,The Devil of Face Recognition is in the Noise,2018 +190,CASIA Webface,casia_webface,32.87935255,-117.23110049,"University of California, San Diego",edu,47190d213caef85e8b9dd0d271dbadc29ed0a953,citation,https://arxiv.org/pdf/1807.11649.pdf,The Devil of Face Recognition is in the Noise,2018 +191,CASIA Webface,casia_webface,31.30104395,121.50045497,Fudan University,edu,c5e37630d0672e4d44f7dee83ac2c1528be41c2e,citation,http://dl.acm.org/citation.cfm?id=3078973,Multi-task Deep Neural Network for Joint Face Recognition and Facial Attribute Prediction,2017 +192,CASIA Webface,casia_webface,40.0044795,116.370238,Chinese Academy of Sciences,edu,3661a34f302883c759b9fa2ce03de0c7173d2bb2,citation,http://pdfs.semanticscholar.org/fd6d/14fb0bbca58e924c504d7dc57cb7f8d3707e.pdf,Peak-Piloted Deep Network for Facial Expression Recognition,2016 +193,CASIA Webface,casia_webface,1.2962018,103.77689944,National University of Singapore,edu,3661a34f302883c759b9fa2ce03de0c7173d2bb2,citation,http://pdfs.semanticscholar.org/fd6d/14fb0bbca58e924c504d7dc57cb7f8d3707e.pdf,Peak-Piloted Deep Network for Facial Expression Recognition,2016 +194,CASIA Webface,casia_webface,39.329053,-76.619425,Johns Hopkins University,edu,2594a77a3f0dd5073f79ba620e2f287804cec630,citation,https://arxiv.org/pdf/1702.06925v1.pdf,Regularizing face verification nets for pain intensity regression,2017 +195,CASIA Webface,casia_webface,40.00229045,116.32098908,Tsinghua University,edu,2594a77a3f0dd5073f79ba620e2f287804cec630,citation,https://arxiv.org/pdf/1702.06925v1.pdf,Regularizing face verification nets for pain intensity regression,2017 +196,CASIA Webface,casia_webface,41.70456775,-86.23822026,University of Notre Dame,edu,987a649cb33302c41412419f8eeb77048aa5513e,citation,https://arxiv.org/pdf/1803.07140.pdf,Visual Psychophysics for Making Face Recognition Algorithms More Explainable,2018 +197,CASIA Webface,casia_webface,42.36782045,-71.12666653,Harvard University,edu,987a649cb33302c41412419f8eeb77048aa5513e,citation,https://arxiv.org/pdf/1803.07140.pdf,Visual Psychophysics for Making Face Recognition Algorithms More Explainable,2018 +198,CASIA Webface,casia_webface,43.614386,7.071125,EURECOM,edu,70569810e46f476515fce80a602a210f8d9a2b95,citation,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2016.105,Apparent Age Estimation from Face Images Combining General and Children-Specialized Deep Learning Models,2016 +199,CASIA Webface,casia_webface,33.776033,-84.39884086,Georgia Institute of Technology,edu,93af36da08bf99e68c9b0d36e141ed8154455ac2,citation,https://pdfs.semanticscholar.org/93af/36da08bf99e68c9b0d36e141ed8154455ac2.pdf,A Dditive M Argin S Oftmax for F Ace V Erification,2018 +200,CASIA Webface,casia_webface,40.0141905,-83.0309143,University of Electronic Science and Technology of China,edu,93af36da08bf99e68c9b0d36e141ed8154455ac2,citation,https://pdfs.semanticscholar.org/93af/36da08bf99e68c9b0d36e141ed8154455ac2.pdf,A Dditive M Argin S Oftmax for F Ace V Erification,2018 +201,CASIA Webface,casia_webface,31.30104395,121.50045497,Fudan University,edu,5a259f2f5337435f841d39dada832ab24e7b3325,citation,http://doi.acm.org/10.1145/2964284.2984059,Face Recognition via Active Annotation and Learning,2016 +202,CASIA Webface,casia_webface,40.0044795,116.370238,Chinese Academy of Sciences,edu,5a259f2f5337435f841d39dada832ab24e7b3325,citation,http://doi.acm.org/10.1145/2964284.2984059,Face Recognition via Active Annotation and Learning,2016 +203,CASIA Webface,casia_webface,39.2899685,-76.62196103,University of Maryland,edu,100105d6c97b23059f7aa70589ead2f61969fbc3,citation,http://doi.ieeecomputersociety.org/10.1109/WACV.2016.7477558,Frontal to profile face verification in the wild,2016 +204,CASIA Webface,casia_webface,40.51865195,-74.44099801,State University of New Jersey,edu,100105d6c97b23059f7aa70589ead2f61969fbc3,citation,http://doi.ieeecomputersociety.org/10.1109/WACV.2016.7477558,Frontal to profile face verification in the wild,2016 +205,CASIA Webface,casia_webface,22.46221665,91.96942263,Chittagong University of Engineering and Technology,edu,eed93d2e16b55142b3260d268c9e72099c53d5bc,citation,https://arxiv.org/pdf/1801.01262.pdf,ICFVR 2017: 3rd international competition on finger vein recognition,2017 +206,CASIA Webface,casia_webface,39.9922379,116.30393816,Peking University,edu,eed93d2e16b55142b3260d268c9e72099c53d5bc,citation,https://arxiv.org/pdf/1801.01262.pdf,ICFVR 2017: 3rd international competition on finger vein recognition,2017 +207,CASIA Webface,casia_webface,37.4102193,-122.05965487,Carnegie Mellon University,edu,eb8519cec0d7a781923f68fdca0891713cb81163,citation,https://arxiv.org/pdf/1703.08617.pdf,Temporal Non-volume Preserving Approach to Facial Age-Progression and Age-Invariant Face Recognition,2017 +208,CASIA Webface,casia_webface,45.57022705,-122.63709346,Concordia University,edu,eb8519cec0d7a781923f68fdca0891713cb81163,citation,https://arxiv.org/pdf/1703.08617.pdf,Temporal Non-volume Preserving Approach to Facial Age-Progression and Age-Invariant Face Recognition,2017 +209,CASIA Webface,casia_webface,30.642769,104.06751175,"Sichuan University, Chengdu",edu,8d955b025495522e67e8cb6e29436001ebbd0abb,citation,https://arxiv.org/pdf/1803.11366.pdf,Disentangling Features in 3D Face Shapes for Joint Face Reconstruction and Recognition,2018 +210,CASIA Webface,casia_webface,42.718568,-84.47791571,Michigan State University,edu,8d955b025495522e67e8cb6e29436001ebbd0abb,citation,https://arxiv.org/pdf/1803.11366.pdf,Disentangling Features in 3D Face Shapes for Joint Face Reconstruction and Recognition,2018 +211,CASIA Webface,casia_webface,23.09461185,113.28788994,Sun Yat-Sen University,edu,c92e36689ef561df726a7ae861d9c166c3934908,citation,https://doi.org/10.1109/ICPR.2016.7900140,Face hallucination by deep traversal network,2016 +212,CASIA Webface,casia_webface,22.42031295,114.20788644,Chinese University of Hong Kong,edu,2296d79753118cfcd0fecefece301557f4cb66e2,citation,https://arxiv.org/pdf/1804.03487.pdf,Exploring Disentangled Feature Representation Beyond Face Identification,2018 +213,CASIA Webface,casia_webface,39.993008,116.329882,SenseTime,company,2296d79753118cfcd0fecefece301557f4cb66e2,citation,https://arxiv.org/pdf/1804.03487.pdf,Exploring Disentangled Feature Representation Beyond Face Identification,2018 +214,CASIA Webface,casia_webface,40.51865195,-74.44099801,State University of New Jersey,edu,02820c1491b10a1ff486fed32c269e4077c36551,citation,https://arxiv.org/pdf/1610.07930v1.pdf,Active user authentication for smartphones: A challenge data set and benchmark results,2016 +215,CASIA Webface,casia_webface,39.2899685,-76.62196103,University of Maryland,edu,02820c1491b10a1ff486fed32c269e4077c36551,citation,https://arxiv.org/pdf/1610.07930v1.pdf,Active user authentication for smartphones: A challenge data set and benchmark results,2016 +216,CASIA Webface,casia_webface,42.718568,-84.47791571,Michigan State University,edu,486c9a0e5eb1e0bf107c31c2bf9689b25e18383b,citation,https://arxiv.org/pdf/1804.08790.pdf,Face Recognition: Primates in the Wild,2018 +217,CASIA Webface,casia_webface,38.8920756,-104.79716389,"University of Colorado, Colorado Springs",edu,d4f1eb008eb80595bcfdac368e23ae9754e1e745,citation,https://arxiv.org/pdf/1708.02337.pdf,Unconstrained Face Detection and Open-Set Face Recognition Challenge,2017 +218,CASIA Webface,casia_webface,40.8419836,-73.94368971,Columbia University,edu,61f93ed515b3bfac822deed348d9e21d5dffe373,citation,http://dvmmweb.cs.columbia.edu/files/set_hash_wacv17.pdf,Deep Image Set Hashing,2017 +219,CASIA Webface,casia_webface,39.2899685,-76.62196103,University of Maryland,edu,19458454308a9f56b7de76bf7d8ff8eaa52b0173,citation,https://pdfs.semanticscholar.org/1945/8454308a9f56b7de76bf7d8ff8eaa52b0173.pdf,Deep Features for Recognizing Disguised Faces in the Wild,0 +220,CASIA Webface,casia_webface,41.10427915,29.02231159,Istanbul Technical University,edu,7fb7ccc1aa093ca526f2d8b6f2c404d2c886f69a,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8404767,A multi-view face database from Turkish TV series,2018 +221,CASIA Webface,casia_webface,39.9922379,116.30393816,Peking University,edu,26973cf1552250f402c82e9a4445f03fe6757b58,citation,http://doi.acm.org/10.1145/3126686.3130239,Surveillance Video Quality Assessment Based on Face Recognition,2017 +222,CASIA Webface,casia_webface,52.17638955,0.14308882,University of Cambridge,edu,dd471f321ead8b405da6194057b2778ef3db7ea7,citation,https://pdfs.semanticscholar.org/dd47/1f321ead8b405da6194057b2778ef3db7ea7.pdf,Multi-Task Adversarial Network for Disentangled Feature Learning,2018 +223,CASIA Webface,casia_webface,40.786127,29.4456329,Bilişim Technology Instititute,edu,55266ddbe9d5366e8cd1b0b645971cad6d12157a,citation,https://doi.org/10.1109/SIU.2017.7960368,Face recognition classifier based on dimension reduction in deep learning properties,2017 +224,CASIA Webface,casia_webface,42.718568,-84.47791571,Michigan State University,edu,7fb5006b6522436ece5bedf509e79bdb7b79c9a7,citation,https://pdfs.semanticscholar.org/7fb5/006b6522436ece5bedf509e79bdb7b79c9a7.pdf,Multi-Task Convolutional Neural Network for Face Recognition,2017 +225,CASIA Webface,casia_webface,39.2899685,-76.62196103,University of Maryland,edu,93420d9212dd15b3ef37f566e4d57e76bb2fab2f,citation,https://arxiv.org/pdf/1611.00851.pdf,An All-In-One Convolutional Neural Network for Face Analysis,2017 +226,CASIA Webface,casia_webface,59.34986645,18.07063213,"KTH Royal Institute of Technology, Stockholm",edu,1ed49161e58559be399ce7092569c19ddd39ca0b,citation,https://doi.org/10.1109/ICPR.2016.7899973,Transferring from face recognition to face attribute prediction through adaptive selection of off-the-shelf CNN representations,2016 +227,CASIA Webface,casia_webface,37.4102193,-122.05965487,Carnegie Mellon University,edu,82e66c4832386cafcec16b92ac88088ffd1a1bc9,citation,http://pdfs.semanticscholar.org/82e6/6c4832386cafcec16b92ac88088ffd1a1bc9.pdf,OpenFace: A general-purpose face recognition library with mobile applications,2016 +228,CASIA Webface,casia_webface,52.4004837,16.95158083,Poznan University of Technology,edu,82e66c4832386cafcec16b92ac88088ffd1a1bc9,citation,http://pdfs.semanticscholar.org/82e6/6c4832386cafcec16b92ac88088ffd1a1bc9.pdf,OpenFace: A general-purpose face recognition library with mobile applications,2016 +229,CASIA Webface,casia_webface,40.9153196,-73.1270626,Stony Brook University,edu,6fbb179a4ad39790f4558dd32316b9f2818cd106,citation,http://pdfs.semanticscholar.org/6fbb/179a4ad39790f4558dd32316b9f2818cd106.pdf,Input Aggregated Network for Face Video Representation,2016 +230,CASIA Webface,casia_webface,46.109237,7.08453549,IDIAP Research Institute,edu,b4e889af57295dff9498ba476893a359a91b8a3e,citation,https://arxiv.org/pdf/1707.02749.pdf,Improving Speaker Turn Embedding by Crossmodal Transfer Learning from Face Embedding,2017 +231,CASIA Webface,casia_webface,30.5097537,114.4062881,Huazhong University of Science and Technology,edu,5f448ab700528888019542e6fea1d1e0db6c35f2,citation,https://doi.org/10.1109/LSP.2016.2533721,Transferred Deep Convolutional Neural Network Features for Extensive Facial Landmark Localization,2016 +232,CASIA Webface,casia_webface,40.51865195,-74.44099801,State University of New Jersey,edu,438c4b320b9a94a939af21061b4502f4a86960e3,citation,https://arxiv.org/pdf/1702.03041.pdf,Reconstruction-Based Disentanglement for Pose-Invariant Face Recognition,2017 +233,CASIA Webface,casia_webface,32.87935255,-117.23110049,"University of California, San Diego",edu,438c4b320b9a94a939af21061b4502f4a86960e3,citation,https://arxiv.org/pdf/1702.03041.pdf,Reconstruction-Based Disentanglement for Pose-Invariant Face Recognition,2017 +234,CASIA Webface,casia_webface,39.94976005,116.33629046,Beijing Jiaotong University,edu,d7cbedbee06293e78661335c7dd9059c70143a28,citation,https://arxiv.org/pdf/1804.07573.pdf,MobileFaceNets: Efficient CNNs for Accurate Real-time Face Verification on Mobile Devices,2018 +235,CASIA Webface,casia_webface,58.38131405,26.72078081,University of Tartu,edu,81695fbbbea2972d7ab1bfb1f3a6a0dbd3475c0f,citation,http://pdfs.semanticscholar.org/8169/5fbbbea2972d7ab1bfb1f3a6a0dbd3475c0f.pdf,Comparison of Face Recognition Neural Networks,0 +236,CASIA Webface,casia_webface,30.642769,104.06751175,"Sichuan University, Chengdu",edu,1afef6b389bd727c566cd6fbcd99adefe4c0cf32,citation,https://doi.org/10.1109/ICB.2016.7550087,Towards resolution invariant face recognition in uncontrolled scenarios,2016 +237,CASIA Webface,casia_webface,39.65404635,-79.96475355,West Virginia University,edu,a75dfb5a839f0eb4b613d150f54a418b7812aa90,citation,http://arxiv.org/abs/1708.02314,Multibiometric secure system based on deep learning,2017 +238,CASIA Webface,casia_webface,30.642769,104.06751175,"Sichuan University, Chengdu",edu,23ecc496eaa238ac884e6bae5763f6138a9c90a3,citation,https://doi.org/10.1109/ICB.2016.7550085,Discriminative Feature Adaptation for cross-domain facial expression recognition,2016 +239,CASIA Webface,casia_webface,53.21967825,6.56251482,University of Groningen,edu,8efda5708bbcf658d4f567e3866e3549fe045bbb,citation,http://pdfs.semanticscholar.org/8efd/a5708bbcf658d4f567e3866e3549fe045bbb.pdf,Pre-trained Deep Convolutional Neural Networks for Face Recognition,2018 +240,CASIA Webface,casia_webface,-27.49741805,153.01316956,University of Queensland,edu,3c563542db664321aa77a9567c1601f425500f94,citation,https://arxiv.org/pdf/1712.02514.pdf,TV-GAN: Generative Adversarial Network Based Thermal to Visible Face Recognition,2018 +241,CASIA Webface,casia_webface,30.642769,104.06751175,"Sichuan University, Chengdu",edu,772474b5b0c90629f4d9c223fd9c1ef45e1b1e66,citation,https://doi.org/10.1109/BTAS.2017.8272716,Multi-dim: A multi-dimensional face database towards the application of 3D technology in real-world scenarios,2017 +242,CASIA Webface,casia_webface,34.0224149,-118.28634407,University of Southern California,edu,4e7ed13e541b8ed868480375785005d33530e06d,citation,http://doi.ieeecomputersociety.org/10.1109/WACV.2016.7477555,Face recognition using deep multi-pose representations,2016 +243,CASIA Webface,casia_webface,42.718568,-84.47791571,Michigan State University,edu,02467703b6e087799e04e321bea3a4c354c5487d,citation,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2016.27,Grouper: Optimizing Crowdsourced Face Annotations,2016 +244,CASIA Webface,casia_webface,51.24303255,-0.59001382,University of Surrey,edu,7224d58a7e1f02b84994b60dc3b84d9fe6941ff5,citation,https://arxiv.org/pdf/1504.02351.pdf,When Face Recognition Meets with Deep Learning: An Evaluation of Convolutional Neural Networks for Face Recognition,2015 +245,CASIA Webface,casia_webface,51.5247272,-0.03931035,Queen Mary University of London,edu,7224d58a7e1f02b84994b60dc3b84d9fe6941ff5,citation,https://arxiv.org/pdf/1504.02351.pdf,When Face Recognition Meets with Deep Learning: An Evaluation of Convolutional Neural Networks for Face Recognition,2015 +246,CASIA Webface,casia_webface,23.09461185,113.28788994,Sun Yat-Sen University,edu,39f525f3a0475e6bbfbe781ae3a74aca5b401125,citation,http://pdfs.semanticscholar.org/39f5/25f3a0475e6bbfbe781ae3a74aca5b401125.pdf,Deep Joint Face Hallucination and Recognition,2016 +247,CASIA Webface,casia_webface,34.2474949,108.97898751,Xi'an Jiaotong University,edu,a4bb791b135bdc721c8fcc5bdef612ca654d7377,citation,https://doi.org/10.1109/BTAS.2017.8272703,Location-sensitive sparse representation of deep normal patterns for expression-robust 3D face recognition,2017 +248,CASIA Webface,casia_webface,29.7207902,-95.34406271,University of Houston,edu,3cb2841302af1fb9656f144abc79d4f3d0b27380,citation,https://pdfs.semanticscholar.org/3cb2/841302af1fb9656f144abc79d4f3d0b27380.pdf,When 3 D-Aided 2 D Face Recognition Meets Deep Learning : An extended UR 2 D for Pose-Invariant Face Recognition,2017 +249,CASIA Webface,casia_webface,34.0224149,-118.28634407,University of Southern California,edu,d28d32af7ef9889ef9cb877345a90ea85e70f7f1,citation,http://doi.ieeecomputersociety.org/10.1109/FG.2017.84,Local-Global Landmark Confidences for Face Recognition,2017 +250,CASIA Webface,casia_webface,37.4102193,-122.05965487,Carnegie Mellon University,edu,d28d32af7ef9889ef9cb877345a90ea85e70f7f1,citation,http://doi.ieeecomputersociety.org/10.1109/FG.2017.84,Local-Global Landmark Confidences for Face Recognition,2017 +251,CASIA Webface,casia_webface,39.87391435,116.47722285,Beijing University of Technology,edu,f1d6da83dcf71eda45a56a86c5ae13e7f45a8536,citation,https://doi.org/10.1109/ACCESS.2017.2737544,A Secure Face-Verification Scheme Based on Homomorphic Encryption and Deep Neural Networks,2017 +252,CASIA Webface,casia_webface,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,68e6cfb0d7423d3fae579919046639c8e2d04ad7,citation,https://doi.org/10.1109/ICB.2016.7550058,Multi-task ConvNet for blind face inpainting with application to face verification,2016 +253,CASIA Webface,casia_webface,-32.00686365,115.89691775,Curtin University,edu,e9a5a38e7da3f0aa5d21499149536199f2e0e1f7,citation,https://pdfs.semanticscholar.org/e9a5/a38e7da3f0aa5d21499149536199f2e0e1f7.pdf,A Bayesian Scene-Prior-Based Deep Network Model for Face Verification,2018 +254,CASIA Webface,casia_webface,42.718568,-84.47791571,Michigan State University,edu,82eff71af91df2ca18aebb7f1153a7aed16ae7cc,citation,https://pdfs.semanticscholar.org/82ef/f71af91df2ca18aebb7f1153a7aed16ae7cc.pdf,MSU-AVIS dataset : Fusing Face and Voice Modalities for Biometric Recognition in Indoor Surveillance Videos,2018 +255,CASIA Webface,casia_webface,36.3697191,127.362537,Korea Advanced Institute of Science and Technology,edu,cb27b45329d61f5f95ed213798d4b2a615e76be2,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8329236,Deep Facial Age Estimation Using Conditional Multitask Learning With Weak Label Expansion,2018 +256,CASIA Webface,casia_webface,37.2520226,127.0555019,"Samsung SAIT, Korea",company,cb27b45329d61f5f95ed213798d4b2a615e76be2,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8329236,Deep Facial Age Estimation Using Conditional Multitask Learning With Weak Label Expansion,2018 +257,CASIA Webface,casia_webface,40.00229045,116.32098908,Tsinghua University,edu,f5eb0cf9c57716618fab8e24e841f9536057a28a,citation,https://arxiv.org/pdf/1803.02988.pdf,Rethinking Feature Distribution for Loss Functions in Image Classification,2018 +258,CASIA Webface,casia_webface,40.00229045,116.32098908,Tsinghua University,edu,2149d49c84a83848d6051867290d9c8bfcef0edb,citation,https://doi.org/10.1109/TIFS.2017.2746062,Label-Sensitive Deep Metric Learning for Facial Age Estimation,2018 +259,CASIA Webface,casia_webface,22.59805605,113.98533784,Shenzhen Institutes of Advanced Technology,edu,4cfd770ccecae1c0b4248bc800d7fd35c817bbbd,citation,https://pdfs.semanticscholar.org/8774/e206564df3bf9050f8c2be6b434cc2469c5b.pdf,A Discriminative Feature Learning Approach for Deep Face Recognition,2016 +260,CASIA Webface,casia_webface,22.42031295,114.20788644,Chinese University of Hong Kong,edu,4cfd770ccecae1c0b4248bc800d7fd35c817bbbd,citation,https://pdfs.semanticscholar.org/8774/e206564df3bf9050f8c2be6b434cc2469c5b.pdf,A Discriminative Feature Learning Approach for Deep Face Recognition,2016 +261,CASIA Webface,casia_webface,37.4102193,-122.05965487,Carnegie Mellon University,edu,2679e4f84c5e773cae31cef158eb358af475e22f,citation,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w6/papers/Liu_Adaptive_Deep_Metric_CVPR_2017_paper.pdf,Adaptive Deep Metric Learning for Identity-Aware Facial Expression Recognition,2017 +262,CASIA Webface,casia_webface,22.304572,114.17976285,Hong Kong Polytechnic University,edu,2679e4f84c5e773cae31cef158eb358af475e22f,citation,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w6/papers/Liu_Adaptive_Deep_Metric_CVPR_2017_paper.pdf,Adaptive Deep Metric Learning for Identity-Aware Facial Expression Recognition,2017 +263,CASIA Webface,casia_webface,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,2679e4f84c5e773cae31cef158eb358af475e22f,citation,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w6/papers/Liu_Adaptive_Deep_Metric_CVPR_2017_paper.pdf,Adaptive Deep Metric Learning for Identity-Aware Facial Expression Recognition,2017 +264,CASIA Webface,casia_webface,51.24303255,-0.59001382,University of Surrey,edu,9103148dd87e6ff9fba28509f3b265e1873166c9,citation,http://pdfs.semanticscholar.org/9103/148dd87e6ff9fba28509f3b265e1873166c9.pdf,Face Analysis using 3D Morphable Models,2015 +265,CASIA Webface,casia_webface,40.00229045,116.32098908,Tsinghua University,edu,e8523c4ac9d7aa21f3eb4062e09f2a3bc1eedcf7,citation,https://arxiv.org/pdf/1701.07174.pdf,Toward End-to-End Face Recognition Through Alignment Learning,2017 +266,CASIA Webface,casia_webface,40.00229045,116.32098908,Tsinghua University,edu,a52a69bf304d49fba6eac6a73c5169834c77042d,citation,https://doi.org/10.1109/LSP.2017.2789251,Margin Loss: Making Faces More Separable,2018 +267,CASIA Webface,casia_webface,24.78676765,120.99724412,National Chiao Tung University,edu,15ef65fd68d61f3d47326e358c446b0f054f093a,citation,https://doi.org/10.1109/MLSP.2017.8168180,Learning guided convolutional neural networks for cross-resolution face recognition,2017 +268,CASIA Webface,casia_webface,25.0411727,121.6146518,"Academia Sinica, Taiwan",edu,15ef65fd68d61f3d47326e358c446b0f054f093a,citation,https://doi.org/10.1109/MLSP.2017.8168180,Learning guided convolutional neural networks for cross-resolution face recognition,2017 +269,CASIA Webface,casia_webface,39.2899685,-76.62196103,University of Maryland,edu,8d3e95c31c93548b8c71dbeee2e9f7180067a888,citation,https://doi.org/10.1109/ICPR.2016.7899841,Template regularized sparse coding for face verification,2016 +270,CASIA Webface,casia_webface,42.8271556,-73.8780481,GE Global Research,company,8d3e95c31c93548b8c71dbeee2e9f7180067a888,citation,https://doi.org/10.1109/ICPR.2016.7899841,Template regularized sparse coding for face verification,2016 +271,CASIA Webface,casia_webface,41.70456775,-86.23822026,University of Notre Dame,edu,d6791b98353aa113d79f6fb96335aa6c7ea3b759,citation,https://doi.org/10.1109/TNNLS.2017.2648122,Collaborative Random Faces-Guided Encoders for Pose-Invariant Face Representation Learning,2018 +272,CASIA Webface,casia_webface,41.62772475,-71.00724501,University of Massachusetts Dartmouth,edu,d6791b98353aa113d79f6fb96335aa6c7ea3b759,citation,https://doi.org/10.1109/TNNLS.2017.2648122,Collaborative Random Faces-Guided Encoders for Pose-Invariant Face Representation Learning,2018 +273,CASIA Webface,casia_webface,42.3383668,-71.08793524,Northeastern University,edu,d6791b98353aa113d79f6fb96335aa6c7ea3b759,citation,https://doi.org/10.1109/TNNLS.2017.2648122,Collaborative Random Faces-Guided Encoders for Pose-Invariant Face Representation Learning,2018 +274,CASIA Webface,casia_webface,37.4102193,-122.05965487,Carnegie Mellon University,edu,4d16337cc0431cd43043dfef839ce5f0717c3483,citation,http://pdfs.semanticscholar.org/4d16/337cc0431cd43043dfef839ce5f0717c3483.pdf,A Scalable and Privacy-Aware IoT Service for Live Video Analytics,2017 +275,CASIA Webface,casia_webface,25.01353105,121.54173736,National Taiwan University of Science and Technology,edu,e4c3587392d477b7594086c6f28a00a826abf004,citation,https://doi.org/10.1109/ICIP.2017.8296998,Face recognition by facial attribute assisted network,2017 +276,CASIA Webface,casia_webface,41.70456775,-86.23822026,University of Notre Dame,edu,df2c685aa9c234783ab51c1aa1bf1cb5d71a3dbb,citation,https://arxiv.org/pdf/1704.06693.pdf,SREFI: Synthesis of realistic example face images,2017 +277,CASIA Webface,casia_webface,47.6423318,-122.1369302,Microsoft,company,0aebe97a92f590bdf21cdadfddec8061c682cdb2,citation,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2017.2695183,Probabilistic Elastic Part Model: A Pose-Invariant Representation for Real-World Face Verification,2018 +278,CASIA Webface,casia_webface,42.718568,-84.47791571,Michigan State University,edu,d29eec5e047560627c16803029d2eb8a4e61da75,citation,http://pdfs.semanticscholar.org/d29e/ec5e047560627c16803029d2eb8a4e61da75.pdf,Feature Transfer Learning for Deep Face Recognition with Long-Tail Data,2018 +279,CASIA Webface,casia_webface,40.8419836,-73.94368971,Columbia University,edu,35f03f5cbcc21a9c36c84e858eeb15c5d6722309,citation,http://doi.acm.org/10.1145/2964284.2970929,Placing Broadcast News Videos in their Social Media Context Using Hashtags,2016 +280,CASIA Webface,casia_webface,41.10427915,29.02231159,Istanbul Technical University,edu,fd53be2e0a9f33080a9db4b5a5e416e24ae8e198,citation,https://arxiv.org/pdf/1606.02909.pdf,Apparent Age Estimation Using Ensemble of Deep Learning Models,2016 +281,CASIA Webface,casia_webface,29.58333105,-98.61944505,University of Texas at San Antonio,edu,7788fa76f1488b1597ee2bebc462f628e659f61e,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8063888,A Privacy-Aware Architecture at the Edge for Autonomous Real-Time Identity Reidentification in Crowds,2018 +282,CASIA Webface,casia_webface,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,39c10888a470b92b917788c57a6fd154c97b421c,citation,https://doi.org/10.1109/VCIP.2017.8305036,Joint multi-feature fusion and attribute relationships for facial attribute prediction,2017 +283,CASIA Webface,casia_webface,51.49887085,-0.17560797,Imperial College London,edu,40bb090a4e303f11168dce33ed992f51afe02ff7,citation,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Deng_Marginal_Loss_for_CVPR_2017_paper.pdf,Marginal Loss for Deep Face Recognition,2017 +284,CASIA Webface,casia_webface,31.83907195,117.26420748,University of Science and Technology of China,edu,3107316f243233d45e3c7e5972517d1ed4991f91,citation,http://arxiv.org/abs/1703.10155,CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training,2017 +285,CASIA Webface,casia_webface,46.010737,8.958109,University of Lugano,edu,cae41c3d5508f57421faf672ee1bea0da4be66e0,citation,https://doi.org/10.1109/ICPR.2016.7900298,Palmprint recognition via discriminative index learning,2016 +286,CASIA Webface,casia_webface,39.2899685,-76.62196103,University of Maryland,edu,a3201e955d6607d383332f3a12a7befa08c5a18c,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7900276,VLAD encoded Deep Convolutional features for unconstrained face verification,2016 +287,CASIA Webface,casia_webface,40.47913175,-74.43168868,Rutgers University,edu,a3201e955d6607d383332f3a12a7befa08c5a18c,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7900276,VLAD encoded Deep Convolutional features for unconstrained face verification,2016 +288,CASIA Webface,casia_webface,45.7835966,4.7678948,École Centrale de Lyon,edu,486840f4f524e97f692a7f6b42cd19019ee71533,citation,https://arxiv.org/pdf/1703.08388v2.pdf,DeepVisage: Making Face Recognition Simple Yet With Powerful Generalization Skills,2017 +289,CASIA Webface,casia_webface,48.832493,2.267474,Safran Identity and Security,company,486840f4f524e97f692a7f6b42cd19019ee71533,citation,https://arxiv.org/pdf/1703.08388v2.pdf,DeepVisage: Making Face Recognition Simple Yet With Powerful Generalization Skills,2017 +290,CASIA Webface,casia_webface,32.1119889,34.80459702,Tel Aviv University,edu,2f16baddac6af536451b3216b02d3480fc361ef4,citation,http://cs.nyu.edu/~fergus/teaching/vision/10_facerec.pdf,Web-scale training for face identification,2015 +291,CASIA Webface,casia_webface,46.0501558,14.46907327,University of Ljubljana,edu,73f341ff68caa9f8802e9e81bfa90d88bbdbd9d2,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7791198,Report on the BTAS 2016 Video Person Recognition Evaluation,2016 +292,CASIA Webface,casia_webface,41.70456775,-86.23822026,University of Notre Dame,edu,73f341ff68caa9f8802e9e81bfa90d88bbdbd9d2,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7791198,Report on the BTAS 2016 Video Person Recognition Evaluation,2016 +293,CASIA Webface,casia_webface,-33.8809651,151.20107299,University of Technology Sydney,edu,73f341ff68caa9f8802e9e81bfa90d88bbdbd9d2,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7791198,Report on the BTAS 2016 Video Person Recognition Evaluation,2016 +294,CASIA Webface,casia_webface,39.65404635,-79.96475355,West Virginia University,edu,73f341ff68caa9f8802e9e81bfa90d88bbdbd9d2,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7791198,Report on the BTAS 2016 Video Person Recognition Evaluation,2016 +295,CASIA Webface,casia_webface,31.28473925,121.49694909,Tongji University,edu,fe0cf8eaa5a5f59225197ef1bb8613e603cd96d4,citation,https://pdfs.semanticscholar.org/4e20/8cfff33327863b5aeef0bf9b327798a5610c.pdf,Improved Face Verification with Simple Weighted Feature Combination,2017 +296,CASIA Webface,casia_webface,51.49887085,-0.17560797,Imperial College London,edu,c43ed9b34cad1a3976bac7979808eb038d88af84,citation,https://arxiv.org/pdf/1804.03675.pdf,Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model,2018 +297,CASIA Webface,casia_webface,51.24303255,-0.59001382,University of Surrey,edu,c43ed9b34cad1a3976bac7979808eb038d88af84,citation,https://arxiv.org/pdf/1804.03675.pdf,Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model,2018 +298,CASIA Webface,casia_webface,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,9627f28ea5f4c389350572b15968386d7ce3fe49,citation,https://arxiv.org/pdf/1802.07447.pdf,Load Balanced GANs for Multi-view Face Image Synthesis,2018 +299,CASIA Webface,casia_webface,23.09461185,113.28788994,Sun Yat-Sen University,edu,44f48a4b1ef94a9104d063e53bf88a69ff0f55f3,citation,http://pdfs.semanticscholar.org/44f4/8a4b1ef94a9104d063e53bf88a69ff0f55f3.pdf,Automatically Building Face Datasets of New Domains from Weakly Labeled Data with Pretrained Models,2016 +300,CASIA Webface,casia_webface,50.7791703,6.06728733,RWTH Aachen University,edu,6ce23cf4f440021b7b05aa3c1c2700cc7560b557,citation,http://pdfs.semanticscholar.org/6ce2/3cf4f440021b7b05aa3c1c2700cc7560b557.pdf,Learning Local Convolutional Features for Face Recognition with 2D-Warping,2016 +301,CASIA Webface,casia_webface,17.4454957,78.34854698,International Institute of Information Technology,edu,f5eb411217f729ad7ae84bfd4aeb3dedb850206a,citation,https://pdfs.semanticscholar.org/f5eb/411217f729ad7ae84bfd4aeb3dedb850206a.pdf,Tackling Low Resolution for Better Scene Understanding,2018 +302,CASIA Webface,casia_webface,40.47913175,-74.43168868,Rutgers University,edu,92e464a5a67582d5209fa75e3b29de05d82c7c86,citation,https://pdfs.semanticscholar.org/92e4/64a5a67582d5209fa75e3b29de05d82c7c86.pdf,Reconstruction for Feature Disentanglement in Pose-invariant Face Recognition,2017 +303,CASIA Webface,casia_webface,34.2474949,108.97898751,Xi'an Jiaotong University,edu,cd2f8d661ea2c6d6818a278eb4f0548751c3b1ae,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7945277,Improving CNN Performance Accuracies With Min–Max Objective,2018 +304,CASIA Webface,casia_webface,39.2899685,-76.62196103,University of Maryland,edu,0334a8862634988cc684dacd4279c5c0d03704da,citation,http://arxiv.org/abs/1609.06591,FaceNet2ExpNet: Regularizing a Deep Face Recognition Net for Expression Recognition,2017 +305,CASIA Webface,casia_webface,40.47913175,-74.43168868,Rutgers University,edu,31f1e711fcf82c855f27396f181bf5e565a2f58d,citation,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2015.54,Unconstrained Age Estimation with Deep Convolutional Neural Networks,2015 +306,CASIA Webface,casia_webface,39.2899685,-76.62196103,University of Maryland,edu,31f1e711fcf82c855f27396f181bf5e565a2f58d,citation,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2015.54,Unconstrained Age Estimation with Deep Convolutional Neural Networks,2015 +307,CASIA Webface,casia_webface,22.5447154,113.9357164,Tencent,company,a2d1818eb461564a5153c74028e53856cf0b40fd,citation,https://arxiv.org/pdf/1810.07599.pdf,Orthogonal Deep Features Decomposition for Age-Invariant Face Recognition,2018 +308,CASIA Webface,casia_webface,53.21967825,6.56251482,University of Groningen,edu,4c8ef4f98c6c8d340b011cfa0bb65a9377107970,citation,http://pdfs.semanticscholar.org/4c8e/f4f98c6c8d340b011cfa0bb65a9377107970.pdf,Sentiment Recognition in Egocentric Photostreams,2017 +309,CASIA Webface,casia_webface,41.3868913,2.16352385,University of Barcelona,edu,4c8ef4f98c6c8d340b011cfa0bb65a9377107970,citation,http://pdfs.semanticscholar.org/4c8e/f4f98c6c8d340b011cfa0bb65a9377107970.pdf,Sentiment Recognition in Egocentric Photostreams,2017 +310,CASIA Webface,casia_webface,65.0592157,25.46632601,University of Oulu,edu,035c8632c1ffbeb75efe16a4ec50c91e20e6e189,citation,http://doi.org/10.1007/s00138-018-0943-x,Kinship verification from facial images and videos: human versus machine,2018 diff --git a/site/datasets/final/cofw.csv b/site/datasets/final/cofw.csv new file mode 100644 index 00000000..3b50c56d --- /dev/null +++ b/site/datasets/final/cofw.csv @@ -0,0 +1,233 @@ +index,dataset_name,key,lat,lng,loc,loc_type,paper_id,paper_type,paper_url,title,year +0,COFW,cofw,0.0,0.0,,,2724ba85ec4a66de18da33925e537f3902f21249,main,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6751298,Robust Face Landmark Estimation under Occlusion,2013 +1,COFW,cofw,23.04436505,113.36668458,Guangzhou University,edu,293d69d042fe9bc4fea256c61915978ddaf7cc92,citation,https://doi.org/10.1007/978-981-10-7302-1_6,Face Recognition by Coarse-to-Fine Landmark Regression with Application to ATM Surveillance,2017 +2,COFW,cofw,23.09461185,113.28788994,Sun Yat-Sen University,edu,293d69d042fe9bc4fea256c61915978ddaf7cc92,citation,https://doi.org/10.1007/978-981-10-7302-1_6,Face Recognition by Coarse-to-Fine Landmark Regression with Application to ATM Surveillance,2017 +3,COFW,cofw,32.87935255,-117.23110049,"University of California, San Diego",edu,d68dbb71b34dfe98dee0680198a23d3b53056394,citation,http://pdfs.semanticscholar.org/d68d/bb71b34dfe98dee0680198a23d3b53056394.pdf,VIVA Face-off Challenge: Dataset Creation and Balancing Privacy,2015 +4,COFW,cofw,40.0044795,116.370238,Chinese Academy of Sciences,edu,c2474202d56bb80663e7bece5924245978425fc1,citation,https://doi.org/10.1109/ICIP.2016.7532771,Localize heavily occluded human faces via deep segmentation,2016 +5,COFW,cofw,31.83907195,117.26420748,University of Science and Technology of China,edu,a7a3ec1128f920066c25cb86fbc33445ce613919,citation,https://doi.org/10.1109/VCIP.2017.8305115,Joint facial landmark detection and action estimation based on deep probabilistic random forest,2017 +6,COFW,cofw,42.9336278,-78.88394479,SUNY Buffalo,edu,a7a3ec1128f920066c25cb86fbc33445ce613919,citation,https://doi.org/10.1109/VCIP.2017.8305115,Joint facial landmark detection and action estimation based on deep probabilistic random forest,2017 +7,COFW,cofw,42.718568,-84.47791571,Michigan State University,edu,0141cb33c822e87e93b0c1bad0a09db49b3ad470,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7298876,Unconstrained 3D face reconstruction,2015 +8,COFW,cofw,22.2081469,114.25964115,University of Hong Kong,edu,fb87045600da73b07f0757f345a937b1c8097463,citation,https://pdfs.semanticscholar.org/5c54/2fef80a35a4f930e5c82040b52c58e96ce87.pdf,Reflective Regression of 2D-3D Face Shape Across Large Pose,2016 +9,COFW,cofw,1.2962018,103.77689944,National University of Singapore,edu,1fe59275142844ce3ade9e2aed900378dd025880,citation,http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w25/papers/Xiao_Facial_Landmark_Detection_ICCV_2015_paper.pdf,Facial Landmark Detection via Progressive Initialization,2015 +10,COFW,cofw,42.7298459,-73.67950216,Rensselaer Polytechnic Institute,edu,171d8a39b9e3d21231004f7008397d5056ff23af,citation,http://arxiv.org/abs/1709.08130,"Simultaneous Facial Landmark Detection, Pose and Deformation Estimation Under Facial Occlusion",2017 +11,COFW,cofw,52.17638955,0.14308882,University of Cambridge,edu,4ae291b070ad7940b3c9d3cb10e8c05955c9e269,citation,http://www.cl.cam.ac.uk/~pr10/publications/icmi14.pdf,Automatic Detection of Naturalistic Hand-over-Face Gesture Descriptors,2014 +12,COFW,cofw,39.9041999,116.4073963,"360 AI Institute, Beijing, China",company,54f169ad7d1f6c9ce94381e9b5ccc1a07fd49cc6,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7911334,Towards Robust and Accurate Multi-View and Partially-Occluded Face Alignment,2018 +13,COFW,cofw,51.2352438,7.1593132,Delphi Deutschland GMBH,company,54f169ad7d1f6c9ce94381e9b5ccc1a07fd49cc6,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7911334,Towards Robust and Accurate Multi-View and Partially-Occluded Face Alignment,2018 +14,COFW,cofw,40.0044795,116.370238,Chinese Academy of Sciences,edu,54f169ad7d1f6c9ce94381e9b5ccc1a07fd49cc6,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7911334,Towards Robust and Accurate Multi-View and Partially-Occluded Face Alignment,2018 +15,COFW,cofw,40.0044795,116.370238,Chinese Academy of Sciences,edu,bc910ca355277359130da841a589a36446616262,citation,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Huang_Conditional_High-Order_Boltzmann_ICCV_2015_paper.pdf,Conditional High-Order Boltzmann Machine: A Supervised Learning Model for Relation Learning,2015 +16,COFW,cofw,29.7207902,-95.34406271,University of Houston,edu,466f80b066215e85da63e6f30e276f1a9d7c843b,citation,http://doi.ieeecomputersociety.org/10.1109/FG.2017.81,Joint Head Pose Estimation and Face Alignment Framework Using Global and Local CNN Features,2017 +17,COFW,cofw,37.4102193,-122.05965487,Carnegie Mellon University,edu,3146fabd5631a7d1387327918b184103d06c2211,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w18/papers/Jeni_Person-Independent_3D_Gaze_CVPR_2016_paper.pdf,Person-Independent 3D Gaze Estimation Using Face Frontalization,2016 +18,COFW,cofw,40.44415295,-79.96243993,University of Pittsburgh,edu,3146fabd5631a7d1387327918b184103d06c2211,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w18/papers/Jeni_Person-Independent_3D_Gaze_CVPR_2016_paper.pdf,Person-Independent 3D Gaze Estimation Using Face Frontalization,2016 +19,COFW,cofw,42.718568,-84.47791571,Michigan State University,edu,b53485dbdd2dc5e4f3c7cff26bd8707964bb0503,citation,http://doi.org/10.1007/s11263-017-1012-z,Pose-Invariant Face Alignment via CNN-Based Dense 3D Model Fitting,2017 +20,COFW,cofw,38.83133325,-77.30798839,George Mason University,edu,a9426cb98c8aedf79ea19839643a7cf1e435aeaa,citation,https://doi.org/10.1109/GlobalSIP.2016.7905998,Cascaded regression for 3D pose estimation for mouse in fisheye lens distorted monocular images,2016 +21,COFW,cofw,39.00041165,-77.10327775,National Institutes of Health,edu,a9426cb98c8aedf79ea19839643a7cf1e435aeaa,citation,https://doi.org/10.1109/GlobalSIP.2016.7905998,Cascaded regression for 3D pose estimation for mouse in fisheye lens distorted monocular images,2016 +22,COFW,cofw,41.3861759,2.1248717,"Transmural Biotech, Barcelona, Spain",edu,a9426cb98c8aedf79ea19839643a7cf1e435aeaa,citation,https://doi.org/10.1109/GlobalSIP.2016.7905998,Cascaded regression for 3D pose estimation for mouse in fisheye lens distorted monocular images,2016 +23,COFW,cofw,26.88111275,112.62850666,Hunan University,edu,1fe1a78c941e03abe942498249c041b2703fd3d2,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8393355,Face alignment based on improved shape searching,2017 +24,COFW,cofw,32.8164178,130.72703969,Kumamoto University,edu,7aafeb9aab48fb2c34bed4b86755ac71e3f00338,citation,http://pdfs.semanticscholar.org/7aaf/eb9aab48fb2c34bed4b86755ac71e3f00338.pdf,Real Time 3D Facial Movement Tracking Using a Monocular Camera,2016 +25,COFW,cofw,31.28473925,121.49694909,Tongji University,edu,7aafeb9aab48fb2c34bed4b86755ac71e3f00338,citation,http://pdfs.semanticscholar.org/7aaf/eb9aab48fb2c34bed4b86755ac71e3f00338.pdf,Real Time 3D Facial Movement Tracking Using a Monocular Camera,2016 +26,COFW,cofw,32.8164178,130.72703969,Kumamoto University,edu,6fdf2f4f7ae589af6016305a17d460617d9ef345,citation,https://doi.org/10.1109/ICIP.2015.7350767,Robust facial landmark localization using multi partial features,2015 +27,COFW,cofw,31.28473925,121.49694909,Tongji University,edu,6fdf2f4f7ae589af6016305a17d460617d9ef345,citation,https://doi.org/10.1109/ICIP.2015.7350767,Robust facial landmark localization using multi partial features,2015 +28,COFW,cofw,31.21051105,29.91314562,Alexandria University,edu,9a4c45e5c6e4f616771a7325629d167a38508691,citation,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W02/papers/Mostafa_A_Facial_Features_2015_CVPR_paper.pdf,A facial features detector integrating holistic facial information and part-based model,2015 +29,COFW,cofw,27.18794105,31.17009498,Assiut University,edu,9a4c45e5c6e4f616771a7325629d167a38508691,citation,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W02/papers/Mostafa_A_Facial_Features_2015_CVPR_paper.pdf,A facial features detector integrating holistic facial information and part-based model,2015 +30,COFW,cofw,38.2167565,-85.75725023,University of Louisville,edu,9a4c45e5c6e4f616771a7325629d167a38508691,citation,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W02/papers/Mostafa_A_Facial_Features_2015_CVPR_paper.pdf,A facial features detector integrating holistic facial information and part-based model,2015 +31,COFW,cofw,37.5901411,127.0362318,Korea University,edu,5957936195c10521dadc9b90ca9b159eb1fc4871,citation,https://doi.org/10.1109/TCE.2016.7838098,LBP-ferns-based feature extraction for robust facial recognition,2016 +32,COFW,cofw,33.5866784,-101.87539204,Electrical and Computer Engineering,edu,ebb3d5c70bedf2287f9b26ac0031004f8f617b97,citation,https://doi.org/10.1109/MSP.2017.2764116,"Deep Learning for Understanding Faces: Machines May Be Just as Good, or Better, than Humans",2018 +33,COFW,cofw,39.2899685,-76.62196103,University of Maryland,edu,ebb3d5c70bedf2287f9b26ac0031004f8f617b97,citation,https://doi.org/10.1109/MSP.2017.2764116,"Deep Learning for Understanding Faces: Machines May Be Just as Good, or Better, than Humans",2018 +34,COFW,cofw,40.0141905,-83.0309143,University of Electronic Science and Technology of China,edu,21a2f67b21905ff6e0afa762937427e92dc5aa0b,citation,http://pdfs.semanticscholar.org/21a2/f67b21905ff6e0afa762937427e92dc5aa0b.pdf,Extra Facial Landmark Localization via Global Shape Reconstruction,2017 +35,COFW,cofw,40.0141905,-83.0309143,University of Electronic Science and Technology of China,edu,88e2574af83db7281c2064e5194c7d5dfa649846,citation,http://pdfs.semanticscholar.org/88e2/574af83db7281c2064e5194c7d5dfa649846.pdf,A Robust Shape Reconstruction Method for Facial Feature Point Detection,2017 +36,COFW,cofw,29.7207902,-95.34406271,University of Houston,edu,607aebe7568407421e8ffc7b23a5fda52650ad93,citation,https://doi.org/10.1109/ISBA.2016.7477237,Face alignment via an ensemble of random ferns,2016 +37,COFW,cofw,-27.49741805,153.01316956,University of Queensland,edu,710c3aaffef29730ffd909a63798e9185f488327,citation,https://doi.org/10.1109/ICPR.2016.7900095,The GIST of aligning faces,2016 +38,COFW,cofw,32.7283683,-97.11201835,University of Texas at Arlington,edu,411dc8874fd7b3a9a4c1fd86bb5b583788027776,citation,https://pdfs.semanticscholar.org/701f/56f0eac9f88387de1f556acef78016b05d52.pdf,Direct Shape Regression Networks for End-to-End Face Alignment,2018 +39,COFW,cofw,34.1235825,108.83546,Xidian University,edu,411dc8874fd7b3a9a4c1fd86bb5b583788027776,citation,https://pdfs.semanticscholar.org/701f/56f0eac9f88387de1f556acef78016b05d52.pdf,Direct Shape Regression Networks for End-to-End Face Alignment,2018 +40,COFW,cofw,30.44235995,-84.29747867,Florida State University,edu,1ed6c7e02b4b3ef76f74dd04b2b6050faa6e2177,citation,http://pdfs.semanticscholar.org/6433/c412149382418ccd8aa966aa92973af41671.pdf,Face Detection with a 3D Model,2014 +41,COFW,cofw,39.00041165,-77.10327775,National Institutes of Health,edu,1ed6c7e02b4b3ef76f74dd04b2b6050faa6e2177,citation,http://pdfs.semanticscholar.org/6433/c412149382418ccd8aa966aa92973af41671.pdf,Face Detection with a 3D Model,2014 +42,COFW,cofw,32.87935255,-117.23110049,"University of California, San Diego",edu,43776d1bfa531e66d5e9826ff5529345b792def7,citation,http://cvrr.ucsd.edu/scmartin/presentation/DriveAnalysisByLookingIn-ITSC2015-NDS.pdf,Automatic Critical Event Extraction and Semantic Interpretation by Looking-Inside,2015 +43,COFW,cofw,38.99203005,-76.9461029,University of Maryland College Park,edu,f7824758800a7b1a386db5bd35f84c81454d017a,citation,https://arxiv.org/pdf/1702.05085.pdf,KEPLER: Keypoint and Pose Estimation of Unconstrained Faces by Learning Efficient H-CNN Regressors,2017 +44,COFW,cofw,38.99203005,-76.9461029,University of Maryland College Park,edu,ceeb67bf53ffab1395c36f1141b516f893bada27,citation,http://pdfs.semanticscholar.org/ceeb/67bf53ffab1395c36f1141b516f893bada27.pdf,Face Alignment by Local Deep Descriptor Regression,2016 +45,COFW,cofw,40.47913175,-74.43168868,Rutgers University,edu,ceeb67bf53ffab1395c36f1141b516f893bada27,citation,http://pdfs.semanticscholar.org/ceeb/67bf53ffab1395c36f1141b516f893bada27.pdf,Face Alignment by Local Deep Descriptor Regression,2016 +46,COFW,cofw,39.2899685,-76.62196103,University of Maryland,edu,ceeb67bf53ffab1395c36f1141b516f893bada27,citation,http://pdfs.semanticscholar.org/ceeb/67bf53ffab1395c36f1141b516f893bada27.pdf,Face Alignment by Local Deep Descriptor Regression,2016 +47,COFW,cofw,1.2962018,103.77689944,National University of Singapore,edu,3be8f1f7501978287af8d7ebfac5963216698249,citation,https://pdfs.semanticscholar.org/3be8/f1f7501978287af8d7ebfac5963216698249.pdf,Deep Cascaded Regression for Face Alignment,2015 +48,COFW,cofw,23.09461185,113.28788994,Sun Yat-Sen University,edu,3be8f1f7501978287af8d7ebfac5963216698249,citation,https://pdfs.semanticscholar.org/3be8/f1f7501978287af8d7ebfac5963216698249.pdf,Deep Cascaded Regression for Face Alignment,2015 +49,COFW,cofw,51.7534538,-1.25400997,University of Oxford,edu,a3d0ebb50d49116289fb176d28ea98a92badada6,citation,https://pdfs.semanticscholar.org/a3d0/ebb50d49116289fb176d28ea98a92badada6.pdf,Unsupervised Learning of Object Landmarks through Conditional Image Generation,2018 +50,COFW,cofw,55.94951105,-3.19534913,University of Edinburgh,edu,a3d0ebb50d49116289fb176d28ea98a92badada6,citation,https://pdfs.semanticscholar.org/a3d0/ebb50d49116289fb176d28ea98a92badada6.pdf,Unsupervised Learning of Object Landmarks through Conditional Image Generation,2018 +51,COFW,cofw,30.642769,104.06751175,"Sichuan University, Chengdu",edu,a0aa32bb7f406693217fba6dcd4aeb6c4d5a479b,citation,https://pdfs.semanticscholar.org/a0aa/32bb7f406693217fba6dcd4aeb6c4d5a479b.pdf,Cascaded Regressor based 3D Face Reconstruction from a Single Arbitrary View Image,2015 +52,COFW,cofw,25.01353105,121.54173736,National Taiwan University of Science and Technology,edu,deb89950939ae9847f0a1a4bb198e6dbfed62778,citation,https://doi.org/10.1109/LSP.2016.2543019,Accurate Facial Landmark Extraction,2016 +53,COFW,cofw,3.12267405,101.65356103,University of Malaya,edu,deb89950939ae9847f0a1a4bb198e6dbfed62778,citation,https://doi.org/10.1109/LSP.2016.2543019,Accurate Facial Landmark Extraction,2016 +54,COFW,cofw,37.4102193,-122.05965487,Carnegie Mellon University,edu,78598e7005f7c96d64cc47ff47e6f13ae52245b8,citation,https://arxiv.org/pdf/1708.00370.pdf,Hand2Face: Automatic synthesis and recognition of hand over face occlusions,2017 +55,COFW,cofw,28.59899755,-81.19712501,University of Central Florida,edu,78598e7005f7c96d64cc47ff47e6f13ae52245b8,citation,https://arxiv.org/pdf/1708.00370.pdf,Hand2Face: Automatic synthesis and recognition of hand over face occlusions,2017 +56,COFW,cofw,52.17638955,0.14308882,University of Cambridge,edu,9901f473aeea177a55e58bac8fd4f1b086e575a4,citation,https://arxiv.org/pdf/1509.04954.pdf,Human and sheep facial landmarks localisation by triplet interpolated features,2016 +57,COFW,cofw,40.00229045,116.32098908,Tsinghua University,edu,e4fa062bff299a0bcef9f6b2e593c85be116c9f1,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7407641,Cascaded Elastically Progressive Model for Accurate Face Alignment,2017 +58,COFW,cofw,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,5c820e47981d21c9dddde8d2f8020146e600368f,citation,http://pdfs.semanticscholar.org/5c82/0e47981d21c9dddde8d2f8020146e600368f.pdf,Extended Supervised Descent Method for Robust Face Alignment,2014 +59,COFW,cofw,51.49887085,-0.17560797,Imperial College London,edu,29c340c83b3bbef9c43b0c50b4d571d5ed037cbd,citation,https://pdfs.semanticscholar.org/29c3/40c83b3bbef9c43b0c50b4d571d5ed037cbd.pdf,Stacked Dense U-Nets with Dual Transformers for Robust Face Alignment,2018 +60,COFW,cofw,30.19331415,120.11930822,Zhejiang University,edu,5213549200bccec57232fc3ff788ddf1043af7b3,citation,http://doi.acm.org/10.1145/2601097.2601204,Displaced dynamic expression regression for real-time facial tracking and animation,2014 +61,COFW,cofw,51.49887085,-0.17560797,Imperial College London,edu,034b3f3bac663fb814336a69a9fd3514ca0082b9,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7298991,Unifying holistic and Parts-Based Deformable Model fitting,2015 +62,COFW,cofw,50.74223495,-1.89433739,Bournemouth University,edu,91f0a95b8eb76e8fa24c8267e4a7a17815fc7a11,citation,http://doi.org/10.1007/s41095-016-0068-y,Robust facial landmark detection and tracking across poses and expressions for in-the-wild monocular video,2016 +63,COFW,cofw,45.7413921,126.62552755,Harbin Institute of Technology,edu,91f0a95b8eb76e8fa24c8267e4a7a17815fc7a11,citation,http://doi.org/10.1007/s41095-016-0068-y,Robust facial landmark detection and tracking across poses and expressions for in-the-wild monocular video,2016 +64,COFW,cofw,39.9808333,116.34101249,Beihang University,edu,86b6afc667bb14ff4d69e7a5e8bb2454a6bbd2cd,citation,https://pdfs.semanticscholar.org/86b6/afc667bb14ff4d69e7a5e8bb2454a6bbd2cd.pdf,Attentional Alignment Networks,2018 +65,COFW,cofw,31.20081505,121.42840681,Shanghai Jiao Tong University,edu,86b6afc667bb14ff4d69e7a5e8bb2454a6bbd2cd,citation,https://pdfs.semanticscholar.org/86b6/afc667bb14ff4d69e7a5e8bb2454a6bbd2cd.pdf,Attentional Alignment Networks,2018 +66,COFW,cofw,32.7283683,-97.11201835,University of Texas at Arlington,edu,86b6afc667bb14ff4d69e7a5e8bb2454a6bbd2cd,citation,https://pdfs.semanticscholar.org/86b6/afc667bb14ff4d69e7a5e8bb2454a6bbd2cd.pdf,Attentional Alignment Networks,2018 +67,COFW,cofw,40.0044795,116.370238,Chinese Academy of Sciences,edu,22e2066acfb795ac4db3f97d2ac176d6ca41836c,citation,http://pdfs.semanticscholar.org/26f5/3a1abb47b1f0ea1f213dc7811257775dc6e6.pdf,Coarse-to-Fine Auto-Encoder Networks (CFAN) for Real-Time Face Alignment,2014 +68,COFW,cofw,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,22e2066acfb795ac4db3f97d2ac176d6ca41836c,citation,http://pdfs.semanticscholar.org/26f5/3a1abb47b1f0ea1f213dc7811257775dc6e6.pdf,Coarse-to-Fine Auto-Encoder Networks (CFAN) for Real-Time Face Alignment,2014 +69,COFW,cofw,43.13800205,-75.22943591,SUNY Polytechnic Institute,edu,69b18d62330711bfd7f01a45f97aaec71e9ea6a5,citation,http://pdfs.semanticscholar.org/69b1/8d62330711bfd7f01a45f97aaec71e9ea6a5.pdf,M-Track: A New Software for Automated Detection of Grooming Trajectories in Mice,2016 +70,COFW,cofw,-30.0338248,-51.218828,Federal University of Rio Grande do Sul,edu,fa08b52dda21ccf71ebc91bc0c4d206ac0aa3719,citation,https://doi.org/10.1109/TIM.2015.2415012,Customized Orthogonal Locality Preserving Projections With Soft-Margin Maximization for Face Recognition,2015 +71,COFW,cofw,-28.234493,-52.38044,University of Passo Fundo,edu,fa08b52dda21ccf71ebc91bc0c4d206ac0aa3719,citation,https://doi.org/10.1109/TIM.2015.2415012,Customized Orthogonal Locality Preserving Projections With Soft-Margin Maximization for Face Recognition,2015 +72,COFW,cofw,34.0224149,-118.28634407,University of Southern California,edu,632b24ddd42fda4aebc5a8af3ec44f7fd3ecdc6c,citation,https://arxiv.org/pdf/1604.02647.pdf,Real-Time Facial Segmentation and Performance Capture from RGB Input,2016 +73,COFW,cofw,22.42031295,114.20788644,Chinese University of Hong Kong,edu,329d58e8fb30f1bf09acb2f556c9c2f3e768b15c,citation,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Wu_Leveraging_Intra_and_CVPR_2017_paper.pdf,Leveraging Intra and Inter-Dataset Variations for Robust Face Alignment,2017 +74,COFW,cofw,40.00229045,116.32098908,Tsinghua University,edu,329d58e8fb30f1bf09acb2f556c9c2f3e768b15c,citation,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Wu_Leveraging_Intra_and_CVPR_2017_paper.pdf,Leveraging Intra and Inter-Dataset Variations for Robust Face Alignment,2017 +75,COFW,cofw,43.07982815,-89.43066425,University of Wisconsin Madison,edu,77fbbf0c5729f97fcdbfdc507deee3d388cd4889,citation,https://pdfs.semanticscholar.org/ec7f/c7bf79204166f78c27e870b620205751fff6.pdf,Pose-Robust 3D Facial Landmark Estimation from a Single 2D Image,2016 +76,COFW,cofw,36.3697191,127.362537,Korea Advanced Institute of Science and Technology,edu,72e10a2a7a65db7ecdc7d9bd3b95a4160fab4114,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2015/ext/2B_094_ext.pdf,Face alignment using cascade Gaussian process regression trees,2015 +77,COFW,cofw,-33.88890695,151.18943366,University of Sydney,edu,58d43e32660446669ff54f29658961fe8bb6cc72,citation,https://doi.org/10.1109/ISBI.2017.7950504,Automatic detection of obstructive sleep apnea using facial images,2017 +78,COFW,cofw,52.3793131,-1.5604252,University of Warwick,edu,0bc53b338c52fc635687b7a6c1e7c2b7191f42e5,citation,http://pdfs.semanticscholar.org/a32a/8d6d4c3b4d69544763be48ffa7cb0d7f2f23.pdf,Loglet SIFT for Part Description in Deformable Part Models: Application to Face Alignment,2016 +79,COFW,cofw,40.51865195,-74.44099801,State University of New Jersey,edu,bbc5f4052674278c96abe7ff9dc2d75071b6e3f3,citation,https://pdfs.semanticscholar.org/287b/7baff99d6995fd5852002488eb44659be6c1.pdf,Nonlinear Hierarchical Part-Based Regression for Unconstrained Face Alignment,2016 +80,COFW,cofw,30.5097537,114.4062881,Huazhong University of Science and Technology,edu,7f2a4cd506fe84dee26c0fb41848cb219305173f,citation,http://pdfs.semanticscholar.org/7f2a/4cd506fe84dee26c0fb41848cb219305173f.pdf,Face Detection and Pose Estimation Based on Evaluating Facial Feature Selection,2015 +81,COFW,cofw,32.77824165,34.99565673,Open University of Israel,edu,0a34fe39e9938ae8c813a81ae6d2d3a325600e5c,citation,https://arxiv.org/pdf/1708.07517.pdf,FacePoseNet: Making a Case for Landmark-Free Face Alignment,2017 +82,COFW,cofw,23.09461185,113.28788994,Sun Yat-Sen University,edu,4c078c2919c7bdc26ca2238fa1a79e0331898b56,citation,http://pdfs.semanticscholar.org/4c07/8c2919c7bdc26ca2238fa1a79e0331898b56.pdf,Unconstrained Facial Landmark Localization with Backbone-Branches Fully-Convolutional Networks,2015 +83,COFW,cofw,34.0224149,-118.28634407,University of Southern California,edu,43e99b76ca8e31765d4571d609679a689afdc99e,citation,http://arxiv.org/abs/1709.00536,Learning Dense Facial Correspondences in Unconstrained Images,2017 +84,COFW,cofw,32.0565957,118.77408833,Nanjing University,edu,46b2ecef197b465abc43e0e017543b1af61921ac,citation,https://doi.org/10.1109/ICPR.2016.7899652,Face alignment with Cascaded Bidirectional LSTM Neural Networks,2016 +85,COFW,cofw,31.20081505,121.42840681,Shanghai Jiao Tong University,edu,c00f402b9cfc3f8dd2c74d6b3552acbd1f358301,citation,http://pdfs.semanticscholar.org/c00f/402b9cfc3f8dd2c74d6b3552acbd1f358301.pdf,Learning deep representation from coarse to fine for face alignment,2016 +86,COFW,cofw,17.4454957,78.34854698,International Institute of Information Technology,edu,185263189a30986e31566394680d6d16b0089772,citation,https://pdfs.semanticscholar.org/1852/63189a30986e31566394680d6d16b0089772.pdf,Efficient Annotation of Objects for Video Analysis,2018 +87,COFW,cofw,-33.8809651,151.20107299,University of Technology Sydney,edu,ebc2a3e8a510c625353637e8e8f07bd34410228f,citation,https://doi.org/10.1109/TIP.2015.2502485,Dual Sparse Constrained Cascade Regression for Robust Face Alignment,2016 +88,COFW,cofw,22.59805605,113.98533784,Shenzhen Institutes of Advanced Technology,edu,1922ad4978ab92ce0d23acc4c7441a8812f157e5,citation,http://personal.ie.cuhk.edu.hk/~ccloy/files/cvpr_2015_alignment.pdf,Face alignment by coarse-to-fine shape searching,2015 +89,COFW,cofw,22.42031295,114.20788644,Chinese University of Hong Kong,edu,1922ad4978ab92ce0d23acc4c7441a8812f157e5,citation,http://personal.ie.cuhk.edu.hk/~ccloy/files/cvpr_2015_alignment.pdf,Face alignment by coarse-to-fine shape searching,2015 +90,COFW,cofw,34.0224149,-118.28634407,University of Southern California,edu,53e081f5af505374c3b8491e9c4470fe77fe7934,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Hsieh_Unconstrained_Realtime_Facial_2015_CVPR_paper.pdf,Unconstrained realtime facial performance capture,2015 +91,COFW,cofw,39.9922379,116.30393816,Peking University,edu,11ba01ce7d606bab5c2d7e998c6d94325521b8a0,citation,https://doi.org/10.1109/ICIP.2015.7350911,Regression based landmark estimation and multi-feature fusion for visual speech recognition,2015 +92,COFW,cofw,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,b11bb6bd63ee6f246d278dd4edccfbe470263803,citation,http://pdfs.semanticscholar.org/b11b/b6bd63ee6f246d278dd4edccfbe470263803.pdf,Joint Voxel and Coordinate Regression for Accurate 3D Facial Landmark Localization,2018 +93,COFW,cofw,42.718568,-84.47791571,Michigan State University,edu,86204fc037936754813b91898377e8831396551a,citation,https://arxiv.org/pdf/1709.01442.pdf,Dense Face Alignment,2017 +94,COFW,cofw,43.07982815,-89.43066425,University of Wisconsin Madison,edu,0eac652139f7ab44ff1051584b59f2dc1757f53b,citation,http://pdfs.semanticscholar.org/0eac/652139f7ab44ff1051584b59f2dc1757f53b.pdf,Efficient Branching Cascaded Regression for Face Alignment under Significant Head Rotation,2016 +95,COFW,cofw,39.9586652,116.30971281,Beijing Institute of Technology,edu,0ea7b7fff090c707684fd4dc13e0a8f39b300a97,citation,http://arxiv.org/abs/1711.06055,Integrated Face Analytics Networks through Cross-Dataset Hybrid Training,2017 +96,COFW,cofw,33.5866784,-101.87539204,Electrical and Computer Engineering,edu,0ea7b7fff090c707684fd4dc13e0a8f39b300a97,citation,http://arxiv.org/abs/1711.06055,Integrated Face Analytics Networks through Cross-Dataset Hybrid Training,2017 +97,COFW,cofw,1.2962018,103.77689944,National University of Singapore,edu,0ea7b7fff090c707684fd4dc13e0a8f39b300a97,citation,http://arxiv.org/abs/1711.06055,Integrated Face Analytics Networks through Cross-Dataset Hybrid Training,2017 +98,COFW,cofw,-26.1888813,28.02479073,University of the Witwatersrand,edu,aa4af9b3811db6a30e1c7cc1ebf079078c1ee152,citation,http://doi.acm.org/10.1145/3129416.3129451,Deformable part models with CNN features for facial landmark detection under occlusion,2017 +99,COFW,cofw,40.0044795,116.370238,Chinese Academy of Sciences,edu,303a7099c01530fa0beb197eb1305b574168b653,citation,http://openaccess.thecvf.com/content_cvpr_2016/papers/Zhang_Occlusion-Free_Face_Alignment_CVPR_2016_paper.pdf,Occlusion-Free Face Alignment: Deep Regression Networks Coupled with De-Corrupt AutoEncoders,2016 +100,COFW,cofw,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,303a7099c01530fa0beb197eb1305b574168b653,citation,http://openaccess.thecvf.com/content_cvpr_2016/papers/Zhang_Occlusion-Free_Face_Alignment_CVPR_2016_paper.pdf,Occlusion-Free Face Alignment: Deep Regression Networks Coupled with De-Corrupt AutoEncoders,2016 +101,COFW,cofw,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,b5da4943c348a6b4c934c2ea7330afaf1d655e79,citation,http://pdfs.semanticscholar.org/b5da/4943c348a6b4c934c2ea7330afaf1d655e79.pdf,Facial Landmarks Detection by Self-Iterative Regression based Landmarks-Attention Network,2018 +102,COFW,cofw,40.0044795,116.370238,Chinese Academy of Sciences,edu,a73405038fdc0d8bf986539ef755a80ebd341e97,citation,https://doi.org/10.1109/TIP.2017.2698918,Conditional High-Order Boltzmann Machines for Supervised Relation Learning,2017 +103,COFW,cofw,34.13710185,-118.12527487,California Institute of Technology,edu,11aa527c01e61ec3a7a67eef8d7ffe9d9ce63f1d,citation,http://pdfs.semanticscholar.org/11aa/527c01e61ec3a7a67eef8d7ffe9d9ce63f1d.pdf,"Automated measurement of mouse social behaviors using depth sensing, video tracking, and machine learning.",2015 +104,COFW,cofw,51.24303255,-0.59001382,University of Surrey,edu,56e25056153a15eae2a6b10c109f812d2b753cee,citation,https://arxiv.org/pdf/1711.06753.pdf,Wing Loss for Robust Facial Landmark Localisation with Convolutional Neural Networks,2017 +105,COFW,cofw,31.4854255,120.2739581,Jiangnan University,edu,56e25056153a15eae2a6b10c109f812d2b753cee,citation,https://arxiv.org/pdf/1711.06753.pdf,Wing Loss for Robust Facial Landmark Localisation with Convolutional Neural Networks,2017 +106,COFW,cofw,37.4102193,-122.05965487,Carnegie Mellon University,edu,f1b4583c576d6d8c661b4b2c82bdebf3ba3d7e53,citation,https://arxiv.org/pdf/1707.05653.pdf,Faster than Real-Time Facial Alignment: A 3D Spatial Transformer Network Approach in Unconstrained Poses,2017 +107,COFW,cofw,40.00229045,116.32098908,Tsinghua University,edu,445e3ba7eabcc55b5d24f951b029196b47830684,citation,https://doi.org/10.1109/TMM.2016.2591508,Learning Cascaded Deep Auto-Encoder Networks for Face Alignment,2016 +108,COFW,cofw,1.3484104,103.68297965,Nanyang Technological University,edu,445e3ba7eabcc55b5d24f951b029196b47830684,citation,https://doi.org/10.1109/TMM.2016.2591508,Learning Cascaded Deep Auto-Encoder Networks for Face Alignment,2016 +109,COFW,cofw,38.99203005,-76.9461029,University of Maryland College Park,edu,1389ba6c3ff34cdf452ede130c738f37dca7e8cb,citation,http://pdfs.semanticscholar.org/1389/ba6c3ff34cdf452ede130c738f37dca7e8cb.pdf,A Convolution Tree with Deconvolution Branches: Exploiting Geometric Relationships for Single Shot Keypoint Detection,2017 +110,COFW,cofw,32.87935255,-117.23110049,"University of California, San Diego",edu,b806a31c093b31e98cc5fca7e3ec53f2cc169db9,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7995928,Gaze fixations and dynamics for behavior modeling and prediction of on-road driving maneuvers,2017 +111,COFW,cofw,37.4102193,-122.05965487,Carnegie Mellon University,edu,4140498e96a5ff3ba816d13daf148fffb9a2be3f,citation,http://multicomp.cs.cmu.edu/wp-content/uploads/2017/10/2017_FG_Li_Constrained.pdf,Constrained Ensemble Initialization for Facial Landmark Tracking in Video,2017 +112,COFW,cofw,38.99203005,-76.9461029,University of Maryland College Park,edu,f8e64dd25c3174dff87385db56abc48101b69009,citation,https://arxiv.org/pdf/1802.06713.pdf,Disentangling 3D Pose in A Dendritic CNN for Unconstrained 2D Face Alignment,2018 +113,COFW,cofw,43.7047927,-72.2925909,Dartmouth College,edu,df71a00071d5a949f9c31371c2e5ee8b478e7dc8,citation,http://studentlife.cs.dartmouth.edu/facelogging.pdf,Using opportunistic face logging from smartphone to infer mental health: challenges and future directions,2015 +114,COFW,cofw,22.59805605,113.98533784,Shenzhen Institutes of Advanced Technology,edu,2c17d36bab56083293456fe14ceff5497cc97d75,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zhu_Unconstrained_Face_Alignment_CVPR_2016_paper.pdf,Unconstrained Face Alignment via Cascaded Compositional Learning,2016 +115,COFW,cofw,22.42031295,114.20788644,Chinese University of Hong Kong,edu,2c17d36bab56083293456fe14ceff5497cc97d75,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zhu_Unconstrained_Face_Alignment_CVPR_2016_paper.pdf,Unconstrained Face Alignment via Cascaded Compositional Learning,2016 +116,COFW,cofw,51.24303255,-0.59001382,University of Surrey,edu,438e7999c937b94f0f6384dbeaa3febff6d283b6,citation,https://arxiv.org/pdf/1705.02402v2.pdf,"Face Detection, Bounding Box Aggregation and Pose Estimation for Robust Facial Landmark Localisation in the Wild",2017 +117,COFW,cofw,31.4854255,120.2739581,Jiangnan University,edu,438e7999c937b94f0f6384dbeaa3febff6d283b6,citation,https://arxiv.org/pdf/1705.02402v2.pdf,"Face Detection, Bounding Box Aggregation and Pose Estimation for Robust Facial Landmark Localisation in the Wild",2017 +118,COFW,cofw,40.0044795,116.370238,Chinese Academy of Sciences,edu,5ee0103048e1ce46e34a04c45ff2c2c31529b466,citation,https://doi.org/10.1109/ICIP.2015.7350886,Learning occlusion patterns using semantic phrases for object detection,2015 +119,COFW,cofw,32.77824165,34.99565673,Open University of Israel,edu,c75e6ce54caf17b2780b4b53f8d29086b391e839,citation,https://arxiv.org/pdf/1802.00542.pdf,"ExpNet: Landmark-Free, Deep, 3D Facial Expressions",2018 +120,COFW,cofw,51.24303255,-0.59001382,University of Surrey,edu,96c6f50ce8e1b9e8215b8791dabd78b2bbd5f28d,citation,https://arxiv.org/pdf/1611.05396.pdf,Dynamic Attention-Controlled Cascaded Shape Regression Exploiting Training Data Augmentation and Fuzzy-Set Sample Weighting,2017 +121,COFW,cofw,31.4854255,120.2739581,Jiangnan University,edu,96c6f50ce8e1b9e8215b8791dabd78b2bbd5f28d,citation,https://arxiv.org/pdf/1611.05396.pdf,Dynamic Attention-Controlled Cascaded Shape Regression Exploiting Training Data Augmentation and Fuzzy-Set Sample Weighting,2017 +122,COFW,cofw,30.60903415,114.3514284,Wuhan University of Technology,edu,258b3b1df82186dd76064ef86b28555e91389b73,citation,https://doi.org/10.1109/ACCESS.2017.2739822,Initial Shape Pool Construction for Facial Landmark Localization Under Occlusion,2017 +123,COFW,cofw,22.42031295,114.20788644,Chinese University of Hong Kong,edu,85674b1b6007634f362cbe9b921912b697c0a32c,citation,http://pdfs.semanticscholar.org/8567/4b1b6007634f362cbe9b921912b697c0a32c.pdf,Optimizing Facial Landmark Detection by Facial Attribute Learning,2014 +124,COFW,cofw,43.07982815,-89.43066425,University of Wisconsin Madison,edu,716d6c2eb8a0d8089baf2087ce9fcd668cd0d4c0,citation,http://pdfs.semanticscholar.org/ec7f/c7bf79204166f78c27e870b620205751fff6.pdf,Pose-Robust 3D Facial Landmark Estimation from a Single 2D Image,2016 +125,COFW,cofw,40.0141905,-83.0309143,University of Electronic Science and Technology of China,edu,2a84f7934365f05b6707ea0ac225210f78e547af,citation,https://doi.org/10.1109/ICPR.2016.7899690,A joint facial point detection method of deep convolutional network and shape regression,2016 +126,COFW,cofw,41.40657415,2.1945341,Universitat Oberta de Catalunya,edu,cc4fc9a309f300e711e09712701b1509045a8e04,citation,https://pdfs.semanticscholar.org/cea6/9010a2f75f7a057d56770e776dec206ed705.pdf,Continuous Supervised Descent Method for Facial Landmark Localisation,2016 +127,COFW,cofw,13.65450525,100.49423171,Robotics Institute,edu,cc4fc9a309f300e711e09712701b1509045a8e04,citation,https://pdfs.semanticscholar.org/cea6/9010a2f75f7a057d56770e776dec206ed705.pdf,Continuous Supervised Descent Method for Facial Landmark Localisation,2016 +128,COFW,cofw,40.44415295,-79.96243993,University of Pittsburgh,edu,cc4fc9a309f300e711e09712701b1509045a8e04,citation,https://pdfs.semanticscholar.org/cea6/9010a2f75f7a057d56770e776dec206ed705.pdf,Continuous Supervised Descent Method for Facial Landmark Localisation,2016 +129,COFW,cofw,1.2962018,103.77689944,National University of Singapore,edu,30cd39388b5c1aae7d8153c0ab9d54b61b474ffe,citation,http://pdfs.semanticscholar.org/3be8/f1f7501978287af8d7ebfac5963216698249.pdf,Deep Cascaded Regression for Face Alignment,2015 +130,COFW,cofw,23.09461185,113.28788994,Sun Yat-Sen University,edu,30cd39388b5c1aae7d8153c0ab9d54b61b474ffe,citation,http://pdfs.semanticscholar.org/3be8/f1f7501978287af8d7ebfac5963216698249.pdf,Deep Cascaded Regression for Face Alignment,2015 +131,COFW,cofw,22.42031295,114.20788644,Chinese University of Hong Kong,edu,8a3c5507237957d013a0fe0f082cab7f757af6ee,citation,http://pdfs.semanticscholar.org/fcd7/1c18192928a2e0b264edd4d919ab2f8f652a.pdf,Facial Landmark Detection by Deep Multi-task Learning,2014 +132,COFW,cofw,22.59805605,113.98533784,Shenzhen Institutes of Advanced Technology,edu,cf5c9b521c958b84bb63bea9d5cbb522845e4ba7,citation,http://pdfs.semanticscholar.org/cf5c/9b521c958b84bb63bea9d5cbb522845e4ba7.pdf,Towards Arbitrary-View Face Alignment by Recommendation Trees,2015 +133,COFW,cofw,22.42031295,114.20788644,Chinese University of Hong Kong,edu,cf5c9b521c958b84bb63bea9d5cbb522845e4ba7,citation,http://pdfs.semanticscholar.org/cf5c/9b521c958b84bb63bea9d5cbb522845e4ba7.pdf,Towards Arbitrary-View Face Alignment by Recommendation Trees,2015 +134,COFW,cofw,30.642769,104.06751175,"Sichuan University, Chengdu",edu,b29b42f7ab8d25d244bfc1413a8d608cbdc51855,citation,http://pdfs.semanticscholar.org/b29b/42f7ab8d25d244bfc1413a8d608cbdc51855.pdf,Effective face landmark localization via single deep network,2017 +135,COFW,cofw,23.0490047,113.3971571,South China University of China,edu,7d7be6172fc2884e1da22d1e96d5899a29831ad2,citation,http://pdfs.semanticscholar.org/7d7b/e6172fc2884e1da22d1e96d5899a29831ad2.pdf,L2GSCI: Local to Global Seam Cutting and Integrating for Accurate Face Contour Extraction,2017 +136,COFW,cofw,22.46935655,114.19474194,Education University of Hong Kong,edu,7d7be6172fc2884e1da22d1e96d5899a29831ad2,citation,http://pdfs.semanticscholar.org/7d7b/e6172fc2884e1da22d1e96d5899a29831ad2.pdf,L2GSCI: Local to Global Seam Cutting and Integrating for Accurate Face Contour Extraction,2017 +137,COFW,cofw,39.9922379,116.30393816,Peking University,edu,8c048be9dd2b601808b893b5d3d51f00907bdee0,citation,https://doi.org/10.1631/FITEE.1600041,Spontaneous versus posed smile recognition via region-specific texture descriptor and geometric facial dynamics,2017 +138,COFW,cofw,22.42031295,114.20788644,Chinese University of Hong Kong,edu,433a6d6d2a3ed8a6502982dccc992f91d665b9b3,citation,http://pdfs.semanticscholar.org/433a/6d6d2a3ed8a6502982dccc992f91d665b9b3.pdf,Transferring Landmark Annotations for Cross-Dataset Face Alignment,2014 +139,COFW,cofw,40.00229045,116.32098908,Tsinghua University,edu,433a6d6d2a3ed8a6502982dccc992f91d665b9b3,citation,http://pdfs.semanticscholar.org/433a/6d6d2a3ed8a6502982dccc992f91d665b9b3.pdf,Transferring Landmark Annotations for Cross-Dataset Face Alignment,2014 +140,COFW,cofw,47.05821,15.46019568,Graz University of Technology,edu,96a9ca7a8366ae0efe6b58a515d15b44776faf6e,citation,https://arxiv.org/pdf/1609.00129.pdf,Grid Loss: Detecting Occluded Faces,2016 +141,COFW,cofw,40.0044795,116.370238,Chinese Academy of Sciences,edu,3d18ce183b5a5b4dcaa1216e30b774ef49eaa46f,citation,https://arxiv.org/pdf/1511.07212.pdf,Face Alignment in Full Pose Range: A 3D Total Solution,2017 +142,COFW,cofw,42.718568,-84.47791571,Michigan State University,edu,3d18ce183b5a5b4dcaa1216e30b774ef49eaa46f,citation,https://arxiv.org/pdf/1511.07212.pdf,Face Alignment in Full Pose Range: A 3D Total Solution,2017 +143,COFW,cofw,31.30104395,121.50045497,Fudan University,edu,862d17895fe822f7111e737cbcdd042ba04377e8,citation,http://pdfs.semanticscholar.org/862d/17895fe822f7111e737cbcdd042ba04377e8.pdf,Semi-Latent GAN: Learning to generate and modify facial images from attributes,2017 +144,COFW,cofw,42.718568,-84.47791571,Michigan State University,edu,085ceda1c65caf11762b3452f87660703f914782,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Jourabloo_Large-Pose_Face_Alignment_CVPR_2016_paper.pdf,Large-Pose Face Alignment via CNN-Based Dense 3D Model Fitting,2016 +145,COFW,cofw,39.977217,116.337632,Microsoft Research Asia,company,9aade3d26996ce7ef6d657130464504b8d812534,citation,https://doi.org/10.1109/TNNLS.2016.2618340,Face Alignment With Deep Regression,2018 +146,COFW,cofw,30.5097537,114.4062881,Huazhong University of Science and Technology,edu,9aade3d26996ce7ef6d657130464504b8d812534,citation,https://doi.org/10.1109/TNNLS.2016.2618340,Face Alignment With Deep Regression,2018 +147,COFW,cofw,40.0044795,116.370238,Chinese Academy of Sciences,edu,055cd8173536031e189628c879a2acad6cf2a5d0,citation,https://doi.org/10.1109/BTAS.2017.8272740,Fast multi-view face alignment via multi-task auto-encoders,2017 +148,COFW,cofw,36.20304395,117.05842113,Tianjin University,edu,4223917177405eaa6bdedca061eb28f7b440ed8e,citation,http://pdfs.semanticscholar.org/4223/917177405eaa6bdedca061eb28f7b440ed8e.pdf,B-spline Shape from Motion & Shading: An Automatic Free-form Surface Modeling for Face Reconstruction,2016 +149,COFW,cofw,22.304572,114.17976285,Hong Kong Polytechnic University,edu,4cfa8755fe23a8a0b19909fa4dec54ce6c1bd2f7,citation,https://arxiv.org/pdf/1611.09956v1.pdf,Efficient likelihood Bayesian constrained local model,2017 +150,COFW,cofw,40.0044795,116.370238,Chinese Academy of Sciences,edu,2a4153655ad1169d482e22c468d67f3bc2c49f12,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zhu_Face_Alignment_Across_CVPR_2016_paper.pdf,Face Alignment Across Large Poses: A 3D Solution,2016 +151,COFW,cofw,42.718568,-84.47791571,Michigan State University,edu,2a4153655ad1169d482e22c468d67f3bc2c49f12,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zhu_Face_Alignment_Across_CVPR_2016_paper.pdf,Face Alignment Across Large Poses: A 3D Solution,2016 +152,COFW,cofw,40.0044795,116.370238,Chinese Academy of Sciences,edu,090ff8f992dc71a1125636c1adffc0634155b450,citation,http://pdfs.semanticscholar.org/090f/f8f992dc71a1125636c1adffc0634155b450.pdf,Topic-Aware Deep Auto-Encoders (TDA) for Face Alignment,2014 +153,COFW,cofw,51.49887085,-0.17560797,Imperial College London,edu,090ff8f992dc71a1125636c1adffc0634155b450,citation,http://pdfs.semanticscholar.org/090f/f8f992dc71a1125636c1adffc0634155b450.pdf,Topic-Aware Deep Auto-Encoders (TDA) for Face Alignment,2014 +154,COFW,cofw,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,090ff8f992dc71a1125636c1adffc0634155b450,citation,http://pdfs.semanticscholar.org/090f/f8f992dc71a1125636c1adffc0634155b450.pdf,Topic-Aware Deep Auto-Encoders (TDA) for Face Alignment,2014 +155,COFW,cofw,40.0044795,116.370238,Chinese Academy of Sciences,edu,26949c1ba7f55f0c389000aa234238bf01a32d3b,citation,https://doi.org/10.1109/ICIP.2017.8296814,Coupled cascade regression for simultaneous facial landmark detection and head pose estimation,2017 +156,COFW,cofw,42.7298459,-73.67950216,Rensselaer Polytechnic Institute,edu,26949c1ba7f55f0c389000aa234238bf01a32d3b,citation,https://doi.org/10.1109/ICIP.2017.8296814,Coupled cascade regression for simultaneous facial landmark detection and head pose estimation,2017 +157,COFW,cofw,-27.49741805,153.01316956,University of Queensland,edu,de79437f74e8e3b266afc664decf4e6e4bdf34d7,citation,https://doi.org/10.1109/IVCNZ.2016.7804415,To face or not to face: Towards reducing false positive of face detection,2016 +158,COFW,cofw,31.20081505,121.42840681,Shanghai Jiao Tong University,edu,a26fd9df58bb76d6c7a3254820143b3da5bd584b,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8446759,Monitor Pupils' Attention by Image Super-Resolution and Anomaly Detection,2017 +159,COFW,cofw,51.5247272,-0.03931035,Queen Mary University of London,edu,0f81b0fa8df5bf3fcfa10f20120540342a0c92e5,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2015.7299100,"Mirror, mirror on the wall, tell me, is the error small?",2015 +160,COFW,cofw,31.2284923,121.40211389,East China Normal University,edu,83295bce2340cb87901499cff492ae6ff3365475,citation,https://arxiv.org/pdf/1808.01558.pdf,Deep Multi-Center Learning for Face Alignment,2018 +161,COFW,cofw,31.20081505,121.42840681,Shanghai Jiao Tong University,edu,83295bce2340cb87901499cff492ae6ff3365475,citation,https://arxiv.org/pdf/1808.01558.pdf,Deep Multi-Center Learning for Face Alignment,2018 +162,COFW,cofw,52.9387428,-1.20029569,University of Nottingham,edu,721e5ba3383b05a78ef1dfe85bf38efa7e2d611d,citation,http://pdfs.semanticscholar.org/74f1/9d0986c9d39aabb359abaa2a87a248a48deb.pdf,"BULAT, TZIMIROPOULOS: CONVOLUTIONAL AGGREGATION OF LOCAL EVIDENCE 1 Convolutional aggregation of local evidence for large pose face alignment",2016 +163,COFW,cofw,32.0565957,118.77408833,Nanjing University,edu,ad5a35a251e07628dd035c68e44a64c53652be6b,citation,https://doi.org/10.1016/j.patcog.2016.12.024,Robust facial landmark tracking via cascade regression,2017 +164,COFW,cofw,39.9922379,116.30393816,Peking University,edu,5df17c81c266cf2ebb0778e48e825905e161a8d9,citation,https://doi.org/10.1109/TMM.2016.2520091,A Novel Lip Descriptor for Audio-Visual Keyword Spotting Based on Adaptive Decision Fusion,2016 +165,COFW,cofw,45.2182986,5.80703193,INRIA Grenoble,edu,5df17c81c266cf2ebb0778e48e825905e161a8d9,citation,https://doi.org/10.1109/TMM.2016.2520091,A Novel Lip Descriptor for Audio-Visual Keyword Spotting Based on Adaptive Decision Fusion,2016 +166,COFW,cofw,31.20081505,121.42840681,Shanghai Jiao Tong University,edu,3d9e44d8f8bc2663192c7ce668ccbbb084e466e4,citation,http://doi.ieeecomputersociety.org/10.1109/ICME.2017.8019505,Learning a multi-center convolutional network for unconstrained face alignment,2017 +167,COFW,cofw,53.8338371,10.7035939,Institute of Systems and Robotics,edu,6604fd47f92ce66dd0c669dd66b347b80e17ebc9,citation,https://pdfs.semanticscholar.org/6604/fd47f92ce66dd0c669dd66b347b80e17ebc9.pdf,Simultaneous Cascaded Regression,2018 +168,COFW,cofw,25.01353105,121.54173736,National Taiwan University of Science and Technology,edu,e4e07f5f201c6986e93ddb42dcf11a43c339ea2e,citation,https://doi.org/10.1109/BTAS.2017.8272722,Cross-pose landmark localization using multi-dropout framework,2017 +169,COFW,cofw,31.20081505,121.42840681,Shanghai Jiao Tong University,edu,9048732c8591a92a1f4f589b520a733f07578f80,citation,https://doi.org/10.1109/CISP-BMEI.2017.8301921,Improved CNN-based facial landmarks tracking via ridge regression at 150 Fps on mobile devices,2017 +170,COFW,cofw,31.83907195,117.26420748,University of Science and Technology of China,edu,084bd02d171e36458f108f07265386f22b34a1ae,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Ren_Face_Alignment_at_2014_CVPR_paper.pdf,Face Alignment at 3000 FPS via Regressing Local Binary Features,2014 +171,COFW,cofw,33.6431901,-117.84016494,"University of California, Irvine",edu,65126e0b1161fc8212643b8ff39c1d71d262fbc1,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Ghiasi_Occlusion_Coherence_Localizing_2014_CVPR_paper.pdf,Occlusion Coherence: Localizing Occluded Faces with a Hierarchical Deformable Part Model,2014 +172,COFW,cofw,17.4454957,78.34854698,International Institute of Information Technology,edu,156cd2a0e2c378e4c3649a1d046cd080d3338bca,citation,http://pdfs.semanticscholar.org/156c/d2a0e2c378e4c3649a1d046cd080d3338bca.pdf,Exemplar based approaches on Face Fiducial Detection and Frontalization,2017 +173,COFW,cofw,-27.5953995,-48.6154218,University of Campinas,edu,159b1e3c3ed0982061dae3cc8ab7d9b149a0cdb1,citation,https://doi.org/10.1109/TIP.2017.2694226,Weak Classifier for Density Estimation in Eye Localization and Tracking,2017 +174,COFW,cofw,-22.9541412,-43.1753638,Universidade Federal do Rio de Janeiro,edu,159b1e3c3ed0982061dae3cc8ab7d9b149a0cdb1,citation,https://doi.org/10.1109/TIP.2017.2694226,Weak Classifier for Density Estimation in Eye Localization and Tracking,2017 +175,COFW,cofw,38.99203005,-76.9461029,University of Maryland College Park,edu,b2cd92d930ed9b8d3f9dfcfff733f8384aa93de8,citation,http://pdfs.semanticscholar.org/b2cd/92d930ed9b8d3f9dfcfff733f8384aa93de8.pdf,"HyperFace: A Deep Multi-task Learning Framework for Face Detection, Landmark Localization, Pose Estimation, and Gender Recognition",2016 +176,COFW,cofw,39.2899685,-76.62196103,University of Maryland,edu,b2cd92d930ed9b8d3f9dfcfff733f8384aa93de8,citation,http://pdfs.semanticscholar.org/b2cd/92d930ed9b8d3f9dfcfff733f8384aa93de8.pdf,"HyperFace: A Deep Multi-task Learning Framework for Face Detection, Landmark Localization, Pose Estimation, and Gender Recognition",2016 +177,COFW,cofw,32.87935255,-117.23110049,"University of California, San Diego",edu,d4a5eaf2e9f2fd3e264940039e2cbbf08880a090,citation,https://arxiv.org/pdf/1802.02137.pdf,An Occluded Stacked Hourglass Approach to Facial Landmark Localization and Occlusion Estimation,2017 +178,COFW,cofw,30.274084,120.15507,Alibaba,company,89497854eada7e32f06aa8f3c0ceedc0e91ecfef,citation,https://doi.org/10.1109/TIP.2017.2784571,Deep Context-Sensitive Facial Landmark Detection With Tree-Structured Modeling,2018 +179,COFW,cofw,30.19331415,120.11930822,Zhejiang University,edu,89497854eada7e32f06aa8f3c0ceedc0e91ecfef,citation,https://doi.org/10.1109/TIP.2017.2784571,Deep Context-Sensitive Facial Landmark Detection With Tree-Structured Modeling,2018 +180,COFW,cofw,32.0565957,118.77408833,Nanjing University,edu,9cb7b3b14fd01cc2ed76784ab76304132dab6ff3,citation,https://doi.org/10.1109/ICIP.2015.7351174,Facial landmark detection via pose-induced auto-encoder networks,2015 +181,COFW,cofw,12.9803537,77.6975101,"Samsung R&D Institute, Bangalore, India",company,cf736f596bf881ca97ec4b29776baaa493b9d50e,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7952629,Low Dimensional Deep Features for facial landmark alignment,2017 +182,COFW,cofw,46.0658836,11.1159894,University of Trento,edu,f201baf618574108bcee50e9a8b65f5174d832ee,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8031057,Viewpoint-Consistent 3D Face Alignment,2018 +183,COFW,cofw,13.65450525,100.49423171,Robotics Institute,edu,f201baf618574108bcee50e9a8b65f5174d832ee,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8031057,Viewpoint-Consistent 3D Face Alignment,2018 +184,COFW,cofw,50.74223495,-1.89433739,Bournemouth University,edu,370b6b83c7512419188f5373a962dd3175a56a9b,citation,https://pdfs.semanticscholar.org/370b/6b83c7512419188f5373a962dd3175a56a9b.pdf,Face Alignment Refinement via Exploiting Low-Rank property and Temporal Stability,2017 +185,COFW,cofw,30.19331415,120.11930822,Zhejiang University,edu,370b6b83c7512419188f5373a962dd3175a56a9b,citation,https://pdfs.semanticscholar.org/370b/6b83c7512419188f5373a962dd3175a56a9b.pdf,Face Alignment Refinement via Exploiting Low-Rank property and Temporal Stability,2017 +186,COFW,cofw,32.0565957,118.77408833,Nanjing University,edu,63c74794aedb40dd6b1650352a2da7a968180302,citation,https://doi.org/10.1016/j.neucom.2016.09.015,Recurrent neural network for facial landmark detection,2017 +187,COFW,cofw,38.88140235,121.52281098,Dalian University of Technology,edu,940e5c45511b63f609568dce2ad61437c5e39683,citation,https://doi.org/10.1109/TIP.2015.2390976,Fiducial Facial Point Extraction Using a Novel Projective Invariant,2015 +188,COFW,cofw,51.24303255,-0.59001382,University of Surrey,edu,3c6cac7ecf546556d7c6050f7b693a99cc8a57b3,citation,https://pdfs.semanticscholar.org/3c6c/ac7ecf546556d7c6050f7b693a99cc8a57b3.pdf,Robust facial landmark detection in the wild,2016 +189,COFW,cofw,40.0044795,116.370238,Chinese Academy of Sciences,edu,a820941eaf03077d68536732a4d5f28d94b5864a,citation,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Zhang_Leveraging_Datasets_With_ICCV_2015_paper.pdf,Leveraging Datasets with Varying Annotations for Face Alignment via Deep Regression Network,2015 +190,COFW,cofw,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,a820941eaf03077d68536732a4d5f28d94b5864a,citation,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Zhang_Leveraging_Datasets_With_ICCV_2015_paper.pdf,Leveraging Datasets with Varying Annotations for Face Alignment via Deep Regression Network,2015 +191,COFW,cofw,34.0687788,-118.4450094,"University of California, Los Angeles",edu,195d331c958f2da3431f37a344559f9bce09c0f7,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2015/ext/2B_066_ext.pdf,Parsing occluded people by flexible compositions,2015 +192,COFW,cofw,30.5097537,114.4062881,Huazhong University of Science and Technology,edu,5f448ab700528888019542e6fea1d1e0db6c35f2,citation,https://doi.org/10.1109/LSP.2016.2533721,Transferred Deep Convolutional Neural Network Features for Extensive Facial Landmark Localization,2016 +193,COFW,cofw,31.846918,117.29053367,Hefei University of Technology,edu,2f73203fd71b755a9601d00fc202bbbd0a595110,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8394868,Micro-expression Analysis by Fusing Deep Convolutional Neural Network and Optical Flow,2018 +194,COFW,cofw,33.620813,133.719755,Kochi University of Technology,edu,2f73203fd71b755a9601d00fc202bbbd0a595110,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8394868,Micro-expression Analysis by Fusing Deep Convolutional Neural Network and Optical Flow,2018 +195,COFW,cofw,32.0565957,118.77408833,Nanjing University,edu,5b0bf1063b694e4b1575bb428edb4f3451d9bf04,citation,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2015.131,Facial Shape Tracking via Spatio-Temporal Cascade Shape Regression,2015 +196,COFW,cofw,31.83907195,117.26420748,University of Science and Technology of China,edu,dd715a98dab34437ad05758b20cc640c2cdc5715,citation,https://doi.org/10.1007/s41095-017-0082-8,Joint head pose and facial landmark regression from depth images,2017 +197,COFW,cofw,52.17638955,0.14308882,University of Cambridge,edu,2aa2b312da1554a7f3e48f71f2fce7ade6d5bf40,citation,http://www.cl.cam.ac.uk/~pr10/publications/fg17.pdf,Estimating Sheep Pain Level Using Facial Action Unit Detection,2017 +198,COFW,cofw,55.7039571,13.1902011,Lund University,edu,995d55fdf5b6fe7fb630c93a424700d4bc566104,citation,http://openaccess.thecvf.com/content_iccv_2015/papers/Nilsson_The_One_Triangle_ICCV_2015_paper.pdf,The One Triangle Three Parallelograms Sampling Strategy and Its Application in Shape Regression,2015 +199,COFW,cofw,13.65450525,100.49423171,Robotics Institute,edu,b6f15bf8723b2d5390122442ab04630d2d3878d8,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163142,Dense 3D face alignment from 2D videos in real-time,2015 +200,COFW,cofw,32.77824165,34.99565673,Open University of Israel,edu,62e913431bcef5983955e9ca160b91bb19d9de42,citation,http://pdfs.semanticscholar.org/62e9/13431bcef5983955e9ca160b91bb19d9de42.pdf,Facial Landmark Detection with Tweaked Convolutional Neural Networks,2015 +201,COFW,cofw,37.4102193,-122.05965487,Carnegie Mellon University,edu,7cfbf90368553333b47731729e0e358479c25340,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7346480,"Towards a Unified Framework for Pose, Expression, and Occlusion Tolerant Automatic Facial Alignment",2016 +202,COFW,cofw,40.986904,29.0530981,"Marmara University, Istanbul, Turkey",edu,a78025f39cf78f2fc66c4b2942fbe5bad3ea65fc,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8404357,A comparison of facial landmark detection methods,2018 +203,COFW,cofw,41.6771297,26.5557145,"Trakya University, Edirne, Turkey",edu,a78025f39cf78f2fc66c4b2942fbe5bad3ea65fc,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8404357,A comparison of facial landmark detection methods,2018 +204,COFW,cofw,65.0592157,25.46632601,University of Oulu,edu,193debca0be1c38dabc42dc772513e6653fd91d8,citation,http://ibug.doc.ic.ac.uk/media/uploads/documents/trigeorgis2016mnemonic.pdf,Mnemonic Descent Method: A Recurrent Process Applied for End-to-End Face Alignment,2016 +205,COFW,cofw,51.5217668,-0.13019072,University of London,edu,193debca0be1c38dabc42dc772513e6653fd91d8,citation,http://ibug.doc.ic.ac.uk/media/uploads/documents/trigeorgis2016mnemonic.pdf,Mnemonic Descent Method: A Recurrent Process Applied for End-to-End Face Alignment,2016 +206,COFW,cofw,51.49887085,-0.17560797,Imperial College London,edu,193debca0be1c38dabc42dc772513e6653fd91d8,citation,http://ibug.doc.ic.ac.uk/media/uploads/documents/trigeorgis2016mnemonic.pdf,Mnemonic Descent Method: A Recurrent Process Applied for End-to-End Face Alignment,2016 +207,COFW,cofw,50.7791703,6.06728733,RWTH Aachen University,edu,141ee531d03fb6626043e33dd8f269a6f1f63a4b,citation,https://arxiv.org/pdf/1808.09316.pdf,How Robust is 3D Human Pose Estimation to Occlusion?,2018 +208,COFW,cofw,42.718568,-84.47791571,Michigan State University,edu,37ce1d3a6415d6fc1760964e2a04174c24208173,citation,http://www.cse.msu.edu/~liuxm/publication/Jourabloo_Liu_ICCV2015.pdf,Pose-Invariant 3D Face Alignment,2015 +209,COFW,cofw,38.88140235,121.52281098,Dalian University of Technology,edu,5f4219118556d2c627137827a617cf4e26242a6e,citation,https://doi.org/10.1109/TMM.2017.2751143,Explicit Shape Regression With Characteristic Number for Facial Landmark Localization,2018 +210,COFW,cofw,42.2942142,-83.71003894,University of Michigan,edu,860588fafcc80c823e66429fadd7e816721da42a,citation,https://arxiv.org/pdf/1804.04412.pdf,Unsupervised Discovery of Object Landmarks as Structural Representations,2018 +211,COFW,cofw,26.88111275,112.62850666,Hunan University,edu,4b936847f39094d6cb0bde68cea654d948c4735d,citation,http://doi.org/10.1007/s11042-016-3470-7,Face alignment under occlusion based on local and global feature regression,2016 +212,COFW,cofw,34.13710185,-118.12527487,California Institute of Technology,edu,56ae6d94fc6097ec4ca861f0daa87941d1c10b70,citation,http://pdfs.semanticscholar.org/56ae/6d94fc6097ec4ca861f0daa87941d1c10b70.pdf,Distance Estimation of an Unknown Person from a Portrait,2014 +213,COFW,cofw,40.0044795,116.370238,Chinese Academy of Sciences,edu,51b42da0706a1260430f27badcf9ee6694768b9b,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7471882,Shape initialization without ground truth for face alignment,2016 +214,COFW,cofw,35.9542493,-83.9307395,University of Tennessee,edu,c2e03efd8c5217188ab685e73cc2e52c54835d1a,citation,http://doi.ieeecomputersociety.org/10.1109/WACV.2016.7477585,Deep tree-structured face: A unified representation for multi-task facial biometrics,2016 +215,COFW,cofw,40.47913175,-74.43168868,Rutgers University,edu,3b470b76045745c0ef5321e0f1e0e6a4b1821339,citation,http://pdfs.semanticscholar.org/8e72/fa02f2d90ba31f31e0a7aa96a6d3e10a66fc.pdf,Consensus of Regression for Occlusion-Robust Facial Feature Localization,2014 +216,COFW,cofw,30.642769,104.06751175,"Sichuan University, Chengdu",edu,3080026f2f0846d520bd5bacb0cb2acea0ffe16b,citation,https://doi.org/10.1109/BTAS.2017.8272690,2.5D cascaded regression for robust facial landmark detection,2017 +217,COFW,cofw,31.20081505,121.42840681,Shanghai Jiao Tong University,edu,3fdfd6fa7a1cc9142de1f53e4ac7c2a7ac64c2e3,citation,http://pdfs.semanticscholar.org/3fdf/d6fa7a1cc9142de1f53e4ac7c2a7ac64c2e3.pdf,Intensity-Depth Face Alignment Using Cascade Shape Regression,2015 +218,COFW,cofw,42.718568,-84.47791571,Michigan State University,edu,ec8ec2dfd73cf3667f33595fef84c95c42125945,citation,https://arxiv.org/pdf/1707.06286.pdf,Pose-Invariant Face Alignment with a Single CNN,2017 +219,COFW,cofw,39.977217,116.337632,Microsoft Research Asia,company,898ff1bafee2a6fb3c848ad07f6f292416b5f07d,citation,https://doi.org/10.1109/TIP.2016.2518867,Face Alignment via Regressing Local Binary Features,2016 +220,COFW,cofw,31.83907195,117.26420748,University of Science and Technology of China,edu,898ff1bafee2a6fb3c848ad07f6f292416b5f07d,citation,https://doi.org/10.1109/TIP.2016.2518867,Face Alignment via Regressing Local Binary Features,2016 +221,COFW,cofw,47.6423318,-122.1369302,Microsoft,company,898ff1bafee2a6fb3c848ad07f6f292416b5f07d,citation,https://doi.org/10.1109/TIP.2016.2518867,Face Alignment via Regressing Local Binary Features,2016 +222,COFW,cofw,39.977217,116.337632,Microsoft Research Asia,company,63d865c66faaba68018defee0daf201db8ca79ed,citation,http://pdfs.semanticscholar.org/63d8/65c66faaba68018defee0daf201db8ca79ed.pdf,Deep Regression for Face Alignment,2014 +223,COFW,cofw,52.17638955,0.14308882,University of Cambridge,edu,be57d2aaab615ec8bc1dd2dba8bee41a4d038b85,citation,http://doi.acm.org/10.1145/2946796,Automatic Analysis of Naturalistic Hand-Over-Face Gestures,2016 +224,COFW,cofw,-33.8840504,151.1992254,University of Technology,edu,336488746cc76e7f13b0ec68ccfe4df6d76cdc8f,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7762938,Adaptive Cascade Regression Model For Robust Face Alignment,2017 +225,COFW,cofw,42.36782045,-71.12666653,Harvard University,edu,023be757b1769ecb0db810c95c010310d7daf00b,citation,http://pdfs.semanticscholar.org/023b/e757b1769ecb0db810c95c010310d7daf00b.pdf,Face Alignment Assisted by Head Pose Estimation,2015 +226,COFW,cofw,51.5247272,-0.03931035,Queen Mary University of London,edu,023be757b1769ecb0db810c95c010310d7daf00b,citation,http://pdfs.semanticscholar.org/023b/e757b1769ecb0db810c95c010310d7daf00b.pdf,Face Alignment Assisted by Head Pose Estimation,2015 +227,COFW,cofw,52.17638955,0.14308882,University of Cambridge,edu,023be757b1769ecb0db810c95c010310d7daf00b,citation,http://pdfs.semanticscholar.org/023b/e757b1769ecb0db810c95c010310d7daf00b.pdf,Face Alignment Assisted by Head Pose Estimation,2015 +228,COFW,cofw,39.2899685,-76.62196103,University of Maryland,edu,93420d9212dd15b3ef37f566e4d57e76bb2fab2f,citation,https://arxiv.org/pdf/1611.00851.pdf,An All-In-One Convolutional Neural Network for Face Analysis,2017 +229,COFW,cofw,34.13710185,-118.12527487,California Institute of Technology,edu,72282287f25c5419dc6fd9e89ec9d86d660dc0b5,citation,https://arxiv.org/pdf/1609.07495v1.pdf,A Rotation Invariant Latent Factor Model for Moveme Discovery from Static Poses,2016 +230,COFW,cofw,51.5247272,-0.03931035,Queen Mary University of London,edu,f11c76efdc9651db329c8c862652820d61933308,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163100,Inference of personality traits and affect schedule by analysis of spontaneous reactions to affective videos,2015 +231,COFW,cofw,46.0658836,11.1159894,University of Trento,edu,f11c76efdc9651db329c8c862652820d61933308,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163100,Inference of personality traits and affect schedule by analysis of spontaneous reactions to affective videos,2015 diff --git a/site/datasets/final/feret.csv b/site/datasets/final/feret.csv new file mode 100644 index 00000000..24f9991f --- /dev/null +++ b/site/datasets/final/feret.csv @@ -0,0 +1,639 @@ +index,dataset_name,key,lat,lng,loc,loc_type,paper_id,paper_type,paper_url,title,year +0,FERET,feret,0.0,0.0,,,0c4a139bb87c6743c7905b29a3cfec27a5130652,main,http://pdfs.semanticscholar.org/0c4a/139bb87c6743c7905b29a3cfec27a5130652.pdf,The FERET Verification Testing Protocol for Face Recognition Algorithms,1998 +1,FERET,feret,-27.47715625,153.02841004,Queensland University of Technology,edu,919d0e681c4ef687bf0b89fe7c0615221e9a1d30,citation,http://pdfs.semanticscholar.org/919d/0e681c4ef687bf0b89fe7c0615221e9a1d30.pdf,Fractal Techniques for Face Recognition,2009 +2,FERET,feret,30.5097537,114.4062881,Huazhong University of Science and Technology,edu,51ed4c92cab9336a2ac41fa8e0293c2f5f9bf3b6,citation,http://pdfs.semanticscholar.org/51ed/4c92cab9336a2ac41fa8e0293c2f5f9bf3b6.pdf,"A Survey of Face Detection, Extraction and Recognition",2003 +3,FERET,feret,22.053565,113.39913285,Jilin University,edu,8aff9c8a0e17be91f55328e5be5e94aea5227a35,citation,https://doi.org/10.1109/TNNLS.2012.2191620,Sparse Tensor Discriminant Color Space for Face Verification,2012 +4,FERET,feret,42.3898055,-71.1475986,Raytheon BBN Technologies,company,8aff9c8a0e17be91f55328e5be5e94aea5227a35,citation,https://doi.org/10.1109/TNNLS.2012.2191620,Sparse Tensor Discriminant Color Space for Face Verification,2012 +5,FERET,feret,32.0565957,118.77408833,Nanjing University,edu,8aff9c8a0e17be91f55328e5be5e94aea5227a35,citation,https://doi.org/10.1109/TNNLS.2012.2191620,Sparse Tensor Discriminant Color Space for Face Verification,2012 +6,FERET,feret,30.284151,-97.73195598,University of Texas at Austin,edu,d3b5a52062e5f5415df527705cb24af9b0846617,citation,http://pdfs.semanticscholar.org/d3b5/a52062e5f5415df527705cb24af9b0846617.pdf,Advances and Challenges in 3D and 2D+3D Human Face Recognition,2007 +7,FERET,feret,40.44415295,-79.96243993,University of Pittsburgh,edu,03167776e17bde31b50f294403f97ee068515578,citation,http://pdfs.semanticscholar.org/0316/7776e17bde31b50f294403f97ee068515578.pdf,Chapter 11. Facial Expression Analysis,2004 +8,FERET,feret,22.9991916,120.21625134,National Cheng Kung University,edu,658eb1fd14808d10e0f4fee99c5506a1bb0e351a,citation,https://pdfs.semanticscholar.org/658e/b1fd14808d10e0f4fee99c5506a1bb0e351a.pdf,Multi-Discriminant Classification Algorithm for Face Verification,2008 +9,FERET,feret,33.30715065,-111.67653157,Arizona State University,edu,49570b41bd9574bd9c600e24b269d945c645b7bd,citation,http://pdfs.semanticscholar.org/4957/0b41bd9574bd9c600e24b269d945c645b7bd.pdf,A Framework for Performance Evaluation of Face Recognition Algorithms,2002 +10,FERET,feret,51.49887085,-0.17560797,Imperial College London,edu,d65b82b862cf1dbba3dee6541358f69849004f30,citation,http://pdfs.semanticscholar.org/d65b/82b862cf1dbba3dee6541358f69849004f30.pdf,2.5D Elastic graph matching,2011 +11,FERET,feret,40.7286484,-73.9956863,Courant Institute of Mathematical Sciences,edu,6d5e12ee5d75d5f8c04a196dd94173f96dc8603f,citation,http://www.cs.toronto.edu/~hinton/csc2535_06/readings/chopra-05.pdf,"Learning a similarity metric discriminatively, with application to face verification",2005 +12,FERET,feret,40.72925325,-73.99625394,New York University,edu,6d5e12ee5d75d5f8c04a196dd94173f96dc8603f,citation,http://www.cs.toronto.edu/~hinton/csc2535_06/readings/chopra-05.pdf,"Learning a similarity metric discriminatively, with application to face verification",2005 +13,FERET,feret,51.24303255,-0.59001382,University of Surrey,edu,0e1403f2182609fb64ed72913f7294fea7d02bd6,citation,http://pdfs.semanticscholar.org/9457/cdb4b1f4764f70fe86b50e26abc34930f882.pdf,Learning Support Vectors for Face Verification and Recognition,2000 +14,FERET,feret,50.0764296,14.41802312,Czech Technical University,edu,0e1403f2182609fb64ed72913f7294fea7d02bd6,citation,http://pdfs.semanticscholar.org/9457/cdb4b1f4764f70fe86b50e26abc34930f882.pdf,Learning Support Vectors for Face Verification and Recognition,2000 +15,FERET,feret,51.24303255,-0.59001382,University of Surrey,edu,fe9a6a93af9c32f6b0454a7cf6897409124514bd,citation,http://pdfs.semanticscholar.org/fe9a/6a93af9c32f6b0454a7cf6897409124514bd.pdf,Designing a smart card face verification system,2006 +16,FERET,feret,39.1254938,-77.22293475,National Institute of Standards and Technology,edu,92a3d5ab3eb540a11eddf1b836c1db28640b2746,citation,http://pdfs.semanticscholar.org/92a3/d5ab3eb540a11eddf1b836c1db28640b2746.pdf,Face Recognition using 3D Facial Shape and Color Map Information: Comparison and Combination,2004 +17,FERET,feret,37.4102193,-122.05965487,Carnegie Mellon University,edu,23fc83c8cfff14a16df7ca497661264fc54ed746,citation,http://pdfs.semanticscholar.org/23fc/83c8cfff14a16df7ca497661264fc54ed746.pdf,Comprehensive Database for Facial Expression Analysis,2000 +18,FERET,feret,40.44415295,-79.96243993,University of Pittsburgh,edu,23fc83c8cfff14a16df7ca497661264fc54ed746,citation,http://pdfs.semanticscholar.org/23fc/83c8cfff14a16df7ca497661264fc54ed746.pdf,Comprehensive Database for Facial Expression Analysis,2000 +19,FERET,feret,51.49887085,-0.17560797,Imperial College London,edu,54bb25a213944b08298e4e2de54f2ddea890954a,citation,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Moschoglou_AgeDB_The_First_CVPR_2017_paper.pdf,"AgeDB: The First Manually Collected, In-the-Wild Age Database",2017 +20,FERET,feret,51.59029705,-0.22963221,Middlesex University,edu,54bb25a213944b08298e4e2de54f2ddea890954a,citation,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Moschoglou_AgeDB_The_First_CVPR_2017_paper.pdf,"AgeDB: The First Manually Collected, In-the-Wild Age Database",2017 +21,FERET,feret,40.4319722,-86.92389368,Purdue University,edu,aec46facf3131a5be4fc23db4ebfb5514e904ae3,citation,http://pdfs.semanticscholar.org/aec4/6facf3131a5be4fc23db4ebfb5514e904ae3.pdf,Audio to the rescue,2004 +22,FERET,feret,39.1254938,-77.22293475,National Institute of Standards and Technology,edu,544c06584c95bfdcafbd62e04fb796e575981476,citation,http://pdfs.semanticscholar.org/544c/06584c95bfdcafbd62e04fb796e575981476.pdf,Human Identification from Body Shape,2003 +23,FERET,feret,40.44415295,-79.96243993,University of Pittsburgh,edu,84a74ef8680b66e6dccbc69ae80321a52780a68e,citation,http://doi.org/10.1007/978-0-85729-932-1_19,Facial Expression Recognition,2011 +24,FERET,feret,13.65450525,100.49423171,Robotics Institute,edu,84a74ef8680b66e6dccbc69ae80321a52780a68e,citation,http://doi.org/10.1007/978-0-85729-932-1_19,Facial Expression Recognition,2011 +25,FERET,feret,35.14479945,33.90492318,Eastern Mediterranean University,edu,b3cc2554449fb10002250bbc178e1009fc2fdb70,citation,http://pdfs.semanticscholar.org/b3cc/2554449fb10002250bbc178e1009fc2fdb70.pdf,Face Recognition Based on Local Zernike Moments,2015 +26,FERET,feret,22.42031295,114.20788644,Chinese University of Hong Kong,edu,fbfb0de017d57c5f282050dadb77797d97785ba5,citation,http://pdfs.semanticscholar.org/fbfb/0de017d57c5f282050dadb77797d97785ba5.pdf,Enabling EBGM Face Authentication on mobile devices,2006 +27,FERET,feret,30.44235995,-84.29747867,Florida State University,edu,0a602b85c80cef7d38209226188aaab94d5349e8,citation,http://pdfs.semanticscholar.org/0a60/2b85c80cef7d38209226188aaab94d5349e8.pdf,THE FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES AUTOMATED FACE TRACKING AND RECOGNITION By MATTHEW,0 +28,FERET,feret,51.49887085,-0.17560797,Imperial College London,edu,a2bcfba155c990f64ffb44c0a1bb53f994b68a15,citation,https://doi.org/10.1109/CVPRW.2011.5981840,The Photoface database,2011 +29,FERET,feret,37.5600406,126.9369248,Yonsei University,edu,425833b5fe892b00dcbeb6e3975008e9a73a5a72,citation,http://pdfs.semanticscholar.org/4258/33b5fe892b00dcbeb6e3975008e9a73a5a72.pdf,A Review of Performance Evaluation for Biometrics Systems,2005 +30,FERET,feret,57.01590275,9.97532827,Aalborg University,edu,7ef44b7c2b5533d00001ae81f9293bdb592f1146,citation,https://pdfs.semanticscholar.org/7ef4/4b7c2b5533d00001ae81f9293bdb592f1146.pdf,Détection des émotions à partir de vidéos dans un environnement non contrôlé Detection of emotions from video in non-controlled environment,2003 +31,FERET,feret,-27.5533975,153.05336234,Griffith University,edu,6e968f74fd6b4b3b172c787f298b3d4746ec5cc9,citation,http://www.ict.griffith.edu.au/~junzhou/papers/C_DICTA_2013_C.pdf,A 3D Polygonal Line Chains Matching Method for Face Recognition,2013 +32,FERET,feret,39.2899685,-76.62196103,University of Maryland,edu,3a1c3307f57ef09577ac0dc8cd8b090a4fe8091f,citation,http://pdfs.semanticscholar.org/3a1c/3307f57ef09577ac0dc8cd8b090a4fe8091f.pdf,Thermal-to-visible face recognition using partial least squares.,2015 +33,FERET,feret,51.24303255,-0.59001382,University of Surrey,edu,81a8b2e55bcea9d9b26e67fcbb5a30ca8a8defc3,citation,http://multispectral-imagery-lab.sandbox.wvu.edu/files/d/337b61b4-b6af-4c96-8314-c282ebebf299/databasesizeeffectsonperformancesmartcardfaceverification.pdf,Database size effects on performance on a smart card face verification system,2006 +34,FERET,feret,41.10427915,29.02231159,Istanbul Technical University,edu,b8b0f0ca35cb02334aaa3192559fb35f0c90f8fa,citation,http://pdfs.semanticscholar.org/b8b0/f0ca35cb02334aaa3192559fb35f0c90f8fa.pdf,Face Recognition in Low-resolution Images by Using Local Zernike Moments,2014 +35,FERET,feret,1.29500195,103.84909214,Singapore Management University,edu,76d1c6c6b67e67ced1f19a89a5034dafc9599f25,citation,http://doi.acm.org/10.1145/2590296.2590315,Understanding OSN-based facial disclosure against face authentication systems,2014 +36,FERET,feret,50.89273635,-1.39464295,University of Southampton,edu,8a12edaf81fd38f81057cf9577c822eb09ff6fc1,citation,http://pdfs.semanticscholar.org/8a12/edaf81fd38f81057cf9577c822eb09ff6fc1.pdf,Measuring and mitigating targeted biometric impersonation,2014 +37,FERET,feret,65.0592157,25.46632601,University of Oulu,edu,8a12edaf81fd38f81057cf9577c822eb09ff6fc1,citation,http://pdfs.semanticscholar.org/8a12/edaf81fd38f81057cf9577c822eb09ff6fc1.pdf,Measuring and mitigating targeted biometric impersonation,2014 +38,FERET,feret,1.3484104,103.68297965,Nanyang Technological University,edu,4b86e711658003a600666d3ccfa4a9905463df1c,citation,https://pdfs.semanticscholar.org/4b86/e711658003a600666d3ccfa4a9905463df1c.pdf,Fusion of Appearance Image and Passive Stereo Depth Map for Face Recognition Based on the Bilateral 2DLDA,2007 +39,FERET,feret,40.7286484,-73.9956863,Courant Institute of Mathematical Sciences,edu,4b8d80f91d271f61b26db5ad627e24e59955c56a,citation,http://pdfs.semanticscholar.org/4b8d/80f91d271f61b26db5ad627e24e59955c56a.pdf,Learning Long-Range Vision for an Offroad Robot,2008 +40,FERET,feret,40.72925325,-73.99625394,New York University,edu,4b8d80f91d271f61b26db5ad627e24e59955c56a,citation,http://pdfs.semanticscholar.org/4b8d/80f91d271f61b26db5ad627e24e59955c56a.pdf,Learning Long-Range Vision for an Offroad Robot,2008 +41,FERET,feret,51.24303255,-0.59001382,University of Surrey,edu,7af15295224c3ad69d56f17ff635763dd008a8a4,citation,http://pdfs.semanticscholar.org/7af1/5295224c3ad69d56f17ff635763dd008a8a4.pdf,Learning Support Vectors for Face Authentication: Sensitivity to Mis-Registrations,2007 +42,FERET,feret,50.0764296,14.41802312,Czech Technical University,edu,7af15295224c3ad69d56f17ff635763dd008a8a4,citation,http://pdfs.semanticscholar.org/7af1/5295224c3ad69d56f17ff635763dd008a8a4.pdf,Learning Support Vectors for Face Authentication: Sensitivity to Mis-Registrations,2007 +43,FERET,feret,40.00229045,116.32098908,Tsinghua University,edu,5ea51401eea9a50a16bd17471bfd559d2d989760,citation,http://pdfs.semanticscholar.org/5ea5/1401eea9a50a16bd17471bfd559d2d989760.pdf,Robust Face Alignment Based on Hierarchical Classifier Network,2006 +44,FERET,feret,40.0044795,116.370238,Chinese Academy of Sciences,edu,71644fab2275cfd6a8f770a26aba4e6228e85dec,citation,http://www.jdl.ac.cn/doc/2011/20131910365517756_2012_eccv_mnkan_mvda.pdf,Multi-View Discriminant Analysis,2012 +45,FERET,feret,31.4006332,74.2137296,"COMSATS Institute of Information Technology, Lahore",edu,280bc9751593897091015aaf2cab39805768b463,citation,http://pdfs.semanticscholar.org/280b/c9751593897091015aaf2cab39805768b463.pdf,Gender Perception From Faces Using Boosted LBPH (Local Binary Patten Histograms),2013 +46,FERET,feret,34.0687788,-118.4450094,"University of California, Los Angeles",edu,23b80dc704e25cf52b5a14935002fc083ce9c317,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2007.383035,Learning Generative Models via Discriminative Approaches,2007 +47,FERET,feret,45.42580475,-75.68740118,University of Ottawa,edu,857ad04fca2740b016f0066b152bd1fa1171483f,citation,http://pdfs.semanticscholar.org/857a/d04fca2740b016f0066b152bd1fa1171483f.pdf,Sample Images can be Independently Restored from Face Recognition Templates,2003 +48,FERET,feret,8.76554685,77.65100445,Manonmaniam Sundaranar University,edu,87b81c8821a2cb9cdf26c75c1531717cab4b942f,citation,http://pdfs.semanticscholar.org/87b8/1c8821a2cb9cdf26c75c1531717cab4b942f.pdf,Face Detection with Facial Features and Gender Classification Based On Support Vector Machine,2010 +49,FERET,feret,43.66333345,-79.39769975,University of Toronto,edu,099ce5cb6f42bff5ad117852d62c5a07e6407b8a,citation,https://pdfs.semanticscholar.org/099c/e5cb6f42bff5ad117852d62c5a07e6407b8a.pdf,Spectral Methods for Multi-Scale Feature Extraction and Data Clustering,0 +50,FERET,feret,34.0224149,-118.28634407,University of Southern California,edu,21358489b5ce0e94ff37792a8a5eea198e7272f3,citation,http://pdfs.semanticscholar.org/c0cc/2073cad539d979fc6f860177b531b45fafc1.pdf,Face Inpainting with Local Linear Representations,2004 +51,FERET,feret,61.44964205,23.85877462,Tampere University of Technology,edu,dc4e4b9c507e8be2d832faf64e5a2e8887115265,citation,https://pdfs.semanticscholar.org/dc4e/4b9c507e8be2d832faf64e5a2e8887115265.pdf,Face Retrieval Based on Robust Local Features and Statistical-Structural Learning Approach,2008 +52,FERET,feret,37.3219575,127.1250723,Dankook University,edu,891d435fd1a070bb66225abfd62b2e2c5350e87c,citation,https://pdfs.semanticscholar.org/891d/435fd1a070bb66225abfd62b2e2c5350e87c.pdf,Selective Feature Generation Method for Classification of Low-dimensional Data,2018 +53,FERET,feret,32.8536333,-117.2035286,Kyung Hee University,edu,854b1f0581f5d3340f15eb79452363cbf38c04c8,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7903648,Directional Age-Primitive Pattern (DAPP) for Human Age Group Recognition and Age Estimation,2017 +54,FERET,feret,24.7246403,46.62335012,King Saud University,edu,854b1f0581f5d3340f15eb79452363cbf38c04c8,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7903648,Directional Age-Primitive Pattern (DAPP) for Human Age Group Recognition and Age Estimation,2017 +55,FERET,feret,23.7289899,90.3982682,Institute of Information Technology,edu,854b1f0581f5d3340f15eb79452363cbf38c04c8,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7903648,Directional Age-Primitive Pattern (DAPP) for Human Age Group Recognition and Age Estimation,2017 +56,FERET,feret,51.24303255,-0.59001382,University of Surrey,edu,cbb55f5885f9a0d0bfaa2c0bf5293ef45a04c5cd,citation,https://pdfs.semanticscholar.org/cbb5/5f5885f9a0d0bfaa2c0bf5293ef45a04c5cd.pdf,Performance Characterisation of Face Recognition Algorithms and Their Sensitivity to Severe Illumination Changes,2006 +57,FERET,feret,40.0044795,116.370238,Chinese Academy of Sciences,edu,cbb55f5885f9a0d0bfaa2c0bf5293ef45a04c5cd,citation,https://pdfs.semanticscholar.org/cbb5/5f5885f9a0d0bfaa2c0bf5293ef45a04c5cd.pdf,Performance Characterisation of Face Recognition Algorithms and Their Sensitivity to Severe Illumination Changes,2006 +58,FERET,feret,53.21967825,6.56251482,University of Groningen,edu,d8896861126b7fd5d2ceb6fed8505a6dff83414f,citation,http://pdfs.semanticscholar.org/d889/6861126b7fd5d2ceb6fed8505a6dff83414f.pdf,In-plane Rotational Alignment of Faces by Eye and Eye-pair Detection,2015 +59,FERET,feret,29.5084174,106.57858552,Chongqing University,edu,e1d1540a718bb7a933e21339f1a2d90660af7353,citation,http://doi.org/10.1007/s11063-018-9852-2,Discriminative Probabilistic Latent Semantic Analysis with Application to Single Sample Face Recognition,2018 +60,FERET,feret,22.42031295,114.20788644,Chinese University of Hong Kong,edu,55498d89f9eb0c9df9760f5e0e47a15ae7e92f25,citation,http://mplab.ucsd.edu/wp-content/uploads/CVPR2008/Conference/data/papers/264.pdf,Learning-based face hallucination in DCT domain,2008 +61,FERET,feret,40.0044795,116.370238,Chinese Academy of Sciences,edu,f12813073a7f894f82fe2b166893424edba7dc79,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2008.4587375,Unified Principal Component Analysis with generalized Covariance Matrix for face recognition,2008 +62,FERET,feret,45.7413921,126.62552755,Harbin Institute of Technology,edu,f12813073a7f894f82fe2b166893424edba7dc79,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2008.4587375,Unified Principal Component Analysis with generalized Covariance Matrix for face recognition,2008 +63,FERET,feret,39.87549675,32.78553506,Middle East Technical University,edu,946c2036c940e77260ade031ba413ec9f2435985,citation,http://pdfs.semanticscholar.org/946c/2036c940e77260ade031ba413ec9f2435985.pdf,PCA for Gender Estimation: Which Eigenvectors Contribute?,2002 +64,FERET,feret,36.1017956,-79.501733,Elon University,edu,a129c30b176820bf7f4756b4b4efc92d2a83f190,citation,https://pdfs.semanticscholar.org/a129/c30b176820bf7f4756b4b4efc92d2a83f190.pdf,Older adults' associative memory is modified by manner of presentation at encoding and retrieval.,2018 +65,FERET,feret,13.01119095,74.79498825,"National Institute of Technology, Karnataka",edu,e1fac9e9427499d3758213daf1c781b9a42a3420,citation,https://pdfs.semanticscholar.org/7c90/60a809bd28ef61421588f48e33f6eae6ddfd.pdf,Face Image Retrieval Based on Probe Sketch Using SIFT Feature Descriptors,2012 +66,FERET,feret,35.9542493,-83.9307395,University of Tennessee,edu,7735f63e5790006cb3d989c8c19910e40200abfc,citation,http://pdfs.semanticscholar.org/7735/f63e5790006cb3d989c8c19910e40200abfc.pdf,Multispectral Imaging For Face Recognition Over Varying Illumination,2008 +67,FERET,feret,32.0565957,118.77408833,Nanjing University,edu,f909d04c809013b930bafca12c0f9a8192df9d92,citation,http://pdfs.semanticscholar.org/f909/d04c809013b930bafca12c0f9a8192df9d92.pdf,Single Image Subspace for Face Recognition,2007 +68,FERET,feret,22.3386304,114.2620337,Hong Kong University of Science and Technology,edu,33abfe693258a4e00467494b11ee4d523379ab6b,citation,http://www.cse.ust.hk/~dyyeung/paper/pdf/yeung.icip2006a.pdf,Local Discriminant Embedding with Tensor Representation,2006 +69,FERET,feret,38.0333742,-84.5017758,University of Kentucky,edu,a1997d89f544cc862c63a972ef364b2ff38982e9,citation,https://pdfs.semanticscholar.org/a199/7d89f544cc862c63a972ef364b2ff38982e9.pdf,Can SNOMED CT Changes Be Used as a Surrogate Standard for Evaluating the Performance of Its Auditing Methods?,2017 +70,FERET,feret,-33.3578899,151.37834708,University of Newcastle,edu,aeb64f88302b9d4d23ee13ece5c9842dd43dc37f,citation,https://pdfs.semanticscholar.org/aeb6/4f88302b9d4d23ee13ece5c9842dd43dc37f.pdf,Recollection and confidence in two-alternative forced choice episodic recognition,2009 +71,FERET,feret,51.49887085,-0.17560797,Imperial College London,edu,e392816ec3e0b131bbab06431ac85b14afa7d656,citation,http://pdfs.semanticscholar.org/e392/816ec3e0b131bbab06431ac85b14afa7d656.pdf,A Simple and Efficient Supervised Method for Spatially Weighted PCA in Face Image Analysis,2010 +72,FERET,feret,34.1235825,108.83546,Xidian University,edu,3e76496aa3840bca2974d6d087bfa4267a390768,citation,https://pdfs.semanticscholar.org/3e76/496aa3840bca2974d6d087bfa4267a390768.pdf,Dictionary Learning in Optimal Metric Subspace,2018 +73,FERET,feret,39.9808333,116.34101249,Beihang University,edu,3e76496aa3840bca2974d6d087bfa4267a390768,citation,https://pdfs.semanticscholar.org/3e76/496aa3840bca2974d6d087bfa4267a390768.pdf,Dictionary Learning in Optimal Metric Subspace,2018 +74,FERET,feret,39.2899685,-76.62196103,University of Maryland,edu,355af3c3adbb17d25f0d2a4193e3daadffc0d4e8,citation,http://pdfs.semanticscholar.org/355a/f3c3adbb17d25f0d2a4193e3daadffc0d4e8.pdf,Pattern recognition: Historical perspective and future directions,2000 +75,FERET,feret,38.83133325,-77.30798839,George Mason University,edu,355af3c3adbb17d25f0d2a4193e3daadffc0d4e8,citation,http://pdfs.semanticscholar.org/355a/f3c3adbb17d25f0d2a4193e3daadffc0d4e8.pdf,Pattern recognition: Historical perspective and future directions,2000 +76,FERET,feret,40.8927159,29.37863323,Sabanci University,edu,1e6d1e811da743df02481bca1a7bdaa73b809913,citation,http://research.sabanciuniv.edu/608/1/3011800001159.pdf,Multimodal person recognition for human-vehicle interaction,2006 +77,FERET,feret,50.7338124,7.1022465,University of Bonn,edu,f4aafb50c93c5ad3e5c4696ed24b063a1932915a,citation,http://pdfs.semanticscholar.org/f4aa/fb50c93c5ad3e5c4696ed24b063a1932915a.pdf,What would you look like in Springfield? Linear Transformations between High-Dimensional Spaces,2011 +78,FERET,feret,45.7413921,126.62552755,Harbin Institute of Technology,edu,10156890bc53cb6be97bd144a68fde693bf13612,citation,http://pdfs.semanticscholar.org/1015/6890bc53cb6be97bd144a68fde693bf13612.pdf,Face Recognition Using Sparse Representation-Based Classification on K-Nearest Subspace,2013 +79,FERET,feret,45.42580475,-75.68740118,University of Ottawa,edu,16820ccfb626dcdc893cc7735784aed9f63cbb70,citation,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W12/papers/Azarmehr_Real-Time_Embedded_Age_2015_CVPR_paper.pdf,Real-time embedded age and gender classification in unconstrained video,2015 +80,FERET,feret,42.3504253,-71.10056114,Boston University,edu,966b76acfa75253679b1a82ecc5a68e523f5c0c9,citation,http://pdfs.semanticscholar.org/f204/2494d5666e436f5e96ff5e0cd3b5f5e5485b.pdf,Preference suppression caused by misattribution of task-irrelevant subliminal motion.,2012 +81,FERET,feret,40.8419836,-73.94368971,Columbia University,edu,0c7f27d23a162d4f3896325d147f412c40160b52,citation,http://pdfs.semanticscholar.org/0c7f/27d23a162d4f3896325d147f412c40160b52.pdf,Models and Algorithms for Vision through the Atmosphere,2003 +82,FERET,feret,40.47913175,-74.43168868,Rutgers University,edu,6069b4bc1a21341b77b49f01341c238c770d52e0,citation,http://pdfs.semanticscholar.org/b02b/50ed995fe526208b1577b9d7ef6262bf3ecf.pdf,Comparing Kernel-based Learning Methods for Face Recognition,2003 +83,FERET,feret,51.49887085,-0.17560797,Imperial College London,edu,af31ef1e81c1132f186d7aebb141d7f59a815010,citation,http://cas.ee.ic.ac.uk/people/ccb98/papers/LiuGlobalSIP13.pdf,Domain-specific progressive sampling of face images,2013 +84,FERET,feret,51.5073219,-0.1276474,"London, United Kingdom",edu,af31ef1e81c1132f186d7aebb141d7f59a815010,citation,http://cas.ee.ic.ac.uk/people/ccb98/papers/LiuGlobalSIP13.pdf,Domain-specific progressive sampling of face images,2013 +85,FERET,feret,39.1254938,-77.22293475,National Institute of Standards and Technology,edu,07f31bef7a7035792e3791473b3c58d03928abbf,citation,https://doi.org/10.1016/j.imavis.2016.08.004,Lessons from collecting a million biometric samples,2015 +86,FERET,feret,41.70456775,-86.23822026,University of Notre Dame,edu,07f31bef7a7035792e3791473b3c58d03928abbf,citation,https://doi.org/10.1016/j.imavis.2016.08.004,Lessons from collecting a million biometric samples,2015 +87,FERET,feret,40.11116745,-88.22587665,"University of Illinois, Urbana-Champaign",edu,d275714c323dd4e400e8003fa8c33070f8ea03d1,citation,https://pdfs.semanticscholar.org/d275/714c323dd4e400e8003fa8c33070f8ea03d1.pdf,"White Fear, Dehumanization and Low Empathy: a Lethal Combination for Shooting Biases by Yara Mekawi",2014 +88,FERET,feret,40.0044795,116.370238,Chinese Academy of Sciences,edu,1a5a79b4937b89420049bc279a7b7f765d143881,citation,http://pdfs.semanticscholar.org/1a5a/79b4937b89420049bc279a7b7f765d143881.pdf,Are Rich People Perceived as More Trustworthy? Perceived Socioeconomic Status Modulates Judgments of Trustworthiness and Trust Behavior Based on Facial Appearance,2018 +89,FERET,feret,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,1a5a79b4937b89420049bc279a7b7f765d143881,citation,http://pdfs.semanticscholar.org/1a5a/79b4937b89420049bc279a7b7f765d143881.pdf,Are Rich People Perceived as More Trustworthy? Perceived Socioeconomic Status Modulates Judgments of Trustworthiness and Trust Behavior Based on Facial Appearance,2018 +90,FERET,feret,37.548215,-77.45306424,Virginia Commonwealth University,edu,1a5a79b4937b89420049bc279a7b7f765d143881,citation,http://pdfs.semanticscholar.org/1a5a/79b4937b89420049bc279a7b7f765d143881.pdf,Are Rich People Perceived as More Trustworthy? Perceived Socioeconomic Status Modulates Judgments of Trustworthiness and Trust Behavior Based on Facial Appearance,2018 +91,FERET,feret,39.1254938,-77.22293475,National Institute of Standards and Technology,edu,88ee6d0b8342852a5bd55864dc7a1c8452c10bbf,citation,http://pdfs.semanticscholar.org/88ee/6d0b8342852a5bd55864dc7a1c8452c10bbf.pdf,Support Vector Machines Applied to Face Recognition,1998 +92,FERET,feret,32.0565957,118.77408833,Nanjing University,edu,59f83e94a7f52cbb728d434426f6fe85f756259c,citation,https://pdfs.semanticscholar.org/59f8/3e94a7f52cbb728d434426f6fe85f756259c.pdf,An Improved Illumination Normalization Approach based on Wavelet Tranform for Face Recognition from Single Training Image Per Person,2010 +93,FERET,feret,40.0044795,116.370238,Chinese Academy of Sciences,edu,5d1c4e93e32ee686234c5aae7f38025523993c8c,citation,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR2013/data/Papers/4989d539.pdf,Towards Pose Robust Face Recognition,2013 +94,FERET,feret,34.8452999,48.5596212,Islamic Azad University,edu,53ce84598052308b86ba79d873082853022aa7e9,citation,https://pdfs.semanticscholar.org/4f07/b70883a98a69be3b3e29de06c73e59a9ba0e.pdf,Optimized Method for Real-Time Face Recognition System Based on PCA and Multiclass Support Vector Machine,2013 +95,FERET,feret,22.5611537,88.41310194,Jadavpur University,edu,eef05b87f1a62bf658fc622427187eab4fb0f7a5,citation,http://pdfs.semanticscholar.org/eef0/5b87f1a62bf658fc622427187eab4fb0f7a5.pdf,High Performance Human Face Recognition using Independent High Intensity Gabor Wavelet Responses: A Statistical Approach,2011 +96,FERET,feret,43.66333345,-79.39769975,University of Toronto,edu,f5c285c3729188884f448db3cc60647f15e289d3,citation,http://pdfs.semanticscholar.org/f5c2/85c3729188884f448db3cc60647f15e289d3.pdf,Sorted Index Numbers for Privacy Preserving Face Recognition,2009 +97,FERET,feret,37.4102193,-122.05965487,Carnegie Mellon University,edu,45a3ba54fc2210cf8a4fba0cbdce9dad3cefc826,citation,http://pdfs.semanticscholar.org/45a3/ba54fc2210cf8a4fba0cbdce9dad3cefc826.pdf,Complete Cross-Validation for Nearest Neighbor Classifiers,2000 +98,FERET,feret,51.24303255,-0.59001382,University of Surrey,edu,71e942e05f73b163a7ec814a85ff4131cb48f650,citation,http://pdfs.semanticscholar.org/8f83/e1a0c05da3a2f316b75b4a178fadf709dd68.pdf,The BANCA Database and Evaluation Protocol,2003 +99,FERET,feret,32.0565957,118.77408833,Nanjing University,edu,1fe0c5562c8dffecc0cadeef2c592bfa6e89b5ca,citation,http://cs.boisestate.edu/~dxu/publications/ICTAI04.pdf,Illumination invariant face recognition based on neural network ensemble,2004 +100,FERET,feret,46.897155,-96.81827603,North Dakota State University,edu,1fe0c5562c8dffecc0cadeef2c592bfa6e89b5ca,citation,http://cs.boisestate.edu/~dxu/publications/ICTAI04.pdf,Illumination invariant face recognition based on neural network ensemble,2004 +101,FERET,feret,40.00229045,116.32098908,Tsinghua University,edu,58da4e59c4d259196fc6bd807bc8c36636efa4ef,citation,http://pdfs.semanticscholar.org/58da/4e59c4d259196fc6bd807bc8c36636efa4ef.pdf,Symmetrical PCA in face recognition,2002 +102,FERET,feret,32.0565957,118.77408833,Nanjing University,edu,c901524f01c7a0db3bb01afa1d5828913c84628a,citation,https://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/jcst06.pdf,Image Region Selection and Ensemble for Face Recognition,2006 +103,FERET,feret,37.4102193,-122.05965487,Carnegie Mellon University,edu,221c9fff1c25368a6b72ca679c67a3d6b35e2c00,citation,http://pdfs.semanticscholar.org/5ccb/f66733438ab42fe2da66ad1d37635f4391de.pdf,Memory-Based Face Recognition for Visitor Identification,2000 +104,FERET,feret,42.718568,-84.47791571,Michigan State University,edu,fc798314994bf94d1cde8d615ba4d5e61b6268b6,citation,http://pdfs.semanticscholar.org/fc79/8314994bf94d1cde8d615ba4d5e61b6268b6.pdf,"Face Recognition : face in video , age invariance , and facial marks",2009 +105,FERET,feret,-34.40505545,150.87834655,University of Wollongong,edu,a3bc6020cd57ebe3a82a0b232f969bcc4e372e53,citation,http://pdfs.semanticscholar.org/a3bc/6020cd57ebe3a82a0b232f969bcc4e372e53.pdf,A Hybrid Feature Extraction Technique for Face Recognition,2014 +106,FERET,feret,40.0044795,116.370238,Chinese Academy of Sciences,edu,13d591220f9fdb22d81c2438a008c80843b61fd4,citation,https://pdfs.semanticscholar.org/13d5/91220f9fdb22d81c2438a008c80843b61fd4.pdf,Boosting Multi-gabor Subspaces for Face Recognition,2006 +107,FERET,feret,22.42031295,114.20788644,Chinese University of Hong Kong,edu,13d591220f9fdb22d81c2438a008c80843b61fd4,citation,https://pdfs.semanticscholar.org/13d5/91220f9fdb22d81c2438a008c80843b61fd4.pdf,Boosting Multi-gabor Subspaces for Face Recognition,2006 +108,FERET,feret,-27.49741805,153.01316956,University of Queensland,edu,621e8882c41cdaf03a2c4a986a6404f0272ba511,citation,https://doi.org/10.1109/IJCNN.2012.6252611,On robust biometric identity verification via sparse encoding of faces: Holistic vs local approaches,2012 +109,FERET,feret,52.2380139,6.8566761,University of Twente,edu,8780f14d04671d4f2ed50307d16062d72cc51863,citation,http://pdfs.semanticscholar.org/8780/f14d04671d4f2ed50307d16062d72cc51863.pdf,Likelihood Ratio-Based Detection of Facial Features,2000 +110,FERET,feret,43.66333345,-79.39769975,University of Toronto,edu,7a52eb0886892c04c6c80b78795d880a70796cb6,citation,http://www.cs.toronto.edu/~jepson/papers/ChennubhotlaJepsonICPR2004.pdf,Perceptual distance normalization for appearance detection,2004 +111,FERET,feret,65.0592157,25.46632601,University of Oulu,edu,1fe121925668743762ce9f6e157081e087171f4c,citation,https://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W02/papers/Ylioinas_Unsupervised_Learning_of_2015_CVPR_paper.pdf,Unsupervised learning of overcomplete face descriptors,2015 +112,FERET,feret,29.5084174,106.57858552,Chongqing University,edu,f3cb97791ded4a5c3bed717f820215a1c9648226,citation,http://pdfs.semanticscholar.org/f3cb/97791ded4a5c3bed717f820215a1c9648226.pdf,Multi-scale Block Weber Local Descriptor for Face Recognition,2015 +113,FERET,feret,38.83133325,-77.30798839,George Mason University,edu,d28d697b578867500632b35b1b19d3d76698f4a9,citation,http://pdfs.semanticscholar.org/d28d/697b578867500632b35b1b19d3d76698f4a9.pdf,Face Recognition Using Shape and Texture,1999 +114,FERET,feret,58.38131405,26.72078081,University of Tartu,edu,5a5ae31263517355d15b7b09d74cb03e40093046,citation,http://pdfs.semanticscholar.org/5a5a/e31263517355d15b7b09d74cb03e40093046.pdf,Super Resolution and Face Recognition Based People Activity Monitoring Enhancement Using Surveillance Camera,2016 +115,FERET,feret,32.0565957,118.77408833,Nanjing University,edu,82524c49ea20390c711e0606e50570ac2183c281,citation,http://pdfs.semanticscholar.org/8252/4c49ea20390c711e0606e50570ac2183c281.pdf,(2D)PCA: 2-Directional 2-Dimensional PCA for Efficient Face Representation and Recognition,2005 +116,FERET,feret,38.99203005,-76.9461029,University of Maryland College Park,edu,b13a882e6168afc4058fe14cc075c7e41434f43e,citation,http://pdfs.semanticscholar.org/b13a/882e6168afc4058fe14cc075c7e41434f43e.pdf,Recognition of Humans and Their Activities Using Video,2005 +117,FERET,feret,39.2899685,-76.62196103,University of Maryland,edu,b13a882e6168afc4058fe14cc075c7e41434f43e,citation,http://pdfs.semanticscholar.org/b13a/882e6168afc4058fe14cc075c7e41434f43e.pdf,Recognition of Humans and Their Activities Using Video,2005 +118,FERET,feret,32.9820799,-96.7566278,University of Texas at Dallas,edu,ac9516a589901f1421e8ce905dd8bc5b689317ca,citation,http://pdfs.semanticscholar.org/ac95/16a589901f1421e8ce905dd8bc5b689317ca.pdf,A Practical Framework for Executing Complex Queries over Encrypted Multimedia Data,2016 +119,FERET,feret,42.357757,-83.06286711,Wayne State University,edu,cd0503a31a9f9040736ccfb24086dc934508cfc7,citation,http://pdfs.semanticscholar.org/cd05/03a31a9f9040736ccfb24086dc934508cfc7.pdf,Maximizing Resource Utilization In Video Streaming Systems,2015 +120,FERET,feret,47.5612651,7.5752961,University of Basel,edu,183c10b7d9ff26576e13a6639de0f7af206ed058,citation,http://gravis.cs.unibas.ch/publications/CVPR05_Blanz.pdf,Face recognition based on frontal views generated from non-frontal images,2005 +121,FERET,feret,1.3461952,103.6815499,"Nanyang Technological University, Singapore",edu,96d34c1a749e74af0050004162d9dc5132098a79,citation,https://doi.org/10.1109/TNN.2005.844909,High-speed face recognition based on discrete cosine transform and RBF neural networks,2005 +122,FERET,feret,41.10427915,29.02231159,Istanbul Technical University,edu,559645d2447004355c83737a19c9a811b45780f1,citation,https://doi.org/10.1109/ICB.2015.7139114,Combining view-based pose normalization and feature transform for cross-pose face recognition,2015 +123,FERET,feret,49.10184375,8.4331256,Karlsruhe Institute of Technology,edu,559645d2447004355c83737a19c9a811b45780f1,citation,https://doi.org/10.1109/ICB.2015.7139114,Combining view-based pose normalization and feature transform for cross-pose face recognition,2015 +124,FERET,feret,46.5184121,6.5684654,École Polytechnique Fédérale de Lausanne,edu,559645d2447004355c83737a19c9a811b45780f1,citation,https://doi.org/10.1109/ICB.2015.7139114,Combining view-based pose normalization and feature transform for cross-pose face recognition,2015 +125,FERET,feret,40.00229045,116.32098908,Tsinghua University,edu,bc866c2ced533252f29cf2111dd71a6d1724bd49,citation,http://pdfs.semanticscholar.org/bc86/6c2ced533252f29cf2111dd71a6d1724bd49.pdf,A Multi-Modal Face Recognition Method Using Complete Local Derivative Patterns and Depth Maps,2014 +126,FERET,feret,42.718568,-84.47791571,Michigan State University,edu,63a584487beb7382cad8ed70020f108ded5bf076,citation,https://pdfs.semanticscholar.org/2bb3/4f45b1f0ae2b602a6f25f1966cd0f84e3f5f.pdf,Face Detection and Modeling for Recognition,2002 +127,FERET,feret,22.5611537,88.41310194,Jadavpur University,edu,5e6c23d2e2f92a90bd35bdbc937b2d7d95ee2d55,citation,http://pdfs.semanticscholar.org/5e6c/23d2e2f92a90bd35bdbc937b2d7d95ee2d55.pdf,Fusion of Wavelet Coefficients from Visual and Thermal Face Images for Human Face Recognition - A Comparative Study,2006 +128,FERET,feret,40.0044795,116.370238,Chinese Academy of Sciences,edu,c03e01717b2d93f04cce9b5fd2dcfd1143bcc180,citation,http://pdfs.semanticscholar.org/c03e/01717b2d93f04cce9b5fd2dcfd1143bcc180.pdf,Locality-Constrained Active Appearance Model,2012 +129,FERET,feret,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,c03e01717b2d93f04cce9b5fd2dcfd1143bcc180,citation,http://pdfs.semanticscholar.org/c03e/01717b2d93f04cce9b5fd2dcfd1143bcc180.pdf,Locality-Constrained Active Appearance Model,2012 +130,FERET,feret,37.4102193,-122.05965487,Carnegie Mellon University,edu,4d15254f6f31356963cc70319ce416d28d8924a3,citation,http://pdfs.semanticscholar.org/4d15/254f6f31356963cc70319ce416d28d8924a3.pdf,Quo vadis Face Recognition?,2001 +131,FERET,feret,13.65450525,100.49423171,Robotics Institute,edu,4d15254f6f31356963cc70319ce416d28d8924a3,citation,http://pdfs.semanticscholar.org/4d15/254f6f31356963cc70319ce416d28d8924a3.pdf,Quo vadis Face Recognition?,2001 +132,FERET,feret,40.44415295,-79.96243993,University of Pittsburgh,edu,4d15254f6f31356963cc70319ce416d28d8924a3,citation,http://pdfs.semanticscholar.org/4d15/254f6f31356963cc70319ce416d28d8924a3.pdf,Quo vadis Face Recognition?,2001 +133,FERET,feret,33.776033,-84.39884086,Georgia Institute of Technology,edu,1dad684de1ce4c013ba04eb4b1a70355b3786ecd,citation,http://pdfs.semanticscholar.org/933d/06908b782279b1127c9ba498d868b26ffe8e.pdf,Computers Seeing People,1999 +134,FERET,feret,22.5611537,88.41310194,Jadavpur University,edu,52909a123ba3b088a5a93d930dcd029ec2f1f24f,citation,http://pdfs.semanticscholar.org/5d05/a0deec42a061541bbd399bc9e40d4ad3374a.pdf,A Gabor-Block-Based Kernel Discriminative Common Vector Approach Using Cosine Kernels for Human Face Recognition,2012 +135,FERET,feret,35.14479945,33.90492318,Eastern Mediterranean University,edu,b374391ab793a1bb2ecde4df51be9d97c2cbf79a,citation,https://pdfs.semanticscholar.org/b374/391ab793a1bb2ecde4df51be9d97c2cbf79a.pdf,Improved PCA based Face Recognition using Feature based Classifier Ensemble,2015 +136,FERET,feret,42.3573046,-71.0582415,"Affectiva, Inc.",company,d10cfcf206b0991e3bc20ac28df1f61c63516f30,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6553776,Smile or smirk? Automatic detection of spontaneous asymmetric smiles to understand viewer experience,2013 +137,FERET,feret,32.8536333,-117.2035286,Kyung Hee University,edu,bf0836e5c10add0b13005990ba019a9c4b744b06,citation,https://doi.org/10.1109/TCE.2009.5373791,An enhanced independent component-based human facial expression recognition from video,2009 +138,FERET,feret,42.718568,-84.47791571,Michigan State University,edu,051f03bc25ec633592aa2ff5db1d416b705eac6c,citation,http://www.cse.msu.edu/biometrics/Publications/Face/LiaoJain_PartialFR_AlignmentFreeApproach_ICJB11.pdf,Partial face recognition: An alignment free approach,2011 +139,FERET,feret,36.3697191,127.362537,Korea Advanced Institute of Science and Technology,edu,aba31184783150c723805831cde0f22fe257b835,citation,http://pdfs.semanticscholar.org/aba3/1184783150c723805831cde0f22fe257b835.pdf,Contribution of Non-scrambled Chroma Information in Privacy-Protected Face Images to Privacy Leakage,2011 +140,FERET,feret,43.66333345,-79.39769975,University of Toronto,edu,aba31184783150c723805831cde0f22fe257b835,citation,http://pdfs.semanticscholar.org/aba3/1184783150c723805831cde0f22fe257b835.pdf,Contribution of Non-scrambled Chroma Information in Privacy-Protected Face Images to Privacy Leakage,2011 +141,FERET,feret,40.47913175,-74.43168868,Rutgers University,edu,7ef41e2be5116912fe8a4906b4fb89ac9dcf819d,citation,http://doi.ieeecomputersociety.org/10.1109/ICPR.2004.1334492,A hybrid face recognition method using Markov random fields,2004 +142,FERET,feret,38.83133325,-77.30798839,George Mason University,edu,757e4cb981e807d83539d9982ad325331cb59b16,citation,http://pdfs.semanticscholar.org/757e/4cb981e807d83539d9982ad325331cb59b16.pdf,Demographics versus Biometric Automatic Interoperability,2013 +143,FERET,feret,41.9037626,12.5144384,Sapienza University of Rome,edu,757e4cb981e807d83539d9982ad325331cb59b16,citation,http://pdfs.semanticscholar.org/757e/4cb981e807d83539d9982ad325331cb59b16.pdf,Demographics versus Biometric Automatic Interoperability,2013 +144,FERET,feret,49.2622421,-123.2450052,University of Perugia,edu,67c08e2b8b918a61dcbd0d4c63a74b89b833d259,citation,http://pdfs.semanticscholar.org/67c0/8e2b8b918a61dcbd0d4c63a74b89b833d259.pdf,Multi-class texture analysis in colorectal cancer histology,2016 +145,FERET,feret,38.83133325,-77.30798839,George Mason University,edu,ac942c4870e55fe1d9822d62edcdb685d41cd2bf,citation,http://pdfs.semanticscholar.org/ac94/2c4870e55fe1d9822d62edcdb685d41cd2bf.pdf,Pose Discriminiation and Eye Detection Using Support Vector Machines (SVM),1998 +146,FERET,feret,44.97308605,-93.23708813,University of Minnesota,edu,ac942c4870e55fe1d9822d62edcdb685d41cd2bf,citation,http://pdfs.semanticscholar.org/ac94/2c4870e55fe1d9822d62edcdb685d41cd2bf.pdf,Pose Discriminiation and Eye Detection Using Support Vector Machines (SVM),1998 +147,FERET,feret,51.4584837,-2.6097752,University of Bristol,edu,a632ebe6f1e7d9b2b652b0186abef8db218037f3,citation,http://pdfs.semanticscholar.org/a632/ebe6f1e7d9b2b652b0186abef8db218037f3.pdf,Subliminally and Supraliminally Acquired Long-Term Memories Jointly Bias Delayed Decisions,2017 +148,FERET,feret,32.8536333,-117.2035286,Kyung Hee University,edu,027f769aed0cfcb3169ef60f182ce1decc0e99eb,citation,http://www.ijicic.org/10-12018-1.pdf,Local Directional Pattern (LDP) for face recognition,2010 +149,FERET,feret,32.0565957,118.77408833,Nanjing University,edu,edd6ed94207ab614c71ac0591d304a708d708e7b,citation,http://doi.org/10.1016/j.neucom.2012.02.001,Reconstructive discriminant analysis: A feature extraction method induced from linear regression classification,2012 +150,FERET,feret,42.718568,-84.47791571,Michigan State University,edu,5dbf772b98cb944befa9cf01ec5d15da713a338b,citation,http://pdfs.semanticscholar.org/9d82/44d5a32ecc314860c1d673d687df28f77d84.pdf,Face modeling for recognition,2001 +151,FERET,feret,32.1119889,34.80459702,Tel Aviv University,edu,8356b642e4e9bb39bd26ea6c4b9bad21bd9b1912,citation,http://pdfs.semanticscholar.org/8356/b642e4e9bb39bd26ea6c4b9bad21bd9b1912.pdf,Seeing People in the Dark: Face Recognition in Infrared Images,2002 +152,FERET,feret,43.66333345,-79.39769975,University of Toronto,edu,2b73e3d541b0208ae54b3920fef4bfd9fd0c84a7,citation,http://pdfs.semanticscholar.org/2b73/e3d541b0208ae54b3920fef4bfd9fd0c84a7.pdf,Feature-based face representations and image reconstruction from behavioral and neural data.,2016 +153,FERET,feret,37.4102193,-122.05965487,Carnegie Mellon University,edu,2b73e3d541b0208ae54b3920fef4bfd9fd0c84a7,citation,http://pdfs.semanticscholar.org/2b73/e3d541b0208ae54b3920fef4bfd9fd0c84a7.pdf,Feature-based face representations and image reconstruction from behavioral and neural data.,2016 +154,FERET,feret,42.3583961,-71.09567788,MIT,edu,2b73e3d541b0208ae54b3920fef4bfd9fd0c84a7,citation,http://pdfs.semanticscholar.org/2b73/e3d541b0208ae54b3920fef4bfd9fd0c84a7.pdf,Feature-based face representations and image reconstruction from behavioral and neural data.,2016 +155,FERET,feret,40.0044795,116.370238,Chinese Academy of Sciences,edu,1e8d0998c69caf6e9495db1d6df562f8b9e90003,citation,http://pdfs.semanticscholar.org/1e8d/0998c69caf6e9495db1d6df562f8b9e90003.pdf,Solving the Small Sample Size Problem of LDA,2002 +156,FERET,feret,32.87935255,-117.23110049,"University of California, San Diego",edu,99b93f67c3b2b0a474bf5670a7dd40a6a0e849ac,citation,http://pdfs.semanticscholar.org/99b9/3f67c3b2b0a474bf5670a7dd40a6a0e849ac.pdf,NIMBLER: A Model of Visual Attention and Object Recognition With a Biologically Plausible Retina,2007 +157,FERET,feret,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,9729930ab0f9cbcd07f1105bc69c540330cda50a,citation,https://doi.org/10.1109/ACCESS.2017.2749331,Compressing Fisher Vector for Robust Face Recognition,2017 +158,FERET,feret,31.32235655,121.38400941,Shanghai University,edu,459eb3cfd9b52a0d416571e4bc4e75f979f4b901,citation,https://doi.org/10.1109/ROBIO.2015.7418998,Vision development of humanoid head robot SHFR-III,2015 +159,FERET,feret,34.8452999,48.5596212,Islamic Azad University,edu,14b2dff604f148c4e5b54aa25fbecbf7f9071205,citation,http://www.iranprc.org/pdf/paper/2011-06.pdf,A new preselection method for face recognition in JPEG domain based on face segmentation,2011 +160,FERET,feret,47.5612651,7.5752961,University of Basel,edu,ff47698be7313005d0ea0fe0cc72c13f2f4b092a,citation,http://pdfs.semanticscholar.org/ff47/698be7313005d0ea0fe0cc72c13f2f4b092a.pdf,Caring or daring? Exploring the impact of facial masculinity/femininity and gender category information on first impressions,2017 +161,FERET,feret,35.84658875,127.1350133,Chonbuk National University,edu,0c6a18b0cee01038eb1f9373c369835b236373ae,citation,https://doi.org/10.1007/s11042-017-4359-9,Learning warps based similarity for pose-unconstrained face recognition,2017 +162,FERET,feret,40.72925325,-73.99625394,New York University,edu,54e6343f4368d9e5468c3e83b6eeb3a58a3c7555,citation,http://pdfs.semanticscholar.org/54e6/343f4368d9e5468c3e83b6eeb3a58a3c7555.pdf,Reconstructing Perceived and Retrieved Faces from Activity Patterns in Lateral Parietal Cortex.,2016 +163,FERET,feret,38.8833413,-77.1045977,DARPA,mil,00d6e5a1b347463f6aeb08a10cd912273c9d1347,citation,http://pdfs.semanticscholar.org/00d6/e5a1b347463f6aeb08a10cd912273c9d1347.pdf,Face Recognition Vendor Test 2002 : Evaluation Report,2003 +164,FERET,feret,39.1254938,-77.22293475,National Institute of Standards and Technology,edu,00d6e5a1b347463f6aeb08a10cd912273c9d1347,citation,http://pdfs.semanticscholar.org/00d6/e5a1b347463f6aeb08a10cd912273c9d1347.pdf,Face Recognition Vendor Test 2002 : Evaluation Report,2003 +165,FERET,feret,41.5007811,2.11143663,Universitat Autònoma de Barcelona,edu,dc964b9c7242a985eb255b2410a9c45981c2f4d0,citation,http://doi.org/10.1007/s10851-018-0837-6,Feature Extraction by Using Dual-Generalized Discriminative Common Vectors,2018 +166,FERET,feret,40.00229045,116.32098908,Tsinghua University,edu,8023864256a1a4a26e130a7165f3d70875c27467,citation,http://pdfs.semanticscholar.org/8023/864256a1a4a26e130a7165f3d70875c27467.pdf,LUT-Based Adaboost for Gender Classification,2003 +167,FERET,feret,47.05821,15.46019568,Graz University of Technology,edu,2a77e3221d0512aa5674cf6f9041c1ce81fc07f0,citation,http://pdfs.semanticscholar.org/65de/08bab21921fba39e97f0bc3585f62cb2bd5d.pdf,An Automatic Hybrid Segmentation Approach for Aligned Face Portrait Images,2009 +168,FERET,feret,51.5231607,-0.1282037,University College London,edu,aff92784567095ee526a705e21be4f42226bbaab,citation,http://pdfs.semanticscholar.org/aff9/2784567095ee526a705e21be4f42226bbaab.pdf,Face recognition in uncontrolled environments,2015 +169,FERET,feret,47.79475945,13.05417525,University of Salzburg,edu,a7d7fba176e442f60899c57b976ae6de6d013ceb,citation,http://pdfs.semanticscholar.org/a7d7/fba176e442f60899c57b976ae6de6d013ceb.pdf,Gender differences in experiential and facial reactivity to approval and disapproval during emotional social interactions,2015 +170,FERET,feret,52.3553655,4.9501644,University of Amsterdam,edu,a7d7fba176e442f60899c57b976ae6de6d013ceb,citation,http://pdfs.semanticscholar.org/a7d7/fba176e442f60899c57b976ae6de6d013ceb.pdf,Gender differences in experiential and facial reactivity to approval and disapproval during emotional social interactions,2015 +171,FERET,feret,35.6902784,139.69540096,Kogakuin University,edu,ca50b25eaad0c9146fc5a4a2cd4c472c77b970ba,citation,http://pdfs.semanticscholar.org/ca50/b25eaad0c9146fc5a4a2cd4c472c77b970ba.pdf,Face Recognition Using Histogram-based Features in Spatial and Frequency Domains,2013 +172,FERET,feret,38.2530945,140.8736593,Tohoku University,edu,ca50b25eaad0c9146fc5a4a2cd4c472c77b970ba,citation,http://pdfs.semanticscholar.org/ca50/b25eaad0c9146fc5a4a2cd4c472c77b970ba.pdf,Face Recognition Using Histogram-based Features in Spatial and Frequency Domains,2013 +173,FERET,feret,22.59805605,113.98533784,Shenzhen Institutes of Advanced Technology,edu,79dc9a1aa2ab7fa46e8024bd654a4a5776c1a6d6,citation,http://mmlab.siat.ac.cn/sfchen-old/Publications/ICIA11-3Dtracking.pdf,Robust non-rigid 3D tracking for face recognition in real-world videos,2011 +174,FERET,feret,22.42031295,114.20788644,Chinese University of Hong Kong,edu,79dc9a1aa2ab7fa46e8024bd654a4a5776c1a6d6,citation,http://mmlab.siat.ac.cn/sfchen-old/Publications/ICIA11-3Dtracking.pdf,Robust non-rigid 3D tracking for face recognition in real-world videos,2011 +175,FERET,feret,43.7743911,-79.50481085,York University,edu,ffe4bb47ec15f768e1744bdf530d5796ba56cfc1,citation,https://arxiv.org/pdf/1706.04277.pdf,AFIF4: Deep Gender Classification based on AdaBoost-based Fusion of Isolated Facial Features and Foggy Faces,2017 +176,FERET,feret,27.18794105,31.17009498,Assiut University,edu,ffe4bb47ec15f768e1744bdf530d5796ba56cfc1,citation,https://arxiv.org/pdf/1706.04277.pdf,AFIF4: Deep Gender Classification based on AdaBoost-based Fusion of Isolated Facial Features and Foggy Faces,2017 +177,FERET,feret,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,cd6aaa37fffd0b5c2320f386be322b8adaa1cc68,citation,https://arxiv.org/pdf/1804.06655.pdf,Deep Face Recognition: A Survey,2018 +178,FERET,feret,32.0565957,118.77408833,Nanjing University,edu,f2ad9b43bac8c2bae9dea694f6a4e44c760e63da,citation,http://pdfs.semanticscholar.org/f2ad/9b43bac8c2bae9dea694f6a4e44c760e63da.pdf,A Study on Illumination Invariant Face Recognition Methods Based on Multiple Eigenspaces,2005 +179,FERET,feret,46.897155,-96.81827603,North Dakota State University,edu,f2ad9b43bac8c2bae9dea694f6a4e44c760e63da,citation,http://pdfs.semanticscholar.org/f2ad/9b43bac8c2bae9dea694f6a4e44c760e63da.pdf,A Study on Illumination Invariant Face Recognition Methods Based on Multiple Eigenspaces,2005 +180,FERET,feret,33.776033,-84.39884086,Georgia Institute of Technology,edu,933d06908b782279b1127c9ba498d868b26ffe8e,citation,https://pdfs.semanticscholar.org/933d/06908b782279b1127c9ba498d868b26ffe8e.pdf,Computers Seeing People,1999 +181,FERET,feret,32.87935255,-117.23110049,"University of California, San Diego",edu,9e31e77f9543ab42474ba4e9330676e18c242e72,citation,https://arxiv.org/pdf/1807.11649.pdf,The Devil of Face Recognition is in the Noise,2018 +182,FERET,feret,1.3484104,103.68297965,Nanyang Technological University,edu,9e31e77f9543ab42474ba4e9330676e18c242e72,citation,https://arxiv.org/pdf/1807.11649.pdf,The Devil of Face Recognition is in the Noise,2018 +183,FERET,feret,65.0592157,25.46632601,University of Oulu,edu,769d1a0aff0cf7842c7861d30ce654a029d6b467,citation,http://pdfs.semanticscholar.org/769d/1a0aff0cf7842c7861d30ce654a029d6b467.pdf,Descriptor Learning Based on Fisher Separation Criterion for Texture Classification,2010 +184,FERET,feret,31.30104395,121.50045497,Fudan University,edu,380862d22617064ffab1a3b42f0b11752d6bd785,citation,http://pdfs.semanticscholar.org/3808/62d22617064ffab1a3b42f0b11752d6bd785.pdf,Recognition from a Single Sample per Person with Multiple SOM Fusion,2006 +185,FERET,feret,41.98676415,20.96254516,South East European University,edu,f2cc459ada3abd9d8aa82e92710676973aeff275,citation,http://ieeexplore.ieee.org/document/5967185/,Object class recognition using range of multiple computer vision algorithms,2011 +186,FERET,feret,49.25839375,-123.24658161,University of British Columbia,edu,4bc55ffc2f53801267ca1767028515be6e84f551,citation,http://pdfs.semanticscholar.org/4bc5/5ffc2f53801267ca1767028515be6e84f551.pdf,The Decision to Engage Cognitive Control Is Driven by Expected Reward-Value: Neural and Behavioral Evidence,2012 +187,FERET,feret,28.54632595,77.27325504,Indian Institute of Technology Delhi,edu,0fae5d9d2764a8d6ea691b9835d497dd680bbccd,citation,http://pdfs.semanticscholar.org/0fae/5d9d2764a8d6ea691b9835d497dd680bbccd.pdf,Face Recognition using Canonical Correlation Analysis,2006 +188,FERET,feret,22.42031295,114.20788644,Chinese University of Hong Kong,edu,71ed20748c919cd261024b146992ced4c9c2157b,citation,http://mmlab.ie.cuhk.edu.hk/archive/2006/01640756.pdf,Learning Semantic Patterns with Discriminant Localized Binary Projections,2006 +189,FERET,feret,39.977217,116.337632,Microsoft Research Asia,company,71ed20748c919cd261024b146992ced4c9c2157b,citation,http://mmlab.ie.cuhk.edu.hk/archive/2006/01640756.pdf,Learning Semantic Patterns with Discriminant Localized Binary Projections,2006 +190,FERET,feret,40.11571585,-88.22750772,Beckman Institute,edu,71ed20748c919cd261024b146992ced4c9c2157b,citation,http://mmlab.ie.cuhk.edu.hk/archive/2006/01640756.pdf,Learning Semantic Patterns with Discriminant Localized Binary Projections,2006 +191,FERET,feret,51.24303255,-0.59001382,University of Surrey,edu,9103148dd87e6ff9fba28509f3b265e1873166c9,citation,http://pdfs.semanticscholar.org/9103/148dd87e6ff9fba28509f3b265e1873166c9.pdf,Face Analysis using 3D Morphable Models,2015 +192,FERET,feret,33.30715065,-111.67653157,Arizona State University,edu,80cef64706957c53a31b67045d208efe39205c9e,citation,http://pdfs.semanticscholar.org/80ce/f64706957c53a31b67045d208efe39205c9e.pdf,Deficits in other-race face recognition: no evidence for encoding-based effects.,2009 +193,FERET,feret,51.44415765,7.26096541,Ruhr-University Bochum,edu,ce0aa94c79f60c35073f434a7fd6987180f81527,citation,http://pdfs.semanticscholar.org/ce0a/a94c79f60c35073f434a7fd6987180f81527.pdf,Achieving Anonymity against Major Face Recognition Algorithms,2013 +194,FERET,feret,-33.3578899,151.37834708,University of Newcastle,edu,eb6f15c59e6f2ffaa9a0a55d3f045c23a5a6d275,citation,http://pdfs.semanticscholar.org/eb6f/15c59e6f2ffaa9a0a55d3f045c23a5a6d275.pdf,State-Trace Analysis of the Face Inversion Effect,2009 +195,FERET,feret,51.5231607,-0.1282037,University College London,edu,db3e78704df982b2af92282e4a74aa3b59ea3a2e,citation,https://pdfs.semanticscholar.org/1e69/9d9e0470c5d39ff78eaf21b394a90691c513.pdf,A recurrent dynamic model for correspondence-based face recognition.,2008 +196,FERET,feret,38.2530945,140.8736593,Tohoku University,edu,7589bded8fed54d6eb7800d24ace662b37ed0779,citation,https://pdfs.semanticscholar.org/7589/bded8fed54d6eb7800d24ace662b37ed0779.pdf,Face Recognition Algorithm Using Muti-direction Markov Stationary Features and Adjacent Pixel Intensity Difference Quantization Histogram,2012 +197,FERET,feret,24.18005755,120.64836072,Feng Chia University,edu,344a5802999dddd0a6d1c4d511910af2eb922231,citation,http://pdfs.semanticscholar.org/f0ba/552418698d1b881c6f9f02e2c84f969e66f3.pdf,DroneFace: An Open Dataset for Drone Research,2017 +198,FERET,feret,65.0592157,25.46632601,University of Oulu,edu,7c87f445a15597f603756587e0f9b8cf4d942ecc,citation,http://pdfs.semanticscholar.org/7c87/f445a15597f603756587e0f9b8cf4d942ecc.pdf,Analysis of Sampling Techniques for Learning Binarized Statistical Image Features Using Fixations and Salience,2014 +199,FERET,feret,40.00229045,116.32098908,Tsinghua University,edu,04e06481e455c6eb838c22e8505dafc01b7d0cfa,citation,http://mmlab.ie.cuhk.edu.hk/archive/2008/L1.pdf,L<inf>1</inf> regularized projection pursuit for additive model learning,2008 +200,FERET,feret,41.70456775,-86.23822026,University of Notre Dame,edu,841855205818d3a6d6f85ec17a22515f4f062882,citation,https://arxiv.org/pdf/1805.11529.pdf,Low Resolution Face Recognition in the Wild,2018 +201,FERET,feret,42.3583961,-71.09567788,MIT,edu,05bd6c2bc5dc6d65c48c6366788441bcfdd9db3a,citation,http://pdfs.semanticscholar.org/05bd/6c2bc5dc6d65c48c6366788441bcfdd9db3a.pdf,Personalizing Smart Environments: Face Recognition for Human Interaction,1999 +202,FERET,feret,51.0784038,-114.1287077,University of Calgary,edu,9902acd6ce7662c93ee2bd41c6c11a6b99ad8754,citation,https://pdfs.semanticscholar.org/9902/acd6ce7662c93ee2bd41c6c11a6b99ad8754.pdf,Robust Multimodal Biometric System using Markov Chain based Rank Level Fusion,2010 +203,FERET,feret,-27.47715625,153.02841004,Queensland University of Technology,edu,6342a4c54835c1e14159495373ab18b4233d2d9b,citation,http://pdfs.semanticscholar.org/6342/a4c54835c1e14159495373ab18b4233d2d9b.pdf,Towards Pose-robust Face Recognition on Video,2014 +204,FERET,feret,54.98023235,-1.61452627,Newcastle University,edu,241416b1249d2b71b373f8dcf054110d579a2148,citation,http://pdfs.semanticscholar.org/2414/16b1249d2b71b373f8dcf054110d579a2148.pdf,Biometric face recognition using multilinear projection and artificial intelligence,2013 +205,FERET,feret,32.0565957,118.77408833,Nanjing University,edu,001d909eb3513fb6fad8fb2355971441255458c3,citation,http://mplab.ucsd.edu/wordpress/wp-content/uploads/CVPR2008/Conference/data/papers/023.pdf,Minimal local reconstruction error measure based discriminant feature extraction and classification,2008 +206,FERET,feret,42.357757,-83.06286711,Wayne State University,edu,95d567081510e8e59834febc958668015c174602,citation,http://pdfs.semanticscholar.org/95d5/67081510e8e59834febc958668015c174602.pdf,Combining Gabor features: summing vs. voting in human face recognition,2003 +207,FERET,feret,45.7835966,4.7678948,École Centrale de Lyon,edu,e984017c5849ea78e3f50e374a5539770989536d,citation,http://pdfs.semanticscholar.org/e984/017c5849ea78e3f50e374a5539770989536d.pdf,Bilinear Discriminant Analysis for Face Recognition,2005 +208,FERET,feret,39.00041165,-77.10327775,National Institutes of Health,edu,b313751548018e4ecd5ae2ce6b3b94fbd9cae33e,citation,http://doi.org/10.1007/s11263-008-0143-7,Evaluation of Face Datasets as Tools for Assessing the Performance of Face Recognition Methods,2008 +209,FERET,feret,45.5039761,-73.5749687,McGill University,edu,ed9d11e995baeec17c5d2847ec1a8d5449254525,citation,https://pdfs.semanticscholar.org/ed9d/11e995baeec17c5d2847ec1a8d5449254525.pdf,Efficient Gender Classification Using a Deep LDA-Pruned Net,2017 +210,FERET,feret,51.49887085,-0.17560797,Imperial College London,edu,385fa8768d174a9044bc723548a7f8810a62606c,citation,http://pdfs.semanticscholar.org/385f/a8768d174a9044bc723548a7f8810a62606c.pdf,Using an holistic method based on prior information to represent global and local variations on face images,2014 +211,FERET,feret,-35.2776999,149.118527,Australian National University,edu,826f1ac8ef16abd893062fdf5058a09881aed516,citation,https://arxiv.org/pdf/1801.02279.pdf,Identity-Preserving Face Recovery from Portraits,2018 +212,FERET,feret,36.20304395,117.05842113,Tianjin University,edu,1d5219687b9e63767f19cd804147c256c5a5a3bc,citation,https://pdfs.semanticscholar.org/1d52/19687b9e63767f19cd804147c256c5a5a3bc.pdf,Patch-based locality-enhanced collaborative representation for face recognition,2015 +213,FERET,feret,43.66333345,-79.39769975,University of Toronto,edu,c423b0a0b7232a5cd0c3f4c75164923a3f04cdcd,citation,http://pdfs.semanticscholar.org/c423/b0a0b7232a5cd0c3f4c75164923a3f04cdcd.pdf,Kernel Discriminant Learning with Application to Face Recognition,2004 +214,FERET,feret,38.83133325,-77.30798839,George Mason University,edu,a1c1970f7c728cc96aea798d65d38df7c9ea61dc,citation,http://pdfs.semanticscholar.org/a1c1/970f7c728cc96aea798d65d38df7c9ea61dc.pdf,Eye Location Using Genetic Algorithm,1999 +215,FERET,feret,47.05821,15.46019568,Graz University of Technology,edu,e121bf6f18e1cb114216a521df63c55030d10fbe,citation,http://pdfs.semanticscholar.org/e121/bf6f18e1cb114216a521df63c55030d10fbe.pdf,Robust Facial Component Detection for Face Alignment Applications,2009 +216,FERET,feret,32.0565957,118.77408833,Nanjing University,edu,bc6011807fadc2d3e6bc97bb2c2ecee5ec1b64a8,citation,http://pdfs.semanticscholar.org/bc60/11807fadc2d3e6bc97bb2c2ecee5ec1b64a8.pdf,Robust Face Recognition from a Single Training Image per Person with Kernel-Based SOM-Face,2004 +217,FERET,feret,40.0044795,116.370238,Chinese Academy of Sciences,edu,bc6011807fadc2d3e6bc97bb2c2ecee5ec1b64a8,citation,http://pdfs.semanticscholar.org/bc60/11807fadc2d3e6bc97bb2c2ecee5ec1b64a8.pdf,Robust Face Recognition from a Single Training Image per Person with Kernel-Based SOM-Face,2004 +218,FERET,feret,51.24303255,-0.59001382,University of Surrey,edu,09ef369754fccb530e658b8331c405867c0d45a6,citation,http://pdfs.semanticscholar.org/09ef/369754fccb530e658b8331c405867c0d45a6.pdf,Comparison of Face Verification Results on the XM2VTS Database,2000 +219,FERET,feret,40.62984145,22.9588935,Aristotle University of Thessaloniki,edu,09ef369754fccb530e658b8331c405867c0d45a6,citation,http://pdfs.semanticscholar.org/09ef/369754fccb530e658b8331c405867c0d45a6.pdf,Comparison of Face Verification Results on the XM2VTS Database,2000 +220,FERET,feret,-33.88890695,151.18943366,University of Sydney,edu,09ef369754fccb530e658b8331c405867c0d45a6,citation,http://pdfs.semanticscholar.org/09ef/369754fccb530e658b8331c405867c0d45a6.pdf,Comparison of Face Verification Results on the XM2VTS Database,2000 +221,FERET,feret,47.3764534,8.54770931,ETH Zürich,edu,09ef369754fccb530e658b8331c405867c0d45a6,citation,http://pdfs.semanticscholar.org/09ef/369754fccb530e658b8331c405867c0d45a6.pdf,Comparison of Face Verification Results on the XM2VTS Database,2000 +222,FERET,feret,22.3386304,114.2620337,Hong Kong University of Science and Technology,edu,ca2e14671f5043dab985dd18e10c5e3f51e2e8be,citation,http://pdfs.semanticscholar.org/ca2e/14671f5043dab985dd18e10c5e3f51e2e8be.pdf,Face Recognition by Using Elongated Local Binary Patterns with Average Maximum Distance Gradient Magnitude,2007 +223,FERET,feret,34.0224149,-118.28634407,University of Southern California,edu,edc6d96ae195897b33c07f5fa428149915b4cf6a,citation,http://pdfs.semanticscholar.org/edc6/d96ae195897b33c07f5fa428149915b4cf6a.pdf,Face Pose Estimation System by Combining Hybrid Ica-svm Learning and 3d Modeling,2003 +224,FERET,feret,35.14479945,33.90492318,Eastern Mediterranean University,edu,f65ff9d6d0025f198ac4f924d2f0df121bc51c67,citation,http://pdfs.semanticscholar.org/f65f/f9d6d0025f198ac4f924d2f0df121bc51c67.pdf,Overlapping on Partitioned Facial Images,2006 +225,FERET,feret,47.5612651,7.5752961,University of Basel,edu,916498961a51f56a592c3551b0acc25978571fa7,citation,http://doi.ieeecomputersociety.org/10.1109/ICCV.2011.6126275,Optimal landmark detection using shape models and branch and bound,2011 +226,FERET,feret,35.9023226,14.4834189,University of Malta,edu,4efd58102ff46b7435c9ec6d4fc3dd21d93b15b4,citation,https://doi.org/10.1109/TIFS.2017.2788002,"Matching Software-Generated Sketches to Face Photographs With a Very Deep CNN, Morphed Faces, and Transfer Learning",2018 +227,FERET,feret,24.7246403,46.62335012,King Saud University,edu,e26a7e343fe109e2b52d1eeea5b02dae836f3502,citation,https://doi.org/10.1109/ACCESS.2017.2676238,Facial Expression Recognition Utilizing Local Direction-Based Robust Features and Deep Belief Network,2017 +228,FERET,feret,59.93891665,10.72170765,University of Oslo,edu,e26a7e343fe109e2b52d1eeea5b02dae836f3502,citation,https://doi.org/10.1109/ACCESS.2017.2676238,Facial Expression Recognition Utilizing Local Direction-Based Robust Features and Deep Belief Network,2017 +229,FERET,feret,31.9078499,34.81334092,Weizmann Institute of Science,edu,4cb8a691a15e050756640c0a35880cdd418e2b87,citation,http://www.vision.caltech.edu/~bart/Publications/2004/BartUllmanClassBasedMatching.pdf,Class-Based Matching of Object Parts,2004 +230,FERET,feret,39.4808376,-0.3409522,Universitat Politècnica de València,edu,99b8a24aacaa53fa3f8a7e48734037c7b16f1c40,citation,https://doi.org/10.1109/ACCESS.2017.2752176,A Proposal to Improve the Authentication Process in m-Health Environments,2017 +231,FERET,feret,32.7283683,-97.11201835,University of Texas at Arlington,edu,c2fa83e8a428c03c74148d91f60468089b80c328,citation,http://pdfs.semanticscholar.org/c2fa/83e8a428c03c74148d91f60468089b80c328.pdf,Optimal Mean Robust Principal Component Analysis,2014 +232,FERET,feret,28.0599999,-82.41383619,University of South Florida,edu,1b3e66bef13f114943d460b4f942e941b4761ba2,citation,http://www.nist.gov/customcf/get_pdf.cfm?pub_id=890061,Subspace Approximation of Face Recognition Algorithms: An Empirical Study,2008 +233,FERET,feret,39.1254938,-77.22293475,National Institute of Standards and Technology,edu,1b3e66bef13f114943d460b4f942e941b4761ba2,citation,http://www.nist.gov/customcf/get_pdf.cfm?pub_id=890061,Subspace Approximation of Face Recognition Algorithms: An Empirical Study,2008 +234,FERET,feret,28.0599999,-82.41383619,University of South Florida,edu,bdc3546ceee0c2bda9debff7de9aa7d53a03fe7d,citation,https://pdfs.semanticscholar.org/bdc3/546ceee0c2bda9debff7de9aa7d53a03fe7d.pdf,Modeling distance functions induced by face recognition algorithms,2015 +235,FERET,feret,37.4102193,-122.05965487,Carnegie Mellon University,edu,0fbe38527279f49561c0e1c6ff4e8f733fb79bbe,citation,http://pdfs.semanticscholar.org/7561/b691eb5e9913e4c3cb11caf2738d58b9c896.pdf,Integrating Utility into Face De-identification,2005 +236,FERET,feret,43.66333345,-79.39769975,University of Toronto,edu,90ea3a35e946af97372c3f32a170b179fe8352aa,citation,http://pdfs.semanticscholar.org/90ea/3a35e946af97372c3f32a170b179fe8352aa.pdf,Discriminant Learning for Face Recognition,2004 +237,FERET,feret,35.93006535,-84.31240032,Oak Ridge National Laboratory,edu,43a03cbe8b704f31046a5aba05153eb3d6de4142,citation,http://pdfs.semanticscholar.org/9594/3329cd6922a869dd6d58ef01e9492879034c.pdf,Towards Robust Face Recognition from Video,2001 +238,FERET,feret,37.43131385,-122.16936535,Stanford University,edu,cdd2ba6e6436cb5950692702053195a22789d129,citation,https://pdfs.semanticscholar.org/976c/3b5ad438fb0cf2fb157964e8e6f07a09ad9e.pdf,Face-likeness and image variability drive responses in human face-selective ventral regions.,2012 +239,FERET,feret,31.76909325,117.17795091,Anhui University,edu,b910590a0eb191d03e1aedb3d55c905129e92e6b,citation,http://doi.acm.org/10.1145/2808492.2808570,Robust gender classification on unconstrained face images,2015 +240,FERET,feret,40.0044795,116.370238,Chinese Academy of Sciences,edu,b910590a0eb191d03e1aedb3d55c905129e92e6b,citation,http://doi.acm.org/10.1145/2808492.2808570,Robust gender classification on unconstrained face images,2015 +241,FERET,feret,43.66333345,-79.39769975,University of Toronto,edu,dc4089294cb15e071893d24bdf2baa15de5dcb0b,citation,http://www.comm.toronto.edu/~kostas/Publications2008/pub/proceed/105.pdf,Feature selection for subject identification in surveillance photos [face recognition applications],2004 +242,FERET,feret,-33.3578899,151.37834708,University of Newcastle,edu,a80d057099a6ca872508f5d416a8cd67b788506a,citation,https://pdfs.semanticscholar.org/a80d/057099a6ca872508f5d416a8cd67b788506a.pdf,A dissociation between similarity effects in episodic face recognition.,2009 +243,FERET,feret,44.97308605,-93.23708813,University of Minnesota,edu,998cdde7c83a50f0abac69c7c3d20f3729a65d00,citation,https://pdfs.semanticscholar.org/998c/dde7c83a50f0abac69c7c3d20f3729a65d00.pdf,Redundancy effects in the perception and memory of visual objects,2010 +244,FERET,feret,34.66869155,-82.83743476,Clemson University,edu,56c273538a2dbb4cf43c39fa4725592e97ec1681,citation,http://pdfs.semanticscholar.org/56c2/73538a2dbb4cf43c39fa4725592e97ec1681.pdf,Eye Tracking to Enhance Facial Recognition Algorithms,2011 +245,FERET,feret,25.7173339,-80.27866887,University of Miami,edu,c1f07ec629be1c6fe562af0e34b04c54e238dcd1,citation,http://pdfs.semanticscholar.org/c1f0/7ec629be1c6fe562af0e34b04c54e238dcd1.pdf,A Novel Facial Feature Localization Method Using Probabilistic-like Output,2004 +246,FERET,feret,37.5600406,126.9369248,Yonsei University,edu,5173a20304ea7baa6bfe97944a5c7a69ea72530f,citation,http://pdfs.semanticscholar.org/5173/a20304ea7baa6bfe97944a5c7a69ea72530f.pdf,Best Basis Selection Method Using Learning Weights for Face Recognition,2013 +247,FERET,feret,40.00229045,116.32098908,Tsinghua University,edu,83e893858d6a6b8abb07d89e9f821f90c2b074ea,citation,http://doi.ieeecomputersociety.org/10.1109/ICPR.2004.1334677,Facial image retrieval based on demographic classification,2004 +248,FERET,feret,34.0224149,-118.28634407,University of Southern California,edu,2d8a84a8e661ce3913cb6c05b18984b14ed11dac,citation,http://pdfs.semanticscholar.org/6fd6/af3864fc5eb62e6328be79bf8174e939efcc.pdf,P3: Toward Privacy-Preserving Photo Sharing,2013 +249,FERET,feret,40.34829285,-74.66308325,Princeton University,edu,643d11703569766bed0a994941ae5f7b3e101659,citation,https://arxiv.org/pdf/1806.06098.pdf,Unsupervised Training for 3D Morphable Model Regression,2018 +250,FERET,feret,42.3619407,-71.0904378,MIT CSAIL,edu,643d11703569766bed0a994941ae5f7b3e101659,citation,https://arxiv.org/pdf/1806.06098.pdf,Unsupervised Training for 3D Morphable Model Regression,2018 +251,FERET,feret,-29.8674219,30.9807272,University of KwaZulu-Natal,edu,fcfb48b19f37e531a56ae95186a214b05c0b94c7,citation,https://pdfs.semanticscholar.org/fcfb/48b19f37e531a56ae95186a214b05c0b94c7.pdf,FACE RECOGNITION WITH EIGENFACES – A DETAILED STUDY,2012 +252,FERET,feret,32.87935255,-117.23110049,"University of California, San Diego",edu,8c22dc1b494c4612c4ebc61b22a480666cd841d5,citation,http://pdfs.semanticscholar.org/b95b/9fcccb23be8948e96f0c110aaaedc0f7334a.pdf,Towards Practical Facial Feature Detection,2009 +253,FERET,feret,30.284151,-97.73195598,University of Texas at Austin,edu,8c22dc1b494c4612c4ebc61b22a480666cd841d5,citation,http://pdfs.semanticscholar.org/b95b/9fcccb23be8948e96f0c110aaaedc0f7334a.pdf,Towards Practical Facial Feature Detection,2009 +254,FERET,feret,41.25713055,-72.9896696,Yale University,edu,297c4503a18a959e3a06613d5e7e026ba351b9bf,citation,http://pdfs.semanticscholar.org/297c/4503a18a959e3a06613d5e7e026ba351b9bf.pdf,Neurolaw: Differential brain activity for black and white faces predicts damage awards in hypothetical employment discrimination cases.,2012 +255,FERET,feret,53.21967825,6.56251482,University of Groningen,edu,4ff4c27e47b0aa80d6383427642bb8ee9d01c0ac,citation,https://doi.org/10.1109/SSCI.2015.37,Deep Convolutional Neural Networks and Support Vector Machines for Gender Recognition,2015 +256,FERET,feret,37.43131385,-122.16936535,Stanford University,edu,90f0e0701b755bbce89cb0e4e3f0a070d49814a0,citation,http://pdfs.semanticscholar.org/90f0/e0701b755bbce89cb0e4e3f0a070d49814a0.pdf,Beyond the retina: Evidence for a face inversion effect in the environmental frame of reference,2011 +257,FERET,feret,24.7925484,120.9951183,National Tsing Hua University,edu,ede16b198b83d04b52dc3f0dafc11fd82c5abac4,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7952343,LBP edge-mapped descriptor using MGM interest points for face recognition,2017 +258,FERET,feret,42.0551164,-87.67581113,Northwestern University,edu,a6f93435e006328fd0a5dcb7639e771431cc2c37,citation,http://pdfs.semanticscholar.org/c161/7c3c90e4596867d94a00a3a2bb1d55c8843b.pdf,Why Some Faces won't be Remembered: Brain Potentials Illuminate Successful Versus Unsuccessful Encoding for Same-Race and Other-Race Faces,2011 +259,FERET,feret,40.72925325,-73.99625394,New York University,edu,a6f93435e006328fd0a5dcb7639e771431cc2c37,citation,http://pdfs.semanticscholar.org/c161/7c3c90e4596867d94a00a3a2bb1d55c8843b.pdf,Why Some Faces won't be Remembered: Brain Potentials Illuminate Successful Versus Unsuccessful Encoding for Same-Race and Other-Race Faces,2011 +260,FERET,feret,-34.9189226,138.60423668,University of Adelaide,edu,e2aafdd2f508ee383a0227de9cee00246f251ebf,citation,https://pdfs.semanticscholar.org/c6f0/53bc5dbdcd89cba842251feaa4bb8b91378b.pdf,Face Matching Under Time Pressure and Task Demands,0 +261,FERET,feret,39.9808333,116.34101249,Beihang University,edu,699be9152895977b0b272887320d543c9c7f6157,citation,http://pdfs.semanticscholar.org/699b/e9152895977b0b272887320d543c9c7f6157.pdf,Artistic Illumination Transfer for Portraits,2012 +262,FERET,feret,-29.8674219,30.9807272,University of KwaZulu-Natal,edu,651ea8b030470ab4a70efced154e77028a102713,citation,https://pdfs.semanticscholar.org/651e/a8b030470ab4a70efced154e77028a102713.pdf,Increasing Face Recognition Rate,2016 +263,FERET,feret,32.0565957,118.77408833,Nanjing University,edu,62647a8f8a534db2ccfd0df7d513b4f084231d10,citation,http://pdfs.semanticscholar.org/6264/7a8f8a534db2ccfd0df7d513b4f084231d10.pdf,Weighted SOM-Face: Selecting Local Features for Recognition from Individual Face Image,2005 +264,FERET,feret,31.30104395,121.50045497,Fudan University,edu,62647a8f8a534db2ccfd0df7d513b4f084231d10,citation,http://pdfs.semanticscholar.org/6264/7a8f8a534db2ccfd0df7d513b4f084231d10.pdf,Weighted SOM-Face: Selecting Local Features for Recognition from Individual Face Image,2005 +265,FERET,feret,52.22165395,21.00735776,Warsaw University of Technology,edu,d31bf8f6f9404a0ab2e601e723b9a07287d0693b,citation,http://pdfs.semanticscholar.org/d31b/f8f6f9404a0ab2e601e723b9a07287d0693b.pdf,Feature Space Reduction for Face Recognition with Dual Linear Discriminant Analysis,2005 +266,FERET,feret,38.83133325,-77.30798839,George Mason University,edu,35cdd4df9f039f475247bf03fdcc605e40683dce,citation,http://pdfs.semanticscholar.org/35cd/d4df9f039f475247bf03fdcc605e40683dce.pdf,Eye Detection and Face Recognition Using Evolutionary Computation,1998 +267,FERET,feret,38.2530945,140.8736593,Tohoku University,edu,5c707dc74c3c39674f74dc22f6b6325af456811c,citation,http://www.aoki.ecei.tohoku.ac.jp/~ito/W13_04.pdf,Restoring occluded regions using FW-PCA for face recognition,2012 +268,FERET,feret,38.83133325,-77.30798839,George Mason University,edu,a40476d94c5cf1f929ee9514d3761dca00dd774b,citation,http://pdfs.semanticscholar.org/a404/76d94c5cf1f929ee9514d3761dca00dd774b.pdf,Watch List Face Surveillance Using Transductive Inference,2004 +269,FERET,feret,41.25713055,-72.9896696,Yale University,edu,e4691de78d35ed7085311a466b8d02198bf714ac,citation,http://pdfs.semanticscholar.org/e469/1de78d35ed7085311a466b8d02198bf714ac.pdf,The relation between race-related implicit associations and scalp-recorded neural activity evoked by faces from different races.,2009 +270,FERET,feret,32.87935255,-117.23110049,"University of California, San Diego",edu,85639cefb8f8deab7017ce92717674d6178d43cc,citation,http://pdfs.semanticscholar.org/8563/9cefb8f8deab7017ce92717674d6178d43cc.pdf,Automatic Analysis of Spontaneous Facial Behavior: A Final Project Report,2001 +271,FERET,feret,32.87935255,-117.23110049,"University of California, San Diego",edu,a967426ec9b761a989997d6a213d890fc34c5fe3,citation,http://vision.ucsd.edu/sites/default/files/043-wacv.pdf,Relative ranking of facial attractiveness,2013 +272,FERET,feret,37.3003127,126.972123,SungKyunKwan University,edu,055530f7f771bb1d5f352e2758d1242408d34e4d,citation,http://pdfs.semanticscholar.org/0555/30f7f771bb1d5f352e2758d1242408d34e4d.pdf,A Facial Expression Recognition System from Depth Video,2014 +273,FERET,feret,38.83133325,-77.30798839,George Mason University,edu,be84d76093a791bf78bed74ef1d7db54abeca878,citation,http://pdfs.semanticscholar.org/be84/d76093a791bf78bed74ef1d7db54abeca878.pdf,Open World Face Recognition with Credibility and Confidence Measures,2003 +274,FERET,feret,28.0599999,-82.41383619,University of South Florida,edu,ddb49e36570af09d96059b3b6f08f9124aafe24f,citation,http://doi.ieeecomputersociety.org/10.1109/ICPR.2006.129,A Non-Iterative Approach to Reconstruct Face Templates from Match Scores,2006 +275,FERET,feret,32.42143805,-81.78450529,Georgia Southern University,edu,98fcf33916a9bb4efdc652541573b2e7ef9e7d87,citation,http://pdfs.semanticscholar.org/98fc/f33916a9bb4efdc652541573b2e7ef9e7d87.pdf,Trustworthy Tricksters: Violating a Negative Social Expectation Affects Source Memory and Person Perception When Fear of Exploitation Is High,2016 +276,FERET,feret,37.5600406,126.9369248,Yonsei University,edu,11fa5abb5d5d09efbf9dacae6a6ceb9b2647f877,citation,https://arxiv.org/pdf/1507.02049v3.pdf,DCTNet: A simple learning-free approach for face recognition,2015 +277,FERET,feret,49.10184375,8.4331256,Karlsruhe Institute of Technology,edu,cfdc4d0f8e1b4b9ced35317d12b4229f2e3311ab,citation,https://pdfs.semanticscholar.org/cfdc/4d0f8e1b4b9ced35317d12b4229f2e3311ab.pdf,Quaero at TRECVID 2010: Semantic Indexing,2010 +278,FERET,feret,65.0592157,25.46632601,University of Oulu,edu,dbc749490275db26337c7e3201027e8cef8e371c,citation,http://pdfs.semanticscholar.org/dbc7/49490275db26337c7e3201027e8cef8e371c.pdf,Multi-band Gradient Component Pattern (MGCP): A New Statistical Feature for Face Recognition,2009 +279,FERET,feret,47.05821,15.46019568,Graz University of Technology,edu,65f6d0d91cdf1a77e3c5cb78c7d21f0f4f01f8b5,citation,http://pdfs.semanticscholar.org/65f6/d0d91cdf1a77e3c5cb78c7d21f0f4f01f8b5.pdf,"PhD Thesis Incremental, Robust, and Efficient Linear Discriminant Analysis Learning",2008 +280,FERET,feret,32.0565957,118.77408833,Nanjing University,edu,0e9ea74cf7106057efdb63f275ca6bb838168b0c,citation,http://pdfs.semanticscholar.org/0e9e/a74cf7106057efdb63f275ca6bb838168b0c.pdf,Progressive Principal Component Analysis,2004 +281,FERET,feret,51.0784038,-114.1287077,University of Calgary,edu,d4d2014f05e17869b72f180fd0065358c722ac65,citation,http://pdfs.semanticscholar.org/d4d2/014f05e17869b72f180fd0065358c722ac65.pdf,UNIVERSITY OF CALGARY A MULTIMODAL BIOMETRIC SYSTEM BASED ON RANK LEVEL FUSION by MD. MARUF MONWAR A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY,2012 +282,FERET,feret,24.18005755,120.64836072,Feng Chia University,edu,fdd7c9f3838b8d868911afaafa08beffb79b5228,citation,https://pdfs.semanticscholar.org/fdd7/c9f3838b8d868911afaafa08beffb79b5228.pdf,An efficient mechanism for compensating vague pattern identification in support of a multi-criteria recommendation system,2016 +283,FERET,feret,22.9991916,120.21625134,National Cheng Kung University,edu,fdd7c9f3838b8d868911afaafa08beffb79b5228,citation,https://pdfs.semanticscholar.org/fdd7/c9f3838b8d868911afaafa08beffb79b5228.pdf,An efficient mechanism for compensating vague pattern identification in support of a multi-criteria recommendation system,2016 +284,FERET,feret,41.10427915,29.02231159,Istanbul Technical University,edu,d3d5d86afec84c0713ec868cf5ed41661fc96edc,citation,https://arxiv.org/pdf/1606.02894.pdf,A Comprehensive Analysis of Deep Learning Based Representation for Face Recognition,2016 +285,FERET,feret,40.8927159,29.37863323,Sabanci University,edu,d3d5d86afec84c0713ec868cf5ed41661fc96edc,citation,https://arxiv.org/pdf/1606.02894.pdf,A Comprehensive Analysis of Deep Learning Based Representation for Face Recognition,2016 +286,FERET,feret,32.7283683,-97.11201835,University of Texas at Arlington,edu,20100dbeb2dfebc7595d79755d737b21e75f39a6,citation,http://pdfs.semanticscholar.org/2010/0dbeb2dfebc7595d79755d737b21e75f39a6.pdf,Cluster Indicator Decomposition for Efficient Matrix Factorization,2011 +287,FERET,feret,37.4102193,-122.05965487,Carnegie Mellon University,edu,3ca9453d3c023bb81cce72ff2d633fc5075e1df6,citation,http://pdfs.semanticscholar.org/e36f/5fab8758194fcad043e23288330657fe7742.pdf,Generic vs. Person Specific Active Appearance Models,2004 +288,FERET,feret,28.59899755,-81.19712501,University of Central Florida,edu,d082f35534932dfa1b034499fc603f299645862d,citation,http://pdfs.semanticscholar.org/d082/f35534932dfa1b034499fc603f299645862d.pdf,"TAMING WILD FACES: WEB-SCALE, OPEN-UNIVERSE FACE IDENTIFICATION IN STILL AND VIDEO IMAGERY by ENRIQUE",2014 +289,FERET,feret,40.00229045,116.32098908,Tsinghua University,edu,649b47e02b82afeccc858f1f3dcec98379bfbbbd,citation,http://pdfs.semanticscholar.org/649b/47e02b82afeccc858f1f3dcec98379bfbbbd.pdf,Face Alignment Under Various Poses and Expressions,2005 +290,FERET,feret,37.43131385,-122.16936535,Stanford University,edu,7264c2a8900c2ab41575578eb2d50557b2829f84,citation,http://pdfs.semanticscholar.org/7264/c2a8900c2ab41575578eb2d50557b2829f84.pdf,Silhouetted face profiles: a new methodology for face perception research.,2007 +291,FERET,feret,32.0565957,118.77408833,Nanjing University,edu,9887ab220254859ffc7354d5189083a87c9bca6e,citation,http://pdfs.semanticscholar.org/9887/ab220254859ffc7354d5189083a87c9bca6e.pdf,Generic Image Classification Approaches Excel on Face Recognition,2013 +292,FERET,feret,-34.9189226,138.60423668,University of Adelaide,edu,9887ab220254859ffc7354d5189083a87c9bca6e,citation,http://pdfs.semanticscholar.org/9887/ab220254859ffc7354d5189083a87c9bca6e.pdf,Generic Image Classification Approaches Excel on Face Recognition,2013 +293,FERET,feret,58.38131405,26.72078081,University of Tartu,edu,838ed2aae603dec5851ebf5e4bc64b54db7f34be,citation,http://pdfs.semanticscholar.org/838e/d2aae603dec5851ebf5e4bc64b54db7f34be.pdf,Real-Time Ensemble Based Face Recognition System for Humanoid Robots,2016 +294,FERET,feret,32.8536333,-117.2035286,Kyung Hee University,edu,6fe83b5fdeeb6d92f24af3aed6a34c5bf9ce8845,citation,http://pdfs.semanticscholar.org/6fe8/3b5fdeeb6d92f24af3aed6a34c5bf9ce8845.pdf,Face Recognition Based on Local Directional Pattern Variance (LDPv),2012 +295,FERET,feret,23.7289899,90.3982682,Institute of Information Technology,edu,6e177341d4412f9c9a639e33e6096344ef930202,citation,https://pdfs.semanticscholar.org/2e58/ec57d71b2b2a3e71086234dd7037559cc17e.pdf,A Gender Recognition System from Facial Image,2018 +296,FERET,feret,23.7316957,90.3965275,University of Dhaka,edu,6e177341d4412f9c9a639e33e6096344ef930202,citation,https://pdfs.semanticscholar.org/2e58/ec57d71b2b2a3e71086234dd7037559cc17e.pdf,A Gender Recognition System from Facial Image,2018 +297,FERET,feret,40.7423025,-74.17928172,New Jersey Institute of Technology,edu,327eab70296d39511d61e91c6839446d59f5e119,citation,https://pdfs.semanticscholar.org/327e/ab70296d39511d61e91c6839446d59f5e119.pdf,Roadmap for Reliable Ensemble Forecasting of the Sun-Earth System,2018 +298,FERET,feret,21.2982795,-157.8186923,University of Hawaii,edu,327eab70296d39511d61e91c6839446d59f5e119,citation,https://pdfs.semanticscholar.org/327e/ab70296d39511d61e91c6839446d59f5e119.pdf,Roadmap for Reliable Ensemble Forecasting of the Sun-Earth System,2018 +299,FERET,feret,40.11116745,-88.22587665,"University of Illinois, Urbana-Champaign",edu,327eab70296d39511d61e91c6839446d59f5e119,citation,https://pdfs.semanticscholar.org/327e/ab70296d39511d61e91c6839446d59f5e119.pdf,Roadmap for Reliable Ensemble Forecasting of the Sun-Earth System,2018 +300,FERET,feret,38.83133325,-77.30798839,George Mason University,edu,327eab70296d39511d61e91c6839446d59f5e119,citation,https://pdfs.semanticscholar.org/327e/ab70296d39511d61e91c6839446d59f5e119.pdf,Roadmap for Reliable Ensemble Forecasting of the Sun-Earth System,2018 +301,FERET,feret,34.13710185,-118.12527487,California Institute of Technology,edu,327eab70296d39511d61e91c6839446d59f5e119,citation,https://pdfs.semanticscholar.org/327e/ab70296d39511d61e91c6839446d59f5e119.pdf,Roadmap for Reliable Ensemble Forecasting of the Sun-Earth System,2018 +302,FERET,feret,42.2942142,-83.71003894,University of Michigan,edu,327eab70296d39511d61e91c6839446d59f5e119,citation,https://pdfs.semanticscholar.org/327e/ab70296d39511d61e91c6839446d59f5e119.pdf,Roadmap for Reliable Ensemble Forecasting of the Sun-Earth System,2018 +303,FERET,feret,41.7411504,-111.8122309,Utah State University,edu,327eab70296d39511d61e91c6839446d59f5e119,citation,https://pdfs.semanticscholar.org/327e/ab70296d39511d61e91c6839446d59f5e119.pdf,Roadmap for Reliable Ensemble Forecasting of the Sun-Earth System,2018 +304,FERET,feret,36.3697191,127.362537,Korea Advanced Institute of Science and Technology,edu,b29f348e8675f75ff160ec65ebeeb3f3979b65d8,citation,http://pdfs.semanticscholar.org/b29f/348e8675f75ff160ec65ebeeb3f3979b65d8.pdf,An objective and subjective evaluation of content-based privacy protection of face images in video surveillance systems using JPEG XR,2013 +305,FERET,feret,43.66333345,-79.39769975,University of Toronto,edu,b29f348e8675f75ff160ec65ebeeb3f3979b65d8,citation,http://pdfs.semanticscholar.org/b29f/348e8675f75ff160ec65ebeeb3f3979b65d8.pdf,An objective and subjective evaluation of content-based privacy protection of face images in video surveillance systems using JPEG XR,2013 +306,FERET,feret,39.9922379,116.30393816,Peking University,edu,1c2724243b27a18a2302f12dea79d9a1d4460e35,citation,http://read.pudn.com/downloads157/doc/697237/kfd/Fisher+Kernel%20criterion%20for%20discriminant%20analysis.pdf,Fisher+Kernel criterion for discriminant analysis,2005 +307,FERET,feret,31.83907195,117.26420748,University of Science and Technology of China,edu,1c2724243b27a18a2302f12dea79d9a1d4460e35,citation,http://read.pudn.com/downloads157/doc/697237/kfd/Fisher+Kernel%20criterion%20for%20discriminant%20analysis.pdf,Fisher+Kernel criterion for discriminant analysis,2005 +308,FERET,feret,22.42031295,114.20788644,Chinese University of Hong Kong,edu,1c2724243b27a18a2302f12dea79d9a1d4460e35,citation,http://read.pudn.com/downloads157/doc/697237/kfd/Fisher+Kernel%20criterion%20for%20discriminant%20analysis.pdf,Fisher+Kernel criterion for discriminant analysis,2005 +309,FERET,feret,50.74223495,-1.89433739,Bournemouth University,edu,d16f37a15f6385a6a189b06833745da5d524f69b,citation,https://pdfs.semanticscholar.org/d16f/37a15f6385a6a189b06833745da5d524f69b.pdf,Hebb repetition effects for non-verbal visual sequences: determinants of sequence acquisition.,2017 +310,FERET,feret,40.00229045,116.32098908,Tsinghua University,edu,13791aa7c1047724c4046eee94e66a506b211eb9,citation,http://pdfs.semanticscholar.org/1379/1aa7c1047724c4046eee94e66a506b211eb9.pdf,Real-time Gender Classification,2003 +311,FERET,feret,37.3003127,126.972123,SungKyunKwan University,edu,fa72e39971855dff6beb8174b5fa654e0ab7d324,citation,https://doi.org/10.1007/s11042-013-1793-1,"A depth video-based facial expression recognition system using radon transform, generalized discriminant analysis, and hidden Markov model",2013 +312,FERET,feret,24.7246403,46.62335012,King Saud University,edu,fa72e39971855dff6beb8174b5fa654e0ab7d324,citation,https://doi.org/10.1007/s11042-013-1793-1,"A depth video-based facial expression recognition system using radon transform, generalized discriminant analysis, and hidden Markov model",2013 +313,FERET,feret,27.18794105,31.17009498,Assiut University,edu,3843b8c4143e9f1e50c61eb462376e65861bbf24,citation,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2017.359,Color Image Processing Using Reduced Biquaternions with Application to Face Recognition in a PCA Framework,2017 +314,FERET,feret,37.4102193,-122.05965487,Carnegie Mellon University,edu,0cc3c62f762d64cffcab4ac7fea3896cb22a3df9,citation,http://pdfs.semanticscholar.org/d30f/cc0e4c2c78cc5ff7bbd1227d3952d366a479.pdf,Preserving Privacy by De-identifying Facial Images,2003 +315,FERET,feret,53.8925662,-122.81471592,University of Northern British Columbia,edu,2cae2ca6221fbfa9655e41ac52e54631ada7ad2c,citation,http://pdfs.semanticscholar.org/ffd6/14925a326efcb27ef52accd5638a912b4792.pdf,Electoral College and Direct Popular Vote for Multi-Candidate Election,2010 +316,FERET,feret,34.2249827,-77.86907744,University of North Carolina at Wilmington,edu,328bfd1d0229bc4973277f893abd1eb288159fc9,citation,http://pdfs.semanticscholar.org/328b/fd1d0229bc4973277f893abd1eb288159fc9.pdf,A review of the literature on the aging adult skull and face: implications for forensic science research and applications.,2007 +317,FERET,feret,32.87935255,-117.23110049,"University of California, San Diego",edu,18b4e9e51ee14c9d816358fbe1af29f0771b7916,citation,http://pdfs.semanticscholar.org/18b4/e9e51ee14c9d816358fbe1af29f0771b7916.pdf,Intelligent environments and active camera networks,2000 +318,FERET,feret,40.8722825,-73.89489171,City University of New York,edu,0dde6981047067692793b71a2f7ad6a8708741d8,citation,http://pdfs.semanticscholar.org/0dde/6981047067692793b71a2f7ad6a8708741d8.pdf,MODELING PHYSICAL PERSONALITIES FOR VIRTUAL AGENTS BY MODELING TRAIT IMPRESSIONS OF THE FACE: A NEURAL NETWORK ANALYSIS by SHERYL BRAHNAM,2002 +319,FERET,feret,45.7413921,126.62552755,Harbin Institute of Technology,edu,20675281008211641d28ce0f2b6946537a8535c4,citation,http://pdfs.semanticscholar.org/2067/5281008211641d28ce0f2b6946537a8535c4.pdf,Multi-resolution Histograms of Local Variation Patterns (MHLVP) for Robust Face Recognition,2005 +320,FERET,feret,52.9387428,-1.20029569,University of Nottingham,edu,c22df6df55f5c6539e1a4d2e2d50dbaab34007a7,citation,http://pdfs.semanticscholar.org/c22d/f6df55f5c6539e1a4d2e2d50dbaab34007a7.pdf,Compact Binary Patterns (CBP) with Multiple Patch Classifiers for Fast and Accurate Face Recognition,2010 +321,FERET,feret,32.87935255,-117.23110049,"University of California, San Diego",edu,2e6e335e591da1e8899ff53f9a7ddb4c63520104,citation,http://pdfs.semanticscholar.org/528a/6698911ff30aa648af4d0a5cf0dd9ee90b5c.pdf,Is All Face Processing Holistic? The View from UCSD,2003 +322,FERET,feret,41.6659,-91.57310307,University of Iowa,edu,2e6e335e591da1e8899ff53f9a7ddb4c63520104,citation,http://pdfs.semanticscholar.org/528a/6698911ff30aa648af4d0a5cf0dd9ee90b5c.pdf,Is All Face Processing Holistic? The View from UCSD,2003 +323,FERET,feret,42.57054745,-88.55578627,University of Geneva,edu,9c1b132243e0dcacde1717ce1cfe730a74bd8cbc,citation,http://pdfs.semanticscholar.org/9c1b/132243e0dcacde1717ce1cfe730a74bd8cbc.pdf,Hippocampus Is Place of Interaction between Unconscious and Conscious Memories,2015 +324,FERET,feret,1.2962018,103.77689944,National University of Singapore,edu,4fb9f05dc03eb4983d8f9a815745bb47970f1b93,citation,http://pdfs.semanticscholar.org/f4ee/4f7ac7585f7ea0db3b27c5ad016dbfb0feac.pdf,"On Robust Face Recognition via Sparse Encoding: the Good, the Bad, and the Ugly",2013 +325,FERET,feret,-27.49741805,153.01316956,University of Queensland,edu,4fb9f05dc03eb4983d8f9a815745bb47970f1b93,citation,http://pdfs.semanticscholar.org/f4ee/4f7ac7585f7ea0db3b27c5ad016dbfb0feac.pdf,"On Robust Face Recognition via Sparse Encoding: the Good, the Bad, and the Ugly",2013 +326,FERET,feret,-27.47715625,153.02841004,Queensland University of Technology,edu,4fb9f05dc03eb4983d8f9a815745bb47970f1b93,citation,http://pdfs.semanticscholar.org/f4ee/4f7ac7585f7ea0db3b27c5ad016dbfb0feac.pdf,"On Robust Face Recognition via Sparse Encoding: the Good, the Bad, and the Ugly",2013 +327,FERET,feret,52.9387428,-1.20029569,University of Nottingham,edu,b9df25cc4be2f703b059da93823bad6e8e8c0659,citation,http://pdfs.semanticscholar.org/b9df/25cc4be2f703b059da93823bad6e8e8c0659.pdf,Local Gabor Binary Pattern Whitened PCA: A Novel Approach for Face Recognition from Single Image Per Person,2009 +328,FERET,feret,24.4399419,118.09301781,Xiamen University,edu,57ba4b6de23a6fc9d45ff052ed2563e5de00b968,citation,https://doi.org/10.1109/ICIP.2017.8296993,An efficient deep neural networks training framework for robust face recognition,2017 +329,FERET,feret,32.7283683,-97.11201835,University of Texas at Arlington,edu,90bd16caa44086db6f0e4bbc1dde7063cb71b7b8,citation,http://www.kdd.org/kdd2016/papers/files/rfp1162-wangA.pdf,Structured Doubly Stochastic Matrix for Graph Based Clustering: Structured Doubly Stochastic Matrix,2016 +330,FERET,feret,1.2962018,103.77689944,National University of Singapore,edu,15d1582c8b65dbab5ca027467718a2c286ddce7a,citation,http://pdfs.semanticscholar.org/15d1/582c8b65dbab5ca027467718a2c286ddce7a.pdf,"On robust face recognition via sparse coding: the good, the bad and the ugly",2014 +331,FERET,feret,-27.49741805,153.01316956,University of Queensland,edu,15d1582c8b65dbab5ca027467718a2c286ddce7a,citation,http://pdfs.semanticscholar.org/15d1/582c8b65dbab5ca027467718a2c286ddce7a.pdf,"On robust face recognition via sparse coding: the good, the bad and the ugly",2014 +332,FERET,feret,-27.47715625,153.02841004,Queensland University of Technology,edu,15d1582c8b65dbab5ca027467718a2c286ddce7a,citation,http://pdfs.semanticscholar.org/15d1/582c8b65dbab5ca027467718a2c286ddce7a.pdf,"On robust face recognition via sparse coding: the good, the bad and the ugly",2014 +333,FERET,feret,34.8452999,48.5596212,Islamic Azad University,edu,e19a4dadf60848309c8fd7445d97918da654df76,citation,https://pdfs.semanticscholar.org/e19a/4dadf60848309c8fd7445d97918da654df76.pdf,JPEG Compressed Domain Face Recognition : Different Stages and Different Features,2013 +334,FERET,feret,47.5612651,7.5752961,University of Basel,edu,d1633dc3706580c8b9d98c4c0dfa9f9a29360ca3,citation,https://arxiv.org/pdf/1712.01619.pdf,Empirically Analyzing the Effect of Dataset Biases on Deep Face Recognition Systems,2018 +335,FERET,feret,51.49887085,-0.17560797,Imperial College London,edu,e104e213faa97d9a9c8b8e1f15b7431c601cb250,citation,https://arxiv.org/pdf/1802.04636.pdf,Modeling of facial aging and kinship: A survey,2018 +336,FERET,feret,51.59029705,-0.22963221,Middlesex University,edu,e104e213faa97d9a9c8b8e1f15b7431c601cb250,citation,https://arxiv.org/pdf/1802.04636.pdf,Modeling of facial aging and kinship: A survey,2018 +337,FERET,feret,43.66333345,-79.39769975,University of Toronto,edu,da6696345d0d4ff6328c1c5916b0ca870d4cc6cf,citation,http://pdfs.semanticscholar.org/da66/96345d0d4ff6328c1c5916b0ca870d4cc6cf.pdf,Robust Contrast-Invariant EigenDetection,2002 +338,FERET,feret,52.2380139,6.8566761,University of Twente,edu,3b3550680136aa2fe3bd57c9faa3bfa0dfb3e748,citation,http://pdfs.semanticscholar.org/3b35/50680136aa2fe3bd57c9faa3bfa0dfb3e748.pdf,Forensic Face Recognition: a Survey,2010 +339,FERET,feret,31.30104395,121.50045497,Fudan University,edu,4ba3f9792954ee3ba894e1e330cd77da4668fa22,citation,http://pdfs.semanticscholar.org/4ba3/f9792954ee3ba894e1e330cd77da4668fa22.pdf,Nearest Neighbor Discriminant Analysis,2006 +340,FERET,feret,52.9387428,-1.20029569,University of Nottingham,edu,472ba8dd4ec72b34e85e733bccebb115811fd726,citation,http://pdfs.semanticscholar.org/472b/a8dd4ec72b34e85e733bccebb115811fd726.pdf,Cosine Similarity Metric Learning for Face Verification,2010 +341,FERET,feret,46.109237,7.08453549,IDIAP Research Institute,edu,ba9e967208976f24a09730af94086e7ae0417067,citation,http://pdfs.semanticscholar.org/f369/03d22a463876b895bbe37b5f9ad235a38edd.pdf,An Open Source Framework for Standardized Comparisons of Face Recognition Algorithms,2012 +342,FERET,feret,40.4319722,-86.92389368,Purdue University,edu,4d527974512083712c9adf26a923b44d7e426b44,citation,http://pdfs.semanticscholar.org/4d52/7974512083712c9adf26a923b44d7e426b44.pdf,Impact of Image Quality on Performance: Comparison of Young and Elderly Fingerprints,2006 +343,FERET,feret,-38.19928505,144.30365229,Deakin University,edu,e96ce25d11296fce4e2ecc2da03bd207dc118724,citation,https://doi.org/10.1007/s00138-007-0095-x,Classification of face images using local iterated function systems,2007 +344,FERET,feret,42.0551164,-87.67581113,Northwestern University,edu,fcd2fb1ada96218dcc2547efa040e76416cc7066,citation,http://pdfs.semanticscholar.org/fcd2/fb1ada96218dcc2547efa040e76416cc7066.pdf,Perceptual data mining: bootstrapping visual intelligence from tracking behavior,2002 +345,FERET,feret,42.3583961,-71.09567788,MIT,edu,fcd2fb1ada96218dcc2547efa040e76416cc7066,citation,http://pdfs.semanticscholar.org/fcd2/fb1ada96218dcc2547efa040e76416cc7066.pdf,Perceptual data mining: bootstrapping visual intelligence from tracking behavior,2002 +346,FERET,feret,37.3351908,-121.88126008,San Jose State University,edu,97930609f1a5066fd437ed8a4e57abbfb1ae4b12,citation,http://pdfs.semanticscholar.org/bef4/03c136beaa6fd43fc3184d4666512daaf9e5.pdf,Best Practices in Testing and Reporting Performance of Biometric Devices,2002 +347,FERET,feret,47.5612651,7.5752961,University of Basel,edu,985dc9b8b003483f6df363a8ce07dd8c89ced903,citation,http://pdfs.semanticscholar.org/985d/c9b8b003483f6df363a8ce07dd8c89ced903.pdf,"3D Morphable Face Model, a Unified Approach for Analysis and Synthesis of Images",0 +348,FERET,feret,34.2375581,-77.9270129,University of North Carolina Wilmington,edu,1057137d8ebbbfc4e816d74edd7ab04f61a893f8,citation,https://pdfs.semanticscholar.org/1057/137d8ebbbfc4e816d74edd7ab04f61a893f8.pdf,Craniofacial Aging,2008 +349,FERET,feret,37.548215,-77.45306424,Virginia Commonwealth University,edu,1057137d8ebbbfc4e816d74edd7ab04f61a893f8,citation,https://pdfs.semanticscholar.org/1057/137d8ebbbfc4e816d74edd7ab04f61a893f8.pdf,Craniofacial Aging,2008 +350,FERET,feret,37.4102193,-122.05965487,Carnegie Mellon University,edu,005d818ff8517669d62ba7b536e76b56698fa135,citation,http://pdfs.semanticscholar.org/4d7e/e94f164cce28a8bfef4417e9a99265b02b54.pdf,Neural Network-Based Face Detection,1996 +351,FERET,feret,39.9492344,-75.19198985,University of Pennsylvania,edu,0c85d1b384bb6e2d5d6e4db5461a7101ceed6808,citation,http://pdfs.semanticscholar.org/0ff8/d39a962ed902e1c995815ade265ea903d218.pdf,Engineering Privacy in Public: Confounding Face Recognition,2003 +352,FERET,feret,37.21872455,-80.42542519,Virginia Polytechnic Institute and State University,edu,9107543d9a9d915c92fe4139932c5d818cfc187d,citation,http://pdfs.semanticscholar.org/9107/543d9a9d915c92fe4139932c5d818cfc187d.pdf,Investigation of New Techniques for Face Detection,2007 +353,FERET,feret,37.4102193,-122.05965487,Carnegie Mellon University,edu,b3e856729f89b082b4108561479ff09394bb6553,citation,http://pdfs.semanticscholar.org/b3e8/56729f89b082b4108561479ff09394bb6553.pdf,Pose Robust Video - Based Face Recognition,2004 +354,FERET,feret,34.0224149,-118.28634407,University of Southern California,edu,d1836e137787fadb28d3418e029534765bcf1dae,citation,http://pdfs.semanticscholar.org/d183/6e137787fadb28d3418e029534765bcf1dae.pdf,"Analysis , Synthesis and Recognition of Human Faces with Pose Variations",2001 +355,FERET,feret,37.4102193,-122.05965487,Carnegie Mellon University,edu,2fd1c99edbb3d22cec4adc9ba9319cfc2360e903,citation,http://pdfs.semanticscholar.org/98c8/ca05ed5baff5b217c571ab5c5a0ee0706e27.pdf,Rotation Invariant Neural Network-Based Face Detection,1998 +356,FERET,feret,45.5039761,-73.5749687,McGill University,edu,b6145d3268032da70edc9cfececa1f9ffa4e3f11,citation,http://cnl.salk.edu/~zhafed/papers/fr_IJCV_2001.pdf,Face Recognition Using the Discrete Cosine Transform,2001 +357,FERET,feret,54.00975365,-2.78757491,Lancaster University,edu,01b73cfd803f0bdeab8bbfc26cd1ed110c762c91,citation,http://pdfs.semanticscholar.org/01b7/3cfd803f0bdeab8bbfc26cd1ed110c762c91.pdf,Facial Recognition Technology A Survey of Policy and Implementation Issues,2009 +358,FERET,feret,34.0224149,-118.28634407,University of Southern California,edu,c9579768d142a7020d095090183805c98a2f78e5,citation,http://pdfs.semanticscholar.org/e30d/b2331efa48f6c60330d492210ed6395774f2.pdf,The Bochum/USC Face Recognition System and How it Fared in the FERET Phase III Test,0 +359,FERET,feret,37.4102193,-122.05965487,Carnegie Mellon University,edu,42fe5666599f35b805657e829e8f9093ee95b908,citation,http://pdfs.semanticscholar.org/42fe/5666599f35b805657e829e8f9093ee95b908.pdf,Pose-Tolerant Face Recognition,2015 +360,FERET,feret,42.3583961,-71.09567788,MIT,edu,29c7dfbbba7a74e9aafb6a6919629b0a7f576530,citation,http://pdfs.semanticscholar.org/29c7/dfbbba7a74e9aafb6a6919629b0a7f576530.pdf,Automatic Facial Expression Analysis and Emotional Classification,2004 +361,FERET,feret,34.0224149,-118.28634407,University of Southern California,edu,f6a65be9a3790e8fd3b5116450a47a8e48a54d63,citation,http://pdfs.semanticscholar.org/f6a6/5be9a3790e8fd3b5116450a47a8e48a54d63.pdf,Parametric Piecewise Linear Subspace Method for Processing Facial Images with 3D Pose Variations,0 +362,FERET,feret,38.8964679,-104.8050594,University of Colorado at Colorado Springs,edu,07fcbae86f7a3ad3ea1cf95178459ee9eaf77cb1,citation,http://www.vast.uccs.edu/~tboult/PAPERS/BTAS13-Sapkota-Boult-UCCSFaceDB.pdf,Large scale unconstrained open set face database,2013 +363,FERET,feret,41.5007811,2.11143663,Universitat Autònoma de Barcelona,edu,f7f19ac1c4e38c104045c306f5ddac6329193d8c,citation,http://pdfs.semanticscholar.org/f7f1/9ac1c4e38c104045c306f5ddac6329193d8c.pdf,Measuring External Face Appearance for Face Classification,2007 +364,FERET,feret,28.0599999,-82.41383619,University of South Florida,edu,57bd46b16644be40b2e0dc595c1aaa6abbadba89,citation,http://pdfs.semanticscholar.org/c3f7/6fe32a0ca448f1ce7004198827df48bf827b.pdf,Overview of Work in Empirical Evaluation of Computer Vision Algorithms,2005 +365,FERET,feret,39.1254938,-77.22293475,National Institute of Standards and Technology,edu,57bd46b16644be40b2e0dc595c1aaa6abbadba89,citation,http://pdfs.semanticscholar.org/c3f7/6fe32a0ca448f1ce7004198827df48bf827b.pdf,Overview of Work in Empirical Evaluation of Computer Vision Algorithms,2005 +366,FERET,feret,40.4319722,-86.92389368,Purdue University,edu,fc83a26beb38b17af737c4ff34141d0deea3a4e1,citation,http://pdfs.semanticscholar.org/fc83/a26beb38b17af737c4ff34141d0deea3a4e1.pdf,The Challenges of the Environment and the Human / Biometric Device Interaction on Biometric System Performance,2004 +367,FERET,feret,40.0044795,116.370238,Chinese Academy of Sciences,edu,1e3739716e163fce6fded71eda078a18334aa83b,citation,https://doi.org/10.1109/CVPRW.2009.5204149,The HFB Face Database for Heterogeneous Face Biometrics research,2009 +368,FERET,feret,22.42031295,114.20788644,Chinese University of Hong Kong,edu,a0d6390dd28d802152f207940c7716fe5fae8760,citation,http://pdfs.semanticscholar.org/a0d6/390dd28d802152f207940c7716fe5fae8760.pdf,Bayesian Face Revisited: A Joint Formulation,2012 +369,FERET,feret,31.83907195,117.26420748,University of Science and Technology of China,edu,a0d6390dd28d802152f207940c7716fe5fae8760,citation,http://pdfs.semanticscholar.org/a0d6/390dd28d802152f207940c7716fe5fae8760.pdf,Bayesian Face Revisited: A Joint Formulation,2012 +370,FERET,feret,40.00229045,116.32098908,Tsinghua University,edu,b19ca50a9e2415072a97482005fe0b77a8a495ce,citation,http://pdfs.semanticscholar.org/b19c/a50a9e2415072a97482005fe0b77a8a495ce.pdf,Hierarchical Direct Appearance Model for Elastic Labeled Graph Localization,2003 +371,FERET,feret,55.94951105,-3.19534913,University of Edinburgh,edu,5bf954ca82b42865c49eef4b064278b82f3b38de,citation,http://pdfs.semanticscholar.org/80b0/045eed3a1fc9ab502963f6fb3e6f70a2f638.pdf,Re-engaging with the past: recapitulation of encoding operations during episodic retrieval,2014 +372,FERET,feret,51.0784038,-114.1287077,University of Calgary,edu,5bf954ca82b42865c49eef4b064278b82f3b38de,citation,http://pdfs.semanticscholar.org/80b0/045eed3a1fc9ab502963f6fb3e6f70a2f638.pdf,Re-engaging with the past: recapitulation of encoding operations during episodic retrieval,2014 +373,FERET,feret,-33.8840504,151.1992254,University of Technology,edu,ca458f189c1167e42d3a5aaf81efc92a4c008976,citation,https://doi.org/10.1109/TIP.2012.2202678,Double Shrinking Sparse Dimension Reduction,2013 +374,FERET,feret,35.14479945,33.90492318,Eastern Mediterranean University,edu,b20a8fc556aed9ab798fcf31e4f971dbc67a9edf,citation,http://pdfs.semanticscholar.org/b20a/8fc556aed9ab798fcf31e4f971dbc67a9edf.pdf,An Adept Segmentation Algorithm and Its Application to the Extraction of Local Regions Containing Fiducial Points,2006 +375,FERET,feret,51.0784038,-114.1287077,University of Calgary,edu,80290f2a38741e20a38de7c00d80353604343ef8,citation,http://pdfs.semanticscholar.org/8029/0f2a38741e20a38de7c00d80353604343ef8.pdf,Eigenfeature Optimization for Face Detection,2004 +376,FERET,feret,22.304572,114.17976285,Hong Kong Polytechnic University,edu,4a24d41aef0041ef82916d2316eea86f6c45c47f,citation,http://pdfs.semanticscholar.org/4a24/d41aef0041ef82916d2316eea86f6c45c47f.pdf,Impact of Full Rank Principal Component Analysis on Classification Algorithms for Face Recognition,2012 +377,FERET,feret,45.7413921,126.62552755,Harbin Institute of Technology,edu,4a24d41aef0041ef82916d2316eea86f6c45c47f,citation,http://pdfs.semanticscholar.org/4a24/d41aef0041ef82916d2316eea86f6c45c47f.pdf,Impact of Full Rank Principal Component Analysis on Classification Algorithms for Face Recognition,2012 +378,FERET,feret,22.6481521,88.376817,"Indian Statistical Institute, Kolkata",edu,7c7fb5c70bdabe8442c46c791fb2db00c490410b,citation,http://pdfs.semanticscholar.org/7c7f/b5c70bdabe8442c46c791fb2db00c490410b.pdf,Human Face Recognition using Gabor based Kernel Entropy Component Analysis,2012 +379,FERET,feret,22.5611537,88.41310194,Jadavpur University,edu,7c7fb5c70bdabe8442c46c791fb2db00c490410b,citation,http://pdfs.semanticscholar.org/7c7f/b5c70bdabe8442c46c791fb2db00c490410b.pdf,Human Face Recognition using Gabor based Kernel Entropy Component Analysis,2012 +380,FERET,feret,40.0044795,116.370238,Chinese Academy of Sciences,edu,19e62a56b6772bbd37dfc6b8f948e260dbb474f5,citation,http://pdfs.semanticscholar.org/19e6/2a56b6772bbd37dfc6b8f948e260dbb474f5.pdf,Cross-Domain Metric Learning Based on Information Theory,2014 +381,FERET,feret,31.83907195,117.26420748,University of Science and Technology of China,edu,19e62a56b6772bbd37dfc6b8f948e260dbb474f5,citation,http://pdfs.semanticscholar.org/19e6/2a56b6772bbd37dfc6b8f948e260dbb474f5.pdf,Cross-Domain Metric Learning Based on Information Theory,2014 +382,FERET,feret,40.00229045,116.32098908,Tsinghua University,edu,c1cf5dda56c72b65e86f3a678f76644f22212748,citation,http://pdfs.semanticscholar.org/c1cf/5dda56c72b65e86f3a678f76644f22212748.pdf,Face Hallucination via Semi-kernel Partial Least Squares,2015 +383,FERET,feret,29.7207902,-95.34406271,University of Houston,edu,e69ac130e3c7267cce5e1e3d9508ff76eb0e0eef,citation,http://pdfs.semanticscholar.org/e69a/c130e3c7267cce5e1e3d9508ff76eb0e0eef.pdf,Addressing the illumination challenge in two-dimensional face recognition: a survey,2015 +384,FERET,feret,42.3889785,-72.5286987,University of Massachusetts,edu,e39a66a6d1c5e753f8e6c33cd5d335f9bc9c07fa,citation,https://pdfs.semanticscholar.org/e39a/66a6d1c5e753f8e6c33cd5d335f9bc9c07fa.pdf,Weakly Supervised Learning for Unconstrained Face Processing,2014 +385,FERET,feret,48.14955455,11.56775314,Technical University Munich,edu,bc9003ad368cb79d8a8ac2ad025718da5ea36bc4,citation,https://pdfs.semanticscholar.org/bc90/03ad368cb79d8a8ac2ad025718da5ea36bc4.pdf,Facial expression recognition with a three-dimensional face model,2011 +386,FERET,feret,50.89273635,-1.39464295,University of Southampton,edu,d6b0a1f6dfb995436b45045b56e966d8e57b0990,citation,https://pdfs.semanticscholar.org/d6b0/a1f6dfb995436b45045b56e966d8e57b0990.pdf,Gait analysis and recognition for automated visual surveillance,2008 +387,FERET,feret,22.3874201,114.2082222,Hong Kong Baptist University,edu,02ae77f4c289426f18e83ce6e295d39538fb0fcc,citation,http://pdfs.semanticscholar.org/02ae/77f4c289426f18e83ce6e295d39538fb0fcc.pdf,Dependency Modeling for Information Fusion with Applications in Visual Recognition,2013 +388,FERET,feret,23.883312,90.2693921,Jahangirnagar University,edu,078549cb5474b024d203f96954646cacef219682,citation,http://pdfs.semanticscholar.org/1b42/0d5cf66e60b540ecdb352a287c85d9d7e2a4.pdf,"Single Image Face Recognition based on Gabor, Sobel and Local Ternary Pattern",2015 +389,FERET,feret,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,3dfb822e16328e0f98a47209d7ecd242e4211f82,citation,https://arxiv.org/pdf/1708.08197.pdf,Cross-Age LFW: A Database for Studying Cross-Age Face Recognition in Unconstrained Environments,2017 +390,FERET,feret,37.4102193,-122.05965487,Carnegie Mellon University,edu,1320c42b348c5342c2ad6a60e3ded3ff0bd56f7f,citation,https://doi.org/10.1007/s11263-007-0119-z,"A Viewpoint Invariant, Sparsely Registered, Patch Based, Face Verifier",2007 +391,FERET,feret,37.50882,126.9619,Chung-Ang University,edu,17cf6195fd2dfa42670dc7ada476e67b381b8f69,citation,http://pdfs.semanticscholar.org/17cf/6195fd2dfa42670dc7ada476e67b381b8f69.pdf,Automatic Face Region Tracking for Highly Accurate Face Recognition in Unconstrained Environments,2003 +392,FERET,feret,37.403917,127.159786,Korea Electronics Technology Institute,edu,17cf6195fd2dfa42670dc7ada476e67b381b8f69,citation,http://pdfs.semanticscholar.org/17cf/6195fd2dfa42670dc7ada476e67b381b8f69.pdf,Automatic Face Region Tracking for Highly Accurate Face Recognition in Unconstrained Environments,2003 +393,FERET,feret,35.9542493,-83.9307395,University of Tennessee,edu,17cf6195fd2dfa42670dc7ada476e67b381b8f69,citation,http://pdfs.semanticscholar.org/17cf/6195fd2dfa42670dc7ada476e67b381b8f69.pdf,Automatic Face Region Tracking for Highly Accurate Face Recognition in Unconstrained Environments,2003 +394,FERET,feret,39.94976005,116.33629046,Beijing Jiaotong University,edu,b5930275813a7e7a1510035a58dd7ba7612943bc,citation,http://pdfs.semanticscholar.org/b593/0275813a7e7a1510035a58dd7ba7612943bc.pdf,Face Recognition Using L-Fisherfaces,2010 +395,FERET,feret,25.0410728,121.6147562,Institute of Information Science,edu,b5930275813a7e7a1510035a58dd7ba7612943bc,citation,http://pdfs.semanticscholar.org/b593/0275813a7e7a1510035a58dd7ba7612943bc.pdf,Face Recognition Using L-Fisherfaces,2010 +396,FERET,feret,36.00146435,120.11624057,Shandong University of Science and Technology,edu,b5930275813a7e7a1510035a58dd7ba7612943bc,citation,http://pdfs.semanticscholar.org/b593/0275813a7e7a1510035a58dd7ba7612943bc.pdf,Face Recognition Using L-Fisherfaces,2010 +397,FERET,feret,44.9689836,-93.20941629,Fraser University,edu,281cc188bf7588681cdf8e325b0ed13ac927e2e6,citation,https://pdfs.semanticscholar.org/281c/c188bf7588681cdf8e325b0ed13ac927e2e6.pdf,A Multi-Modal Person Recognition System for Social Robots,2018 +398,FERET,feret,40.00229045,116.32098908,Tsinghua University,edu,89ac06ccbc410224f4d05d5ae8fa46c4fe3cbe0f,citation,http://pdfs.semanticscholar.org/947e/53c1d9035df85a3bc1b852928acbe889daf4.pdf,Video Based Face Verification,2001 +399,FERET,feret,1.3484104,103.68297965,Nanyang Technological University,edu,72b4b8f4a9f25cac5686231b44a2220945fd2ff6,citation,http://pdfs.semanticscholar.org/72b4/b8f4a9f25cac5686231b44a2220945fd2ff6.pdf,Face Verification Using Modeled Eigenspectrum,2008 +400,FERET,feret,25.01682835,121.53846924,National Taiwan University,edu,95289007f2f336e6636cf8f920225b8d47c6e94f,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6472796,Automatic Training Image Acquisition and Effective Feature Selection From Community-Contributed Photos for Facial Attribute Detection,2013 +401,FERET,feret,25.0411727,121.6146518,"Academia Sinica, Taiwan",edu,95289007f2f336e6636cf8f920225b8d47c6e94f,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6472796,Automatic Training Image Acquisition and Effective Feature Selection From Community-Contributed Photos for Facial Attribute Detection,2013 +402,FERET,feret,51.24303255,-0.59001382,University of Surrey,edu,749ebfa344b6d27de898d619cea0b28ad3894ff2,citation,http://pdfs.semanticscholar.org/749e/bfa344b6d27de898d619cea0b28ad3894ff2.pdf,Predicting Biometric Authentication System Performance Across Different Application Conditions: A Bootstrap Enhanced Parametric Approach,2007 +403,FERET,feret,52.9387428,-1.20029569,University of Nottingham,edu,e3bb87e858bc752436c7a8da3fca68b2dacbf3e8,citation,https://pdfs.semanticscholar.org/e3bb/87e858bc752436c7a8da3fca68b2dacbf3e8.pdf,On the Evaluation of Methods for the Recovery of Plant Root Systems from X-ray Computed Tomography Images,2015 +404,FERET,feret,45.42580475,-75.68740118,University of Ottawa,edu,a94cae786d515d3450d48267e12ca954aab791c4,citation,http://www.site.uottawa.ca/~shervin/pubs/CogniVue-Dataset-ACM-MMSys2014.pdf,YawDD: a yawning detection dataset,2014 +405,FERET,feret,34.7361066,10.7427275,"University of Sfax, Tunisia",edu,8a3bb63925ac2cdf7f9ecf43f71d65e210416e17,citation,https://www.math.uh.edu/~dlabate/ShearFace_ICPR2014.pdf,ShearFace: Efficient Extraction of Anisotropic Features for Face Recognition,2014 +406,FERET,feret,16.46007565,102.81211798,Khon Kaen University,edu,31dd6bafd6e7c6095eb8d0591abac3b0106a75e3,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8457336,Face Recognition In Unconstrained Environment,2018 +407,FERET,feret,51.24303255,-0.59001382,University of Surrey,edu,beea33ccd9423d48d6cfb928469bbe7841e63e73,citation,http://pdfs.semanticscholar.org/beea/33ccd9423d48d6cfb928469bbe7841e63e73.pdf,DIARETDB1 diabetic retinopathy database and evaluation protocol,2007 +408,FERET,feret,22.3386304,114.2620337,Hong Kong University of Science and Technology,edu,4cf0c6d3da8e20d6f184a4eaa6865d61680982b8,citation,http://pdfs.semanticscholar.org/4cf0/c6d3da8e20d6f184a4eaa6865d61680982b8.pdf,Face recognition based on 3D mesh model,2004 +409,FERET,feret,-33.95828745,18.45997349,University of Cape Town,edu,ba6082291b018b14f8da4f96afc631918bad3a1b,citation,https://pdfs.semanticscholar.org/3f5b/0cf2ed392045026ea0d1d67145d0400e516f.pdf,"Calibration , Recognition , and Shape from Silhouettes of Stones",2007 +410,FERET,feret,39.1254938,-77.22293475,National Institute of Standards and Technology,edu,b1e218046a28d10ec0be3272809608dea378eddc,citation,https://pdfs.semanticscholar.org/12c5/66e2eee7bbaf45b894e7282f87f00f1db20a.pdf,Overview of the Multiple Biometrics Grand Challenge,2009 +411,FERET,feret,39.9922379,116.30393816,Peking University,edu,15122ef718265beb4cb1a74e5d1f41c5edcb4ba5,citation,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2005.165,On the Euclidean distance of images,2005 +412,FERET,feret,47.00646895,-120.5367304,Central Washington University,edu,9d6e60d49e92361f8f558013065dfa67043dd337,citation,https://pdfs.semanticscholar.org/9d6e/60d49e92361f8f558013065dfa67043dd337.pdf,Applications of Computational Geometry and Computer Vision,2016 +413,FERET,feret,22.3874201,114.2082222,Hong Kong Baptist University,edu,121839d3254820b7017b07ef47acc89b975286a9,citation,https://pdfs.semanticscholar.org/92a2/5b281f1637d125cefefcbfc382f48f456f4c.pdf,Feature Extraction for Incomplete Data via Low-rank Tucker Decomposition,2017 +414,FERET,feret,23.1353836,113.29470496,Guangdong University of Technology,edu,121839d3254820b7017b07ef47acc89b975286a9,citation,https://pdfs.semanticscholar.org/92a2/5b281f1637d125cefefcbfc382f48f456f4c.pdf,Feature Extraction for Incomplete Data via Low-rank Tucker Decomposition,2017 +415,FERET,feret,35.704514,51.40972058,Amirkabir University of Technology,edu,88ed558bff3600f5354963d1abe762309f66111e,citation,https://doi.org/10.1109/TIFS.2015.2393553,Real-World and Rapid Face Recognition Toward Pose and Expression Variations via Feature Library Matrix,2015 +416,FERET,feret,35.6037444,53.43445877,Semnan University,edu,88ed558bff3600f5354963d1abe762309f66111e,citation,https://doi.org/10.1109/TIFS.2015.2393553,Real-World and Rapid Face Recognition Toward Pose and Expression Variations via Feature Library Matrix,2015 +417,FERET,feret,45.7413921,126.62552755,Harbin Institute of Technology,edu,016a8ed8f6ba49bc669dbd44de4ff31a79963078,citation,https://doi.org/10.1109/ICASSP.2004.1327215,Face relighting for face recognition under generic illumination,2004 +418,FERET,feret,23.09461185,113.28788994,Sun Yat-Sen University,edu,44f48a4b1ef94a9104d063e53bf88a69ff0f55f3,citation,http://pdfs.semanticscholar.org/44f4/8a4b1ef94a9104d063e53bf88a69ff0f55f3.pdf,Automatically Building Face Datasets of New Domains from Weakly Labeled Data with Pretrained Models,2016 +419,FERET,feret,45.7413921,126.62552755,Harbin Institute of Technology,edu,2fd007088a75916d0bf50c493d94f950bf55c5e6,citation,https://doi.org/10.1007/978-981-10-7302-1_1,Projective Representation Learning for Discriminative Face Recognition,2017 +420,FERET,feret,43.66333345,-79.39769975,University of Toronto,edu,0cb613bf519b90d08d2f12623b41f02c638cea63,citation,http://koasas.kaist.ac.kr/bitstream/10203/22675/1/Face%20Annotation%20for%20Personal%20Photos%20Using%20Context%20Assisted%20Face%20Recognition.pdf,Face annotation for personal photos using context-assisted face recognition,2008 +421,FERET,feret,24.7925484,120.9951183,National Tsing Hua University,edu,30b6811205b42e92d7a82c606d4521319764250b,citation,https://doi.org/10.1109/APSIPA.2013.6694367,Low cost illumination invariant face recognition by down-up sampling self quotient image,2013 +422,FERET,feret,50.0764296,14.41802312,Czech Technical University,edu,ff69da3510f5ffed224069faf62036e1aa9b6d26,citation,https://pdfs.semanticscholar.org/a256/3501ffd5a840fa4df0f3911a82e117df2f7f.pdf,Extended Set of Local Binary Patterns for Rapid Object Detection,2010 +423,FERET,feret,32.0575279,118.78682252,Southeast University,edu,c207fd762728f3da4cddcfcf8bf19669809ab284,citation,http://pdfs.semanticscholar.org/c207/fd762728f3da4cddcfcf8bf19669809ab284.pdf,Face Alignment Using Boosting and Evolutionary Search,2009 +424,FERET,feret,52.2380139,6.8566761,University of Twente,edu,c207fd762728f3da4cddcfcf8bf19669809ab284,citation,http://pdfs.semanticscholar.org/c207/fd762728f3da4cddcfcf8bf19669809ab284.pdf,Face Alignment Using Boosting and Evolutionary Search,2009 +425,FERET,feret,51.49887085,-0.17560797,Imperial College London,edu,23a450a075d752f1ec2b1e5e225de13d3bc37636,citation,http://pdfs.semanticscholar.org/23a4/50a075d752f1ec2b1e5e225de13d3bc37636.pdf,Subspace Learning in Krein Spaces: Complete Kernel Fisher Discriminant Analysis with Indefinite Kernels,2012 +426,FERET,feret,37.4102193,-122.05965487,Carnegie Mellon University,edu,521c2e9892eb22f65ba5b0d4c8d2f4c096d9fdf3,citation,http://www.ri.cmu.edu/pub_files/pub4/gross_ralph_2006_2/gross_ralph_2006_2.pdf,Model-Based Face De-Identification,2006 +427,FERET,feret,13.65450525,100.49423171,Robotics Institute,edu,521c2e9892eb22f65ba5b0d4c8d2f4c096d9fdf3,citation,http://www.ri.cmu.edu/pub_files/pub4/gross_ralph_2006_2/gross_ralph_2006_2.pdf,Model-Based Face De-Identification,2006 +428,FERET,feret,25.01682835,121.53846924,National Taiwan University,edu,91e507d2d8375bf474f6ffa87788aa3e742333ce,citation,http://pdfs.semanticscholar.org/91e5/07d2d8375bf474f6ffa87788aa3e742333ce.pdf,Robust Face Recognition Using Probabilistic Facial Trait Code,2010 +429,FERET,feret,39.2899685,-76.62196103,University of Maryland,edu,744b794f0047b008c517752fc9bb1100e5f120cc,citation,http://doi.ieeecomputersociety.org/10.1109/ICPR.2004.1333736,Multiple-exemplar discriminant analysis for face recognition,2004 +430,FERET,feret,40.0044795,116.370238,Chinese Academy of Sciences,edu,44d93039eec244083ac7c46577b9446b3a071f3e,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1415571,Empirical comparisons of several preprocessing methods for illumination insensitive face recognition,2005 +431,FERET,feret,39.1254938,-77.22293475,National Institute of Standards and Technology,edu,2d435b7510eeda648dc34d5b8ac921499d525218,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2007.383395,Improving Variance Estimation in Biometric Systems,2007 +432,FERET,feret,38.8964679,-104.8050594,University of Colorado at Colorado Springs,edu,2d435b7510eeda648dc34d5b8ac921499d525218,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2007.383395,Improving Variance Estimation in Biometric Systems,2007 +433,FERET,feret,42.718568,-84.47791571,Michigan State University,edu,ab7bcbaa9e77d35634302b021d47e7889628a88d,citation,http://pdfs.semanticscholar.org/ab7b/cbaa9e77d35634302b021d47e7889628a88d.pdf,FACESKETCHID: A SYSTEM FOR FACIAL SKETCH TO MUGSHOT MATCHING by Scott,2014 +434,FERET,feret,45.7413921,126.62552755,Harbin Institute of Technology,edu,92017bf2df5f6532d39c624ea209f37bb6728097,citation,http://pdfs.semanticscholar.org/9201/7bf2df5f6532d39c624ea209f37bb6728097.pdf,"Attention Driven Face Recognition, Learning from Human Vision System",2011 +435,FERET,feret,40.0044795,116.370238,Chinese Academy of Sciences,edu,92017bf2df5f6532d39c624ea209f37bb6728097,citation,http://pdfs.semanticscholar.org/9201/7bf2df5f6532d39c624ea209f37bb6728097.pdf,"Attention Driven Face Recognition, Learning from Human Vision System",2011 +436,FERET,feret,39.9922379,116.30393816,Peking University,edu,92017bf2df5f6532d39c624ea209f37bb6728097,citation,http://pdfs.semanticscholar.org/9201/7bf2df5f6532d39c624ea209f37bb6728097.pdf,"Attention Driven Face Recognition, Learning from Human Vision System",2011 +437,FERET,feret,35.704514,51.40972058,Amirkabir University of Technology,edu,841bf196ee0086c805bd5d1d0bddfadc87e424ec,citation,http://pdfs.semanticscholar.org/841b/f196ee0086c805bd5d1d0bddfadc87e424ec.pdf,Locally Kernel-based Nonlinear Regression for Face Recognition,2012 +438,FERET,feret,34.8452999,48.5596212,Islamic Azad University,edu,841bf196ee0086c805bd5d1d0bddfadc87e424ec,citation,http://pdfs.semanticscholar.org/841b/f196ee0086c805bd5d1d0bddfadc87e424ec.pdf,Locally Kernel-based Nonlinear Regression for Face Recognition,2012 +439,FERET,feret,55.87231535,-4.28921784,University of Glasgow,edu,40055c342c19ab492df04dae2e186cd0d6b5dc5e,citation,http://pdfs.semanticscholar.org/a406/ad4bdf50f696191e7472b7a41d9d57ff046c.pdf,Robust representations for face recognition: the power of averages.,2005 +440,FERET,feret,1.2988926,103.7873107,"A*STAR, Singapore",edu,c444c4dab97dd6d6696f56c1cacda051dde60448,citation,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2013.37,Multiview Face Detection and Registration Requiring Minimal Manual Intervention,2013 +441,FERET,feret,1.3484104,103.68297965,Nanyang Technological University,edu,c444c4dab97dd6d6696f56c1cacda051dde60448,citation,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2013.37,Multiview Face Detection and Registration Requiring Minimal Manual Intervention,2013 +442,FERET,feret,32.8785349,-117.2358307,"Tijuana Institute of Technology, Mexico",edu,235bebe7d0db37e6727dfa1246663be34027d96b,citation,https://doi.org/10.1109/NAFIPS.2016.7851625,General Type-2 fuzzy edge detectors applied to face recognition systems,2016 +443,FERET,feret,32.0565957,118.77408833,Nanjing University,edu,65b1760d9b1541241c6c0222cc4ee9df078b593a,citation,http://pdfs.semanticscholar.org/65b1/760d9b1541241c6c0222cc4ee9df078b593a.pdf,Enhanced Pictorial Structures for Precise Eye Localization Under Uncontrolled Conditions,2009 +444,FERET,feret,40.0044795,116.370238,Chinese Academy of Sciences,edu,27b9e75bcaf9e12127f7181bcb7f1fcb105462c4,citation,http://www.cbsr.ia.ac.cn/users/zlei/papers/LEI-LFD-FG-11.pdf,Local frequency descriptor for low-resolution face recognition,2011 +445,FERET,feret,65.0592157,25.46632601,University of Oulu,edu,27b9e75bcaf9e12127f7181bcb7f1fcb105462c4,citation,http://www.cbsr.ia.ac.cn/users/zlei/papers/LEI-LFD-FG-11.pdf,Local frequency descriptor for low-resolution face recognition,2011 +446,FERET,feret,44.97308605,-93.23708813,University of Minnesota,edu,aecd24f4a41eb6942375b9c03adcb7e137250b3f,citation,http://pdfs.semanticscholar.org/aecd/24f4a41eb6942375b9c03adcb7e137250b3f.pdf,Tensor Sparse Coding for Region Covariances,2010 +447,FERET,feret,40.0044795,116.370238,Chinese Academy of Sciences,edu,179f446aa297d6fe5c864b605286b946f85bb4ee,citation,http://lear.inrialpes.fr/people/triggs/events/iccv03/cdrom/iccv03/1449_wang.pdf,Fusion of static and dynamic body biometrics for gait recognition,2003 +448,FERET,feret,39.2899685,-76.62196103,University of Maryland,edu,3d741315108b95cdb56d312648f5ad1c002c9718,citation,http://pdfs.semanticscholar.org/3d74/1315108b95cdb56d312648f5ad1c002c9718.pdf,Image-based face recognition under illumination and pose variations.,2005 +449,FERET,feret,31.30104395,121.50045497,Fudan University,edu,8ca3cfb9595ebc5b36a25659f6bbf362f0b14ae3,citation,http://pdfs.semanticscholar.org/8ca3/cfb9595ebc5b36a25659f6bbf362f0b14ae3.pdf,Spectral Clustering Based Null Space Linear Discriminant Analysis (SNLDA),2007 +450,FERET,feret,39.94976005,116.33629046,Beijing Jiaotong University,edu,8ca3cfb9595ebc5b36a25659f6bbf362f0b14ae3,citation,http://pdfs.semanticscholar.org/8ca3/cfb9595ebc5b36a25659f6bbf362f0b14ae3.pdf,Spectral Clustering Based Null Space Linear Discriminant Analysis (SNLDA),2007 +451,FERET,feret,34.8452999,48.5596212,Islamic Azad University,edu,908a899c716d63bd327dee4a72061db5674bdc92,citation,http://pdfs.semanticscholar.org/908a/899c716d63bd327dee4a72061db5674bdc92.pdf,Experiments with Face Recognition Using a Novel Approach Based on CVQ Technique,2012 +452,FERET,feret,22.304572,114.17976285,Hong Kong Polytechnic University,edu,9f5383ec6ee5e810679e4a7e0a3f153f0ed3bb73,citation,http://pdfs.semanticscholar.org/9f53/83ec6ee5e810679e4a7e0a3f153f0ed3bb73.pdf,3D Shape and Pose Estimation of Face Images Using the Nonlinear Least-Squares Model,2010 +453,FERET,feret,40.0044795,116.370238,Chinese Academy of Sciences,edu,9f5383ec6ee5e810679e4a7e0a3f153f0ed3bb73,citation,http://pdfs.semanticscholar.org/9f53/83ec6ee5e810679e4a7e0a3f153f0ed3bb73.pdf,3D Shape and Pose Estimation of Face Images Using the Nonlinear Least-Squares Model,2010 +454,FERET,feret,37.4102193,-122.05965487,Carnegie Mellon University,edu,07c90e85ac0f74b977babe245dea0f0abcf177e3,citation,http://pdfs.semanticscholar.org/07c9/0e85ac0f74b977babe245dea0f0abcf177e3.pdf,An Image Preprocessing Algorithm for Illumination Invariant Face Recognition,2003 +455,FERET,feret,40.0044795,116.370238,Chinese Academy of Sciences,edu,0faab61c742609be74463d30b0eb1118dba4a4f3,citation,http://pdfs.semanticscholar.org/0faa/b61c742609be74463d30b0eb1118dba4a4f3.pdf,Null Space Approach of Fisher Discriminant Analysis for Face Recognition,2004 +456,FERET,feret,24.7246403,46.62335012,King Saud University,edu,1319dbeaa28f8a9b19e03a7631e96393e08a07fa,citation,http://pdfs.semanticscholar.org/1319/dbeaa28f8a9b19e03a7631e96393e08a07fa.pdf,Gender Recognition Using Fusion of Local and Global Facial Features,2013 +457,FERET,feret,25.7173339,-80.27866887,University of Miami,edu,48381007b85e8a3b74e5401b2dfc1a5dfc897622,citation,http://pdfs.semanticscholar.org/4838/1007b85e8a3b74e5401b2dfc1a5dfc897622.pdf,Sparse Representation and Dictionary Learning for Biometrics and Object Tracking,2015 +458,FERET,feret,33.776033,-84.39884086,Georgia Institute of Technology,edu,852e7df8794b15413f1d71628939c3cc28580b12,citation,http://pdfs.semanticscholar.org/852e/7df8794b15413f1d71628939c3cc28580b12.pdf,Boosted Audio-Visual HMM for Speech Reading,2003 +459,FERET,feret,13.65450525,100.49423171,Robotics Institute,edu,c5c1575565e04cd0afc57d7ac7f7a154c573b38f,citation,https://pdfs.semanticscholar.org/010a/f49ddb10c51b7913c2533910dd28ca39411c.pdf,Face Refinement through a Gradient Descent Alignment Approach,2006 +460,FERET,feret,40.0044795,116.370238,Chinese Academy of Sciences,edu,da7bbfa905d88834f8929cb69f41a1b683639f4b,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6199752,Discriminant analysis with Gabor phase for robust face recognition,2012 +461,FERET,feret,32.05765485,118.7550004,HoHai University,edu,da7bbfa905d88834f8929cb69f41a1b683639f4b,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6199752,Discriminant analysis with Gabor phase for robust face recognition,2012 +462,FERET,feret,34.1235825,108.83546,Xidian University,edu,da7bbfa905d88834f8929cb69f41a1b683639f4b,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6199752,Discriminant analysis with Gabor phase for robust face recognition,2012 +463,FERET,feret,40.5709358,-105.08655256,Colorado State University,edu,546cbbb897022096511f6a71259e3b99c558224d,citation,http://pdfs.semanticscholar.org/8a17/e16de6b932ec42e269621e29d99e46591fef.pdf,PCA vs. ICA: A Comparison on the FERET Data Set,2002 +464,FERET,feret,24.7925484,120.9951183,National Tsing Hua University,edu,6e7afe55d363adf80330116968163c7e9500f53b,citation,http://www.cs.nthu.edu.tw/~cchen/Research/2007EitFace.pdf,SVD-based projection for face recognition,2007 +465,FERET,feret,22.53521465,113.9315911,Shenzhen University,edu,2a9946fb626a58d376fb1491ca8bf8fb4f68dcf9,citation,http://pdfs.semanticscholar.org/2a99/46fb626a58d376fb1491ca8bf8fb4f68dcf9.pdf,Enlarge the Training Set Based on Inter-Class Relationship for Face Recognition from One Image per Person,2013 +466,FERET,feret,34.0224149,-118.28634407,University of Southern California,edu,38c61c11554135e09a2353afa536d010c7a53cbb,citation,http://pdfs.semanticscholar.org/38c6/1c11554135e09a2353afa536d010c7a53cbb.pdf,Learning the Detection of Faces in Natural Images,2002 +467,FERET,feret,55.70229715,37.53179777,Lomonosov Moscow State University,edu,6bfb0f8dd1a2c0b44347f09006dc991b8a08559c,citation,https://www.computer.org/web/csdl/index/-/csdl/proceedings/fg/2013/5545/00/06553724.pdf,Multiview discriminative learning for age-invariant face recognition,2013 +468,FERET,feret,1.3037257,103.7737763,"Advanced Digital Sciences Center, Singapore",edu,6bfb0f8dd1a2c0b44347f09006dc991b8a08559c,citation,https://www.computer.org/web/csdl/index/-/csdl/proceedings/fg/2013/5545/00/06553724.pdf,Multiview discriminative learning for age-invariant face recognition,2013 +469,FERET,feret,1.3484104,103.68297965,Nanyang Technological University,edu,6bfb0f8dd1a2c0b44347f09006dc991b8a08559c,citation,https://www.computer.org/web/csdl/index/-/csdl/proceedings/fg/2013/5545/00/06553724.pdf,Multiview discriminative learning for age-invariant face recognition,2013 +470,FERET,feret,40.11116745,-88.22587665,"University of Illinois, Urbana-Champaign",edu,6bfb0f8dd1a2c0b44347f09006dc991b8a08559c,citation,https://www.computer.org/web/csdl/index/-/csdl/proceedings/fg/2013/5545/00/06553724.pdf,Multiview discriminative learning for age-invariant face recognition,2013 +471,FERET,feret,40.0044795,116.370238,Chinese Academy of Sciences,edu,d33b26794ea6d744bba7110d2d4365b752d7246f,citation,http://pdfs.semanticscholar.org/d33b/26794ea6d744bba7110d2d4365b752d7246f.pdf,Transfer Feature Representation via Multiple Kernel Learning,2015 +472,FERET,feret,51.2975344,1.07296165,University of Kent,edu,55f94957f753e74f6f0170a45dee746c5b013edb,citation,http://pdfs.semanticscholar.org/55f9/4957f753e74f6f0170a45dee746c5b013edb.pdf,Face Recognition Using Balanced Pairwise Classifier Training,2009 +473,FERET,feret,60.18558755,24.8242733,Aalto University,edu,6dbe76f51091ca6a626a62846a946ce687c3dbe8,citation,http://pdfs.semanticscholar.org/6dbe/76f51091ca6a626a62846a946ce687c3dbe8.pdf,INCREMENTAL OBJECT MATCHING WITH PROBABILISTIC METHODS Doctoral dissertation,0 +474,FERET,feret,43.614386,7.071125,EURECOM,edu,314ad104401c78a83cfe8018412b6a2f33340fc6,citation,http://www.eurecom.fr/fr/publication/4966/download/sec-publi-4966.pdf,"Privacy protecting, intelligibility preserving video surveillance",2016 +475,FERET,feret,42.718568,-84.47791571,Michigan State University,edu,08f6ad0a3e75b715852f825d12b6f28883f5ca05,citation,http://www.cse.msu.edu/biometrics/Publications/Face/JainKlarePark_FaceRecognition_ChallengesinForensics_FG11.pdf,Face recognition: Some challenges in forensics,2011 +476,FERET,feret,-33.8809651,151.20107299,University of Technology Sydney,edu,3b64efa817fd609d525c7244a0e00f98feacc8b4,citation,http://doi.acm.org/10.1145/2845089,A Comprehensive Survey on Pose-Invariant Face Recognition,2016 +477,FERET,feret,-35.2776999,149.118527,Australian National University,edu,102cfd088799405d47c824735dc1356e5835dce7,citation,http://pdfs.semanticscholar.org/d5d0/d25663ec0ff8099e613d2278f8a673b9729f.pdf,Learning-based Face Synthesis for Pose-Robust Recognition from Single Image,2009 +478,FERET,feret,-35.23656905,149.08446994,University of Canberra,edu,102cfd088799405d47c824735dc1356e5835dce7,citation,http://pdfs.semanticscholar.org/d5d0/d25663ec0ff8099e613d2278f8a673b9729f.pdf,Learning-based Face Synthesis for Pose-Robust Recognition from Single Image,2009 +479,FERET,feret,25.00823205,121.53577153,National Taiwan Normal University,edu,fb6cc23fd6bd43bd4cacf6a57cd2c7c8dfe5269d,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5339084,An experimental study on content-based face annotation of photos,2009 +480,FERET,feret,28.59899755,-81.19712501,University of Central Florida,edu,2910fcd11fafee3f9339387929221f4fc1160973,citation,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2013/W16/papers/Becker_Evaluating_Open-Universe_Face_2013_CVPR_paper.pdf,Evaluating Open-Universe Face Identification on the Web,2013 +481,FERET,feret,13.65450525,100.49423171,Robotics Institute,edu,2910fcd11fafee3f9339387929221f4fc1160973,citation,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2013/W16/papers/Becker_Evaluating_Open-Universe_Face_2013_CVPR_paper.pdf,Evaluating Open-Universe Face Identification on the Web,2013 +482,FERET,feret,22.304572,114.17976285,Hong Kong Polytechnic University,edu,e0ea8ef91bd0a35aec31c9a493137163b4f042b6,citation,http://pdfs.semanticscholar.org/e0ea/8ef91bd0a35aec31c9a493137163b4f042b6.pdf,Sparse representation with nearest subspaces for face recognition,2012 +483,FERET,feret,22.53521465,113.9315911,Shenzhen University,edu,e0ea8ef91bd0a35aec31c9a493137163b4f042b6,citation,http://pdfs.semanticscholar.org/e0ea/8ef91bd0a35aec31c9a493137163b4f042b6.pdf,Sparse representation with nearest subspaces for face recognition,2012 +484,FERET,feret,34.80809035,135.45785218,Osaka University,edu,29639a071f67a6867000b53bcb97b37b3d090319,citation,http://pdfs.semanticscholar.org/2963/9a071f67a6867000b53bcb97b37b3d090319.pdf,Gait Identification Considering Body Tilt by Walking Direction Changes,2008 +485,FERET,feret,-22.8148374,-47.0647708,University of Campinas (UNICAMP),edu,b161d261fabb507803a9e5834571d56a3b87d147,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8122913,Gender recognition from face images using a geometric descriptor,2017 +486,FERET,feret,28.54632595,77.27325504,Indian Institute of Technology Delhi,edu,5539c0bee8fcf825e63a1abaa950615ebd9c6b49,citation,http://pdfs.semanticscholar.org/5539/c0bee8fcf825e63a1abaa950615ebd9c6b49.pdf,Car Detection and Recognition Based on Rear View and Back Light Features,2014 +487,FERET,feret,37.4102193,-122.05965487,Carnegie Mellon University,edu,691463f3f7acb0502e21b40958c1ecdee16d1fe0,citation,http://pdfs.semanticscholar.org/eb46/25ad9143196021c3def560d025d346c46909.pdf,Adaptive Markov Random Fields for Example-Based Super-resolution of Faces,2006 +488,FERET,feret,51.5231607,-0.1282037,University College London,edu,0a2ddf88bd1a6c093aad87a8c7f4150bfcf27112,citation,http://pdfs.semanticscholar.org/0a2d/df88bd1a6c093aad87a8c7f4150bfcf27112.pdf,Patch-based models for visual object classes,2011 +489,FERET,feret,45.7413921,126.62552755,Harbin Institute of Technology,edu,82d5e927c4f1429c07552bfc7bebd5f0e3f2f444,citation,http://pdfs.semanticscholar.org/82d5/e927c4f1429c07552bfc7bebd5f0e3f2f444.pdf,Histogram Sequence of Local Gabor Binary Pattern for Face Description and Identification,2006 +490,FERET,feret,41.10427915,29.02231159,Istanbul Technical University,edu,e9a8a88b47d0bc20579f39eba1c380b07edc244f,citation,https://pdfs.semanticscholar.org/e9a8/a88b47d0bc20579f39eba1c380b07edc244f.pdf,Effects of the Facial and Racial Features on Gender Classification,2010 +491,FERET,feret,35.3341487,139.4943356,"Azbil Corporation, Kawana, Japan",company,982fcead58be419e4f34df6e806204674a4bc579,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6613012,Performance improvement of face recognition algorithms using occluded-region detection,2013 +492,FERET,feret,38.2530945,140.8736593,Tohoku University,edu,982fcead58be419e4f34df6e806204674a4bc579,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6613012,Performance improvement of face recognition algorithms using occluded-region detection,2013 +493,FERET,feret,34.1235825,108.83546,Xidian University,edu,61f4429c085e8a93c4d7bdb9bff6fac38e58e5c6,citation,http://pdfs.semanticscholar.org/61f4/429c085e8a93c4d7bdb9bff6fac38e58e5c6.pdf,Discriminant Neighborhood Structure Embedding Using Trace Ratio Criterion for Image Recognition,2015 +494,FERET,feret,22.42031295,114.20788644,Chinese University of Hong Kong,edu,ec645bbc34d3ed264516df8b1add4d0cd6c35631,citation,http://pdfs.semanticscholar.org/ec64/5bbc34d3ed264516df8b1add4d0cd6c35631.pdf,An improved Bayesian face recognition algorithm in PCA subspace,2003 +495,FERET,feret,23.09461185,113.28788994,Sun Yat-Sen University,edu,3356074f4896bf2af7f46749fdc212a99d4932a6,citation,http://pdfs.semanticscholar.org/3356/074f4896bf2af7f46749fdc212a99d4932a6.pdf,Learning Low-Rank Class-Specific Dictionary and Sparse Intra-Class Variant Dictionary for Face Recognition,2015 +496,FERET,feret,30.2931534,120.1620458,Zhejiang University of Technology,edu,3356074f4896bf2af7f46749fdc212a99d4932a6,citation,http://pdfs.semanticscholar.org/3356/074f4896bf2af7f46749fdc212a99d4932a6.pdf,Learning Low-Rank Class-Specific Dictionary and Sparse Intra-Class Variant Dictionary for Face Recognition,2015 +497,FERET,feret,13.65450525,100.49423171,Robotics Institute,edu,7f1f3d7b1a4e7fc895b77cb23b1119a6f13e4d3a,citation,http://pdfs.semanticscholar.org/7f1f/3d7b1a4e7fc895b77cb23b1119a6f13e4d3a.pdf,Multi-subregion based probabilistic approach toward pose-invariant face recognition,2003 +498,FERET,feret,35.907757,127.766922,Mando Corp.,company,1ab19e516b318ed6ab64822efe9b2328836107a4,citation,https://doi.org/10.1109/TIP.2010.2083674,Face Recognition System Using Multiple Face Model of Hybrid Fourier Feature Under Uncontrolled Illumination Variation,2011 +499,FERET,feret,37.566535,126.9779692,Samsung,company,1ab19e516b318ed6ab64822efe9b2328836107a4,citation,https://doi.org/10.1109/TIP.2010.2083674,Face Recognition System Using Multiple Face Model of Hybrid Fourier Feature Under Uncontrolled Illumination Variation,2011 +500,FERET,feret,39.9041999,116.4073963,"Samsung SAIT, Beijing",company,1ab19e516b318ed6ab64822efe9b2328836107a4,citation,https://doi.org/10.1109/TIP.2010.2083674,Face Recognition System Using Multiple Face Model of Hybrid Fourier Feature Under Uncontrolled Illumination Variation,2011 +501,FERET,feret,42.718568,-84.47791571,Michigan State University,edu,e506cdb250eba5e70c5147eb477fbd069714765b,citation,https://pdfs.semanticscholar.org/e506/cdb250eba5e70c5147eb477fbd069714765b.pdf,Heterogeneous Face Recognition,2012 +502,FERET,feret,34.80809035,135.45785218,Osaka University,edu,97dbcc592ed048db545c6e9ed1f27372e8d1d4b8,citation,http://pdfs.semanticscholar.org/97db/cc592ed048db545c6e9ed1f27372e8d1d4b8.pdf,Omnidirectional Gait Identification by Tilt Normalization and Azimuth View Transformation,2008 +503,FERET,feret,42.8298248,-73.87719385,GE Global Research Center,edu,50b40ec042047b4292fd9b650969d4efbd20c9ed,citation,http://cse.msu.edu/~liuxm/publication/Liu_GradientPursuit_FG2011.pdf,Optimal gradient pursuit for face alignment,2011 +504,FERET,feret,23.09461185,113.28788994,Sun Yat-Sen University,edu,7b47eb8faaf9c2275cdc70299b850ed649ceec62,citation,http://pdfs.semanticscholar.org/7b47/eb8faaf9c2275cdc70299b850ed649ceec62.pdf,1D-LDA vs. 2D-LDA: When is vector-based linear discriminant analysis better than matrix-based?,2008 +505,FERET,feret,40.0044795,116.370238,Chinese Academy of Sciences,edu,7b47eb8faaf9c2275cdc70299b850ed649ceec62,citation,http://pdfs.semanticscholar.org/7b47/eb8faaf9c2275cdc70299b850ed649ceec62.pdf,1D-LDA vs. 2D-LDA: When is vector-based linear discriminant analysis better than matrix-based?,2008 +506,FERET,feret,35.0116363,135.7680294,"OMRON Corporation, Kyoto, Japan",company,38e7f3fe450b126367ec358be9b4cc04e82fa8c7,citation,https://doi.org/10.1109/TIP.2014.2351265,Maximal Likelihood Correspondence Estimation for Face Recognition Across Pose,2014 +507,FERET,feret,40.0044795,116.370238,Chinese Academy of Sciences,edu,38e7f3fe450b126367ec358be9b4cc04e82fa8c7,citation,https://doi.org/10.1109/TIP.2014.2351265,Maximal Likelihood Correspondence Estimation for Face Recognition Across Pose,2014 +508,FERET,feret,33.776033,-84.39884086,Georgia Institute of Technology,edu,ffa23a8c988e57cf5fc21b56b522a4ee68f2f362,citation,https://pdfs.semanticscholar.org/ffa2/3a8c988e57cf5fc21b56b522a4ee68f2f362.pdf,Social game retrieval from unstructured videos,2010 +509,FERET,feret,40.47913175,-74.43168868,Rutgers University,edu,307c5c0a61e318a65bd65af694ce89c275fd7299,citation,http://pdfs.semanticscholar.org/307c/5c0a61e318a65bd65af694ce89c275fd7299.pdf,Face Mis-alignment Analysis by Multiple-Instance Subspace,2007 +510,FERET,feret,43.614386,7.071125,EURECOM,edu,43b6fb3146cb92bc36a2aab1368d8665af106a87,citation,https://doi.org/10.23919/EUSIPCO.2017.8081347,"ASePPI, an adaptive scrambling enabling privacy protection and intelligibility in H.264/AVC",2017 +511,FERET,feret,42.718568,-84.47791571,Michigan State University,edu,4b605e6a9362485bfe69950432fa1f896e7d19bf,citation,http://biometrics.cse.msu.edu/Publications/Face/BlantonAllenMillerKalkaJain_CVPRWB2016_HID.pdf,A Comparison of Human and Automated Face Verification Accuracy on Unconstrained Image Sets,2016 +512,FERET,feret,43.47061295,-80.54724732,University of Waterloo,edu,2cdf5952b5a1bea5d24917aa2f3fc2ee33568e9a,citation,https://arxiv.org/pdf/1507.01251v1.pdf,Autoencoding the retrieval relevance of medical images,2015 +513,FERET,feret,29.6328784,-82.3490133,University of Florida,edu,2a392cbdb2ac977ad9f969659111e20bd0e9611f,citation,http://pdfs.semanticscholar.org/2a39/2cbdb2ac977ad9f969659111e20bd0e9611f.pdf,Supplementary Material for Privacy Preserving Optics for Miniature Vision Sensors,2015 +514,FERET,feret,22.1240187,113.54510901,University of Macau,edu,7d61b70d922d20c52a4e629b09465076af71ddfd,citation,https://doi.org/10.1007/s10044-011-0258-2,Nonnegative class-specific entropy component analysis with adaptive step search criterion,2011 +515,FERET,feret,28.0599999,-82.41383619,University of South Florida,edu,bde276015ba6677f0ec5fbfc97d5c57daca9d391,citation,http://pdfs.semanticscholar.org/bde2/76015ba6677f0ec5fbfc97d5c57daca9d391.pdf,An Evaluation of Face and Ear Biometrics,2002 +516,FERET,feret,41.70456775,-86.23822026,University of Notre Dame,edu,bde276015ba6677f0ec5fbfc97d5c57daca9d391,citation,http://pdfs.semanticscholar.org/bde2/76015ba6677f0ec5fbfc97d5c57daca9d391.pdf,An Evaluation of Face and Ear Biometrics,2002 +517,FERET,feret,1.3037257,103.7737763,"Advanced Digital Sciences Center, Singapore",edu,856cc83a3121de89d4a6d9283afbcd5d7ef7aa2b,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6417014,Image-to-Set Face Recognition Using Locality Repulsion Projections and Sparse Reconstruction-Based Similarity Measure,2013 +518,FERET,feret,1.3484104,103.68297965,Nanyang Technological University,edu,856cc83a3121de89d4a6d9283afbcd5d7ef7aa2b,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6417014,Image-to-Set Face Recognition Using Locality Repulsion Projections and Sparse Reconstruction-Based Similarity Measure,2013 +519,FERET,feret,40.8419836,-73.94368971,Columbia University,edu,759a3b3821d9f0e08e0b0a62c8b693230afc3f8d,citation,http://homes.cs.washington.edu/~neeraj/projects/faceverification/base/papers/nk_iccv2009_attrs.pdf,Attribute and simile classifiers for face verification,2009 +520,FERET,feret,26.513188,80.23651945,Indian Institute of Technology Kanpur,edu,871e6c1de2e0ba86bad8975b8411ad76a6a9aef9,citation,http://pdfs.semanticscholar.org/871e/6c1de2e0ba86bad8975b8411ad76a6a9aef9.pdf,Geometric Modeling of 3D-Face Features and Its Applications,2010 +521,FERET,feret,37.52914535,45.04886077,Urmia University,edu,8aa85d2f81d7496cf7105ee0a3785f140ddaa367,citation,http://www.csis.pace.edu/~ctappert/dps/2013BTAS/Papers/Paper%2019/PID2859743.pdf,Efficient processing of MRFs for unconstrained-pose face recognition,2013 +522,FERET,feret,51.24303255,-0.59001382,University of Surrey,edu,8aa85d2f81d7496cf7105ee0a3785f140ddaa367,citation,http://www.csis.pace.edu/~ctappert/dps/2013BTAS/Papers/Paper%2019/PID2859743.pdf,Efficient processing of MRFs for unconstrained-pose face recognition,2013 +523,FERET,feret,24.7246403,46.62335012,King Saud University,edu,674e739709537f0e562b6cf114f15a5cc57fde7e,citation,http://www.cse.unr.edu/~bebis/CGIV2014.pdf,Nonsubsampled Contourlet Transform Based Descriptors for Gender Recognition,2014 +524,FERET,feret,51.24303255,-0.59001382,University of Surrey,edu,062cea54e5d58ee41aea607cbf2ba0cf457aa4e7,citation,http://pdfs.semanticscholar.org/062c/ea54e5d58ee41aea607cbf2ba0cf457aa4e7.pdf,The DIARETDB1 Diabetic Retinopathy Database and Evaluation Protocol,2007 +525,FERET,feret,56.66340325,12.87929727,Halmstad University,edu,555f75077a02f33a05841f9b63a1388ec5fbcba5,citation,https://arxiv.org/pdf/1810.03360.pdf,A Survey on Periocular Biometrics Research,2016 +526,FERET,feret,40.7423025,-74.17928172,New Jersey Institute of Technology,edu,892db59add66fc581ae1a7338ff8bd6b7aa0f2b4,citation,http://pdfs.semanticscholar.org/892d/b59add66fc581ae1a7338ff8bd6b7aa0f2b4.pdf,FPGA-based Normalization for Modified Gram-Schmidt Orthogonalization,2010 +527,FERET,feret,-34.9189226,138.60423668,University of Adelaide,edu,019f1462c1b7101100334e4c421d35feea612492,citation,http://pdfs.semanticscholar.org/019f/1462c1b7101100334e4c421d35feea612492.pdf,Running Head : UNFAMILIAR FACE MATCHING The Effects of External Features and Time Pressure on Unfamiliar Face Matching,2006 +528,FERET,feret,41.70456775,-86.23822026,University of Notre Dame,edu,10c79df4f44b5e4c08f984f34370d292f31ef309,citation,http://pdfs.semanticscholar.org/10c7/9df4f44b5e4c08f984f34370d292f31ef309.pdf,Multi-Modal 2D and 3D Biometrics for Face Recognition,2003 +529,FERET,feret,39.2899685,-76.62196103,University of Maryland,edu,3514f66f155c271981a734f1523572edcd8fd10e,citation,http://www.umiacs.umd.edu/~jhchoi/paper/wacv2012_slide.pdf,A complementary local feature descriptor for face identification,2012 +530,FERET,feret,-27.5953995,-48.6154218,University of Campinas,edu,3514f66f155c271981a734f1523572edcd8fd10e,citation,http://www.umiacs.umd.edu/~jhchoi/paper/wacv2012_slide.pdf,A complementary local feature descriptor for face identification,2012 +531,FERET,feret,40.5709358,-105.08655256,Colorado State University,edu,aa4d1ad6fd2dbc05139b8121b500c2b1f6b35bec,citation,http://pdfs.semanticscholar.org/aa4d/1ad6fd2dbc05139b8121b500c2b1f6b35bec.pdf,Grassmann Registration Manifolds for Face Recognition,2008 +532,FERET,feret,51.24303255,-0.59001382,University of Surrey,edu,c79cf7f61441195404472102114bcf079a72138a,citation,https://pdfs.semanticscholar.org/9704/8d901389535b122f82a6a949bd8f596790f2.pdf,Pose-Invariant 2 D Face Recognition by Matching Using Graphical Models,2010 +533,FERET,feret,40.0044795,116.370238,Chinese Academy of Sciences,edu,1acf8970598bb2443fd2dd42ceeca1eb3f2fc613,citation,https://pdfs.semanticscholar.org/1acf/8970598bb2443fd2dd42ceeca1eb3f2fc613.pdf,Boosting Statistical Local Feature Based Classifiers for Face Recognition,2005 +534,FERET,feret,46.0658836,11.1159894,University of Trento,edu,a489a7951c7848ebae5a99ac590c016359a85434,citation,https://arxiv.org/pdf/1901.09774.pdf,Attribute-Guided Sketch Generation,2019 +535,FERET,feret,30.5097537,114.4062881,Huazhong University of Science and Technology,edu,a489a7951c7848ebae5a99ac590c016359a85434,citation,https://arxiv.org/pdf/1901.09774.pdf,Attribute-Guided Sketch Generation,2019 +536,FERET,feret,51.7534538,-1.25400997,University of Oxford,edu,a489a7951c7848ebae5a99ac590c016359a85434,citation,https://arxiv.org/pdf/1901.09774.pdf,Attribute-Guided Sketch Generation,2019 +537,FERET,feret,42.2942142,-83.71003894,University of Michigan,edu,a489a7951c7848ebae5a99ac590c016359a85434,citation,https://arxiv.org/pdf/1901.09774.pdf,Attribute-Guided Sketch Generation,2019 +538,FERET,feret,52.2380139,6.8566761,University of Twente,edu,0b55b31765f101535eac0d50b9da377f82136d2f,citation,http://mplab.ucsd.edu/wp-content/uploads/CVPR2008/WorkShops/data/papers/163.pdf,Biometric binary string generation with detection rate optimized bit allocation,2008 +539,FERET,feret,42.4505507,-76.4783513,Cornell University,edu,bd7477c250f01f63f438c4f3bebe374caf4b86ba,citation,http://pdfs.semanticscholar.org/bd74/77c250f01f63f438c4f3bebe374caf4b86ba.pdf,Real-time Face and Hand Detection for Videoconferencing on a Mobile Device,2009 +540,FERET,feret,39.9808333,116.34101249,Beihang University,edu,9039b8097a78f460db9718bc961fdc7d89784092,citation,http://pdfs.semanticscholar.org/9039/b8097a78f460db9718bc961fdc7d89784092.pdf,3D Face Recognition Based on Local Shape Patterns and Sparse Representation Classifier,2011 +541,FERET,feret,37.5600406,126.9369248,Yonsei University,edu,ee458bee26e6371f9347b1972bbc9dc26b2f3713,citation,https://arxiv.org/pdf/1703.01396.pdf,Stacking-based deep neural network: Deep analytic network on convolutional spectral histogram features,2017 +542,FERET,feret,23.09461185,113.28788994,Sun Yat-Sen University,edu,80d42f74ee9bf03f3790c8d0f5a307deffe0b3b7,citation,https://doi.org/10.1109/TNNLS.2016.2522431,Learning Kernel Extended Dictionary for Face Recognition,2017 +543,FERET,feret,-27.49741805,153.01316956,University of Queensland,edu,2af19b5ff2ca428fa42ef4b85ddbb576b5d9a5cc,citation,http://pdfs.semanticscholar.org/2af1/9b5ff2ca428fa42ef4b85ddbb576b5d9a5cc.pdf,Multi-Region Probabilistic Histograms for Robust and Scalable Identity Inference,2009 +544,FERET,feret,45.7597643,3.1310213,"VESALIS SAS, France",company,778c1e95b6ea4ccf89067b83364036ab08797256,citation,https://doi.org/10.1109/TIFS.2012.2224866,Exploring Patterns of Gradient Orientations and Magnitudes for Face Recognition,2013 +545,FERET,feret,-27.49741805,153.01316956,University of Queensland,edu,b9504e4a2f40f459b5e83143e77f4972c7888445,citation,http://conradsanderson.id.au/pdfs/chen_avss_2008.pdf,Experimental Analysis of Face Recognition on Still and CCTV Images,2008 +546,FERET,feret,45.7413921,126.62552755,Harbin Institute of Technology,edu,1da1299088a6bf28167c58bbd46ca247de41eb3c,citation,https://doi.org/10.1109/ICASSP.2002.5745055,Face identification from a single example image based on Face-Specific Subspace (FSS),2002 +547,FERET,feret,40.0044795,116.370238,Chinese Academy of Sciences,edu,1da1299088a6bf28167c58bbd46ca247de41eb3c,citation,https://doi.org/10.1109/ICASSP.2002.5745055,Face identification from a single example image based on Face-Specific Subspace (FSS),2002 +548,FERET,feret,31.30104395,121.50045497,Fudan University,edu,3ca25a9e906b851df01a53f4443d66978a0243b8,citation,http://pdfs.semanticscholar.org/3ca2/5a9e906b851df01a53f4443d66978a0243b8.pdf,Improved Super-Resolution through Residual Neighbor Embedding,2006 +549,FERET,feret,40.0044795,116.370238,Chinese Academy of Sciences,edu,3ca25a9e906b851df01a53f4443d66978a0243b8,citation,http://pdfs.semanticscholar.org/3ca2/5a9e906b851df01a53f4443d66978a0243b8.pdf,Improved Super-Resolution through Residual Neighbor Embedding,2006 +550,FERET,feret,37.5600406,126.9369248,Yonsei University,edu,64fd48fae4d859583c4a031b51ce76ecb5de614c,citation,https://doi.org/10.1109/ICARCV.2008.4795556,Illuminated face normalization technique by using wavelet fusion and local binary patterns,2008 +551,FERET,feret,2.92749755,101.64185301,Multimedia University,edu,64fd48fae4d859583c4a031b51ce76ecb5de614c,citation,https://doi.org/10.1109/ICARCV.2008.4795556,Illuminated face normalization technique by using wavelet fusion and local binary patterns,2008 +552,FERET,feret,39.9808333,116.34101249,Beihang University,edu,70d2ab1af0edd5c0a30d576a5d4aa397c4f92d3e,citation,http://doi.org/10.1007/s11042-018-5608-2,Elastic preserving projections based on L1-norm maximization,2018 +553,FERET,feret,56.66340325,12.87929727,Halmstad University,edu,9cda3e56cec21bd8f91f7acfcefc04ac10973966,citation,https://doi.org/10.1109/IWBF.2016.7449688,"Periocular biometrics: databases, algorithms and directions",2016 +554,FERET,feret,34.0224149,-118.28634407,University of Southern California,edu,569008018f0b9c4abb8b5c662a6710a1fc38b5a6,citation,http://pdfs.semanticscholar.org/5690/08018f0b9c4abb8b5c662a6710a1fc38b5a6.pdf,Face Similarity Space as Perceived by Humans and Artificial Systems,1998 +555,FERET,feret,39.2899685,-76.62196103,University of Maryland,edu,569008018f0b9c4abb8b5c662a6710a1fc38b5a6,citation,http://pdfs.semanticscholar.org/5690/08018f0b9c4abb8b5c662a6710a1fc38b5a6.pdf,Face Similarity Space as Perceived by Humans and Artificial Systems,1998 +556,FERET,feret,52.22165395,21.00735776,Warsaw University of Technology,edu,76dff7008d9b8bf44ec5348f294d5518877c6182,citation,https://doi.org/10.1016/j.imavis.2014.09.004,Discrete area filters in accurate detection of faces and facial features,2014 +557,FERET,feret,39.5469449,-119.81346566,University of Nevada,edu,4bc2352b087bdc99ef5f00453e5d2272d522524c,citation,http://pdfs.semanticscholar.org/4bc2/352b087bdc99ef5f00453e5d2272d522524c.pdf,Investigating the Impact of Face Categorization on Recognition Performance,2005 +558,FERET,feret,41.70456775,-86.23822026,University of Notre Dame,edu,6250781bb606041fdc1621ba08aee541bfb1285b,citation,http://www.cse.nd.edu/Reports/2004/TR-2004-31.pdf,Ear Biometrics Using 2D and 3D Images,2005 +559,FERET,feret,13.65450525,100.49423171,Robotics Institute,edu,f6fa68847e0ce7fda05a9c73ebcb484f0b42a9af,citation,http://pdfs.semanticscholar.org/f6fa/68847e0ce7fda05a9c73ebcb484f0b42a9af.pdf,Face Recognition Across Pose and Illumination,2011 +560,FERET,feret,45.5039761,-73.5749687,McGill University,edu,3a34c622c1af4b181e99d4a58f7870314944d2c4,citation,http://pdfs.semanticscholar.org/3a34/c622c1af4b181e99d4a58f7870314944d2c4.pdf,D View - Invariant Face Recognition Using a Hierarchical Pose - Normalization Strategy,2005 +561,FERET,feret,38.99203005,-76.9461029,University of Maryland College Park,edu,ece80165040e9d8304c5dd808a6cdb29c8ecbf5b,citation,https://pdfs.semanticscholar.org/a2f6/8e5898364ac7c1d4691d23fab716ad672712.pdf,Looking at People Using Partial Least Squares,2010 +562,FERET,feret,53.21967825,6.56251482,University of Groningen,edu,ae1de0359f4ed53918824271c888b7b36b8a5d41,citation,http://pdfs.semanticscholar.org/ae1d/e0359f4ed53918824271c888b7b36b8a5d41.pdf,Low-cost Automatic Inpainting for Artifact Suppression in Facial Images,2013 +563,FERET,feret,40.0044795,116.370238,Chinese Academy of Sciences,edu,1e46d0714398904e557f27022908121fa8a7902f,citation,http://pdfs.semanticscholar.org/1e46/d0714398904e557f27022908121fa8a7902f.pdf,Baseline Evaluations on the CAS-PEAL-R1 Face Database,2004 +564,FERET,feret,42.357757,-83.06286711,Wayne State University,edu,bec31269632c17206deb90cd74367d1e6586f75f,citation,http://pdfs.semanticscholar.org/bec3/1269632c17206deb90cd74367d1e6586f75f.pdf,Large-scale Datasets: Faces with Partial Occlusions and Pose Variations in the Wild,2017 +565,FERET,feret,53.27639715,-9.05829961,National University of Ireland Galway,edu,e08038b14165536c52ffe950d90d0f43be9c8f15,citation,https://arxiv.org/pdf/1703.08383.pdf,Smart Augmentation Learning an Optimal Data Augmentation Strategy,2017 +566,FERET,feret,24.7246403,46.62335012,King Saud University,edu,edf01e1c84e2f80500fd74da69f428617f2a1665,citation,http://www.cse.unr.edu/~bebis/IWSSIP2013.pdf,Gender recognition from faces using bandlet and local binary patterns,2013 +567,FERET,feret,37.4102193,-122.05965487,Carnegie Mellon University,edu,6b3e360b80268fda4e37ff39b7f303e3684e8719,citation,,FACE RECOGNITION FROM SKETCHES USING ADVANCED CORRELATION FILTERS USING HYBRID EIGENANALYSIS FOR FACE SYNTHESIS,2006 +568,FERET,feret,33.776033,-84.39884086,Georgia Institute of Technology,edu,987feaa36f3bb663ac9fa767718c6a90ea0dab3f,citation,https://pdfs.semanticscholar.org/987f/eaa36f3bb663ac9fa767718c6a90ea0dab3f.pdf,A Distributed System for Supporting Spatio-temporal Analysis on Large-scale Camera Networks,2012 +569,FERET,feret,48.9095338,9.1831892,University of Stuttgart,edu,987feaa36f3bb663ac9fa767718c6a90ea0dab3f,citation,https://pdfs.semanticscholar.org/987f/eaa36f3bb663ac9fa767718c6a90ea0dab3f.pdf,A Distributed System for Supporting Spatio-temporal Analysis on Large-scale Camera Networks,2012 +570,FERET,feret,42.9336278,-78.88394479,SUNY Buffalo,edu,987feaa36f3bb663ac9fa767718c6a90ea0dab3f,citation,https://pdfs.semanticscholar.org/987f/eaa36f3bb663ac9fa767718c6a90ea0dab3f.pdf,A Distributed System for Supporting Spatio-temporal Analysis on Large-scale Camera Networks,2012 +571,FERET,feret,-33.3578899,151.37834708,University of Newcastle,edu,2feb7c57d51df998aafa6f3017662263a91625b4,citation,https://pdfs.semanticscholar.org/d344/9eaaf392fd07b676e744410049f4095b4b5c.pdf,Feature Selection for Intelligent Transportation Systems,2014 +572,FERET,feret,22.1240187,113.54510901,University of Macau,edu,c3558f67b3f4b618e6b53ce844faf38240ee7cd7,citation,https://arxiv.org/pdf/1802.07589.pdf,Collaboratively Weighting Deep and Classic Representation via $l_2$ Regularization for Image Classification,2018 +573,FERET,feret,50.89273635,-1.39464295,University of Southampton,edu,c3558f67b3f4b618e6b53ce844faf38240ee7cd7,citation,https://arxiv.org/pdf/1802.07589.pdf,Collaboratively Weighting Deep and Classic Representation via $l_2$ Regularization for Image Classification,2018 +574,FERET,feret,32.20302965,119.50968362,Jiangsu University,edu,c3558f67b3f4b618e6b53ce844faf38240ee7cd7,citation,https://arxiv.org/pdf/1802.07589.pdf,Collaboratively Weighting Deep and Classic Representation via $l_2$ Regularization for Image Classification,2018 +575,FERET,feret,35.9990522,-78.9290629,Duke University,edu,a7678cce6bfca4a34feee5564c87c80fe192a0fd,citation,http://pdfs.semanticscholar.org/a767/8cce6bfca4a34feee5564c87c80fe192a0fd.pdf,The Weakly Identifying System for Doorway Monitoring,2007 +576,FERET,feret,22.42031295,114.20788644,Chinese University of Hong Kong,edu,550289407a642e81e1ef9dc0476117ed7816e9b5,citation,http://pdfs.semanticscholar.org/5502/89407a642e81e1ef9dc0476117ed7816e9b5.pdf,Conditional Infomax Learning: An Integrated Framework for Feature Extraction and Fusion,2006 +577,FERET,feret,39.977217,116.337632,Microsoft Research Asia,company,550289407a642e81e1ef9dc0476117ed7816e9b5,citation,http://pdfs.semanticscholar.org/5502/89407a642e81e1ef9dc0476117ed7816e9b5.pdf,Conditional Infomax Learning: An Integrated Framework for Feature Extraction and Fusion,2006 +578,FERET,feret,41.70456775,-86.23822026,University of Notre Dame,edu,6577d30abd8bf5b21901572504bd82101a7eed75,citation,http://pdfs.semanticscholar.org/6577/d30abd8bf5b21901572504bd82101a7eed75.pdf,Ear Biometrics in Human,2006 +579,FERET,feret,45.42580475,-75.68740118,University of Ottawa,edu,65293ecf6a4c5ab037a2afb4a9a1def95e194e5f,citation,http://pdfs.semanticscholar.org/6529/3ecf6a4c5ab037a2afb4a9a1def95e194e5f.pdf,"Face , Age and Gender Recognition using Local Descriptors",2014 +580,FERET,feret,40.00229045,116.32098908,Tsinghua University,edu,885c37f94e9edbbb2177cfba8cb1ad840b2a5f20,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8006255,Simultaneous Local Binary Feature Learning and Encoding for Homogeneous and Heterogeneous Face Recognition,2018 +581,FERET,feret,1.3484104,103.68297965,Nanyang Technological University,edu,885c37f94e9edbbb2177cfba8cb1ad840b2a5f20,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8006255,Simultaneous Local Binary Feature Learning and Encoding for Homogeneous and Heterogeneous Face Recognition,2018 +582,FERET,feret,40.0044795,116.370238,Chinese Academy of Sciences,edu,279acfde0286bb76dd7717abebc3c8acf12d2c5f,citation,http://www.cbsr.ia.ac.cn/users/zlei/papers/ICPR2014/Lei-ICPR-14.pdf,Local Gradient Order Pattern for Face Representation and Recognition,2014 +583,FERET,feret,22.3874201,114.2082222,Hong Kong Baptist University,edu,17f472a7cb25bf1e76ff29181b1d40585e2ae5c1,citation,https://doi.org/10.1109/BTAS.2015.7358764,Fusing binary templates for multi-biometric cryptosystems,2015 +584,FERET,feret,45.7413921,126.62552755,Harbin Institute of Technology,edu,cf671dc13696d1643cc1f32f7d32c329b16cd745,citation,http://pdfs.semanticscholar.org/cf67/1dc13696d1643cc1f32f7d32c329b16cd745.pdf,Multiple Fisher Classifiers Combination for Face Recognition based on Grouping AdaBoosted Gabor Features,2005 +585,FERET,feret,40.0044795,116.370238,Chinese Academy of Sciences,edu,cf671dc13696d1643cc1f32f7d32c329b16cd745,citation,http://pdfs.semanticscholar.org/cf67/1dc13696d1643cc1f32f7d32c329b16cd745.pdf,Multiple Fisher Classifiers Combination for Face Recognition based on Grouping AdaBoosted Gabor Features,2005 +586,FERET,feret,42.718568,-84.47791571,Michigan State University,edu,b53485dbdd2dc5e4f3c7cff26bd8707964bb0503,citation,http://doi.org/10.1007/s11263-017-1012-z,Pose-Invariant Face Alignment via CNN-Based Dense 3D Model Fitting,2017 +587,FERET,feret,52.9387428,-1.20029569,University of Nottingham,edu,9fbcf40b0649c03ba0f38f940c34e7e6c9e04c03,citation,https://doi.org/10.1007/s10044-006-0033-y,A review on Gabor wavelets for face recognition,2006 +588,FERET,feret,35.9542493,-83.9307395,University of Tennessee,edu,d103df0381582003c7a8930b68047b4f26d9b613,citation,http://pdfs.semanticscholar.org/d103/df0381582003c7a8930b68047b4f26d9b613.pdf,Quality Assessment and Restoration of Face Images in Long Range/High Zoom Video,2006 +589,FERET,feret,13.0222347,77.56718325,Indian Institute of Science Bangalore,edu,56fb30b24e7277b47d366ca2c491749eee4d6bb1,citation,https://doi.org/10.1109/ICAPR.2015.7050658,Using Bayesian statistics and Gabor Wavelets for recognition of human faces,2015 +590,FERET,feret,39.2899685,-76.62196103,University of Maryland,edu,963a004e208ce4bd26fa79a570af61d31651b3c3,citation,https://doi.org/10.1016/j.jvlc.2009.01.011,Computational methods for modeling facial aging: A survey,2009 +591,FERET,feret,40.0044795,116.370238,Chinese Academy of Sciences,edu,4a18adc7f5a090a041528a88166671248703f6e0,citation,http://pdfs.semanticscholar.org/c2c3/ecd39dd24e2b57ae6023536cc1fcd29d184a.pdf,Illumination Normalization for Robust Face Recognition Against Varying Lighting Conditions,2003 +592,FERET,feret,45.7413921,126.62552755,Harbin Institute of Technology,edu,4a18adc7f5a090a041528a88166671248703f6e0,citation,http://pdfs.semanticscholar.org/c2c3/ecd39dd24e2b57ae6023536cc1fcd29d184a.pdf,Illumination Normalization for Robust Face Recognition Against Varying Lighting Conditions,2003 +593,FERET,feret,-31.95040445,115.79790037,University of Western Australia,edu,301662c2a6ed86e48f21c1d24bfc67b403201b0c,citation,http://pdfs.semanticscholar.org/688d/0dddf90995ba6248de148e58030cb8f558e8.pdf,Repetition Suppression in Ventral Visual Cortex Is Diminished as a Function of Increasing Autistic Traits,2015 +594,FERET,feret,52.17638955,0.14308882,University of Cambridge,edu,301662c2a6ed86e48f21c1d24bfc67b403201b0c,citation,http://pdfs.semanticscholar.org/688d/0dddf90995ba6248de148e58030cb8f558e8.pdf,Repetition Suppression in Ventral Visual Cortex Is Diminished as a Function of Increasing Autistic Traits,2015 +595,FERET,feret,28.2290209,112.99483204,"National University of Defense Technology, China",edu,c48b2582429cc9ae427a264eed469d08b571acde,citation,https://pdfs.semanticscholar.org/c48b/2582429cc9ae427a264eed469d08b571acde.pdf,Facial Peculiarity Retrieval via Deep Neural Networks Fusion,2018 +596,FERET,feret,40.5709358,-105.08655256,Colorado State University,edu,878ec66a3bb87f23f3f8fd96ee504f79e6100a95,citation,https://pdfs.semanticscholar.org/878e/c66a3bb87f23f3f8fd96ee504f79e6100a95.pdf,THESIS EVALUATING THE PERFORMANCE OF IPHOTO FACIAL RECOGNITION AT THE BIOMETRIC VERIFICATION TASK,2012 +597,FERET,feret,41.70456775,-86.23822026,University of Notre Dame,edu,124f6992202777c09169343d191c254592e4428c,citation,https://arxiv.org/pdf/1803.07140.pdf,Visual Psychophysics for Making Face Recognition Algorithms More Explainable,2018 +598,FERET,feret,42.36782045,-71.12666653,Harvard University,edu,124f6992202777c09169343d191c254592e4428c,citation,https://arxiv.org/pdf/1803.07140.pdf,Visual Psychophysics for Making Face Recognition Algorithms More Explainable,2018 +599,FERET,feret,45.7413921,126.62552755,Harbin Institute of Technology,edu,4156f9fc5983b09eb97ad3d9abc248b15440b955,citation,http://pdfs.semanticscholar.org/4156/f9fc5983b09eb97ad3d9abc248b15440b955.pdf,"2 Subspace Methods for Face Recognition : Singularity , Regularization , and Robustness",2012 +600,FERET,feret,64.137274,-21.94561454,University of Iceland,edu,533d70c914a4b84ec7f35ef6c74bb3acba4c26fc,citation,http://pdfs.semanticscholar.org/533d/70c914a4b84ec7f35ef6c74bb3acba4c26fc.pdf,Blaming the victims of your own mistakes: How visual search accuracy influences evaluation of stimuli.,2015 +601,FERET,feret,51.5231607,-0.1282037,University College London,edu,533d70c914a4b84ec7f35ef6c74bb3acba4c26fc,citation,http://pdfs.semanticscholar.org/533d/70c914a4b84ec7f35ef6c74bb3acba4c26fc.pdf,Blaming the victims of your own mistakes: How visual search accuracy influences evaluation of stimuli.,2015 +602,FERET,feret,40.0141905,-83.0309143,University of Electronic Science and Technology of China,edu,ccd7a6b9f23e983a3fc6a70cc3b9c9673d70bf2c,citation,http://pdfs.semanticscholar.org/ccd7/a6b9f23e983a3fc6a70cc3b9c9673d70bf2c.pdf,Symmetrical Two-Dimensional PCA with Image Measures in Face Recognition,2012 +603,FERET,feret,35.9113971,-79.0504529,University of North Carolina at Chapel Hill,edu,60a006bdfe5b8bf3243404fae8a5f4a9d58fa892,citation,http://alumni.cs.ucr.edu/~mkafai/papers/Paper_bwild.pdf,A reference-based framework for pose invariant face recognition,2015 +604,FERET,feret,32.0565957,118.77408833,Nanjing University,edu,19fed85436eff43e60b9476e3d8742dfedba6384,citation,http://pdfs.semanticscholar.org/19fe/d85436eff43e60b9476e3d8742dfedba6384.pdf,A Novel Multiple Kernel Sparse Representation based Classification for Face Recognition,2014 +605,FERET,feret,34.80809035,135.45785218,Osaka University,edu,244c5f88186475bc3b051be8ebb6422e4b8de707,citation,http://www.am.sanken.osaka-u.ac.jp/~mansur/files/cvpr2012.pdf,Video from nearly still: An application to low frame-rate gait recognition,2012 +606,FERET,feret,40.00229045,116.32098908,Tsinghua University,edu,977bedd692c240c162481ef769b31e0f5455469a,citation,http://pdfs.semanticscholar.org/977b/edd692c240c162481ef769b31e0f5455469a.pdf,A Two-Step Approach to Hallucinating Faces: Global Parametric Model and Local Nonparametric Model,2001 +607,FERET,feret,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,9e1c3c7f1dce662a877727a821bdf41c5cd906bb,citation,http://pdfs.semanticscholar.org/9e1c/3c7f1dce662a877727a821bdf41c5cd906bb.pdf,Learning Disentangling and Fusing Networks for Face Completion Under Structured Occlusions,2017 +608,FERET,feret,42.718568,-84.47791571,Michigan State University,edu,4308f53244bbb6a1e22ba1d39e079e5065a51364,citation,http://pdfs.semanticscholar.org/4308/f53244bbb6a1e22ba1d39e079e5065a51364.pdf,Ethnicity Identification from Face Images,2004 +609,FERET,feret,33.30715065,-111.67653157,Arizona State University,edu,5b1f3a60518c3a552de09ed51646764551f4cb84,citation,http://mplab.ucsd.edu/wp-content/uploads/CVPR2008/WorkShops/data/papers/121.pdf,Multiple cue integration in transductive confidence machines for head pose classification,2008 +610,FERET,feret,3.06405715,101.6005974,Monash University Malaysia,edu,a96a7a381872ae40179ded0d79f905da0455d9d1,citation,http://pdfs.semanticscholar.org/a96a/7a381872ae40179ded0d79f905da0455d9d1.pdf,Segmentation of Saimaa Ringed Seals for Identification Purposes,2015 +611,FERET,feret,32.87935255,-117.23110049,"University of California, San Diego",edu,9a7fcd09afd8c3ae227e621795168c94ffbac71d,citation,http://mplab.ucsd.edu/wp-content/uploads/2011-WuEtAl-FERA-DatasetTransfer.pdf,Action unit recognition transfer across datasets,2011 +612,FERET,feret,40.0044795,116.370238,Chinese Academy of Sciences,edu,f2d813a987f0aed5056d5eccbadee8738bbd0a4b,citation,http://pdfs.semanticscholar.org/f2d8/13a987f0aed5056d5eccbadee8738bbd0a4b.pdf,Fast Matching by 2 Lines of Code for Large Scale Face Recognition Systems,2013 +613,FERET,feret,51.44415765,7.26096541,Ruhr-University Bochum,edu,8489236bbbb3298f4513c7e005a85ba7a48cc946,citation,http://pdfs.semanticscholar.org/8489/236bbbb3298f4513c7e005a85ba7a48cc946.pdf,Vision and Touch for Grasping,2000 +614,FERET,feret,1.3484104,103.68297965,Nanyang Technological University,edu,1dede3e0f2e0ed2984aca8cd98631b43c3f887b9,citation,http://www3.ntu.edu.sg/home/EXDJiang/ICASSP13-3.pdf,A vote of confidence based interest point detector,2013 +615,FERET,feret,39.1254938,-77.22293475,National Institute of Standards and Technology,edu,4c56f119ebf7c71f2a83e4d79e8d88314b8e6044,citation,http://www.nist.gov/customcf/get_pdf.cfm?pub_id=906254,An other-race effect for face recognition algorithms,2011 +616,FERET,feret,32.9820799,-96.7566278,University of Texas at Dallas,edu,4c56f119ebf7c71f2a83e4d79e8d88314b8e6044,citation,http://www.nist.gov/customcf/get_pdf.cfm?pub_id=906254,An other-race effect for face recognition algorithms,2011 +617,FERET,feret,22.42031295,114.20788644,Chinese University of Hong Kong,edu,1b67053c682dcbc9dc368de89fff32f787320a96,citation,http://mmlab.ie.cuhk.edu.hk/archive/2007/CVPR07_face01.pdf,Quality-Driven Face Occlusion Detection and Recovery,2007 +618,FERET,feret,46.0501558,14.46907327,University of Ljubljana,edu,86274e426bfe962d5cb994d5d9c6829f64410c32,citation,http://pdfs.semanticscholar.org/8627/4e426bfe962d5cb994d5d9c6829f64410c32.pdf,Face Recognition in Different Subspaces: A Comparative Study,2006 +619,FERET,feret,40.8419836,-73.94368971,Columbia University,edu,4c170a0dcc8de75587dae21ca508dab2f9343974,citation,http://pdfs.semanticscholar.org/73a8/1d311eedac8dea3ca24dc15b6990fa4a725e.pdf,FaceTracer: A Search Engine for Large Collections of Images with Faces,2008 +620,FERET,feret,39.2899685,-76.62196103,University of Maryland,edu,4276eb27e2e4fc3e0ceb769eca75e3c73b7f2e99,citation,http://pdfs.semanticscholar.org/4276/eb27e2e4fc3e0ceb769eca75e3c73b7f2e99.pdf,Face Recognition From Video,2008 +621,FERET,feret,45.7413921,126.62552755,Harbin Institute of Technology,edu,63f9f3f0e1daede934d6dde1a84fb7994f8929f0,citation,http://www.jdl.ac.cn/user/sgshan/pub/ICCV2005-ZhangShan-LGBP.pdf,Local Gabor binary pattern histogram sequence (LGBPHS): a novel non-statistical model for face representation and recognition,2005 +622,FERET,feret,37.4102193,-122.05965487,Carnegie Mellon University,edu,39e1fb5539737a17ae5fc25de30377dfaecfa100,citation,https://www.ri.cmu.edu/pub_files/pub4/gross_ralph_2004_1/gross_ralph_2004_1.pdf,Appearance-based face recognition and light-fields,2004 +623,FERET,feret,13.0105838,80.2353736,Anna University,edu,e19ba2a6ce70fb94d31bb0b39387aa734e6860b0,citation,http://pdfs.semanticscholar.org/e19b/a2a6ce70fb94d31bb0b39387aa734e6860b0.pdf,A Different Approach to Appearance –based Statistical Method for Face Recognition Using Median,2007 +624,FERET,feret,32.87935255,-117.23110049,"University of California, San Diego",edu,528a6698911ff30aa648af4d0a5cf0dd9ee90b5c,citation,https://pdfs.semanticscholar.org/528a/6698911ff30aa648af4d0a5cf0dd9ee90b5c.pdf,Is All Face Processing Holistic ? The View from UCSD,2003 +625,FERET,feret,41.6659,-91.57310307,University of Iowa,edu,528a6698911ff30aa648af4d0a5cf0dd9ee90b5c,citation,https://pdfs.semanticscholar.org/528a/6698911ff30aa648af4d0a5cf0dd9ee90b5c.pdf,Is All Face Processing Holistic ? The View from UCSD,2003 +626,FERET,feret,35.9023226,14.4834189,University of Malta,edu,4c5566d4cb47f4db45d46c6aaf324d6057b580bc,citation,http://doi.ieeecomputersociety.org/10.1109/AVSS.2016.7738068,Gender recognition from face images with trainable COSFIRE filters,2016 +627,FERET,feret,40.5709358,-105.08655256,Colorado State University,edu,462fe97ce53e58c8e2cb01c925b46bcf3bb53eda,citation,http://www.cs.colostate.edu/~draper/papers/givens_cvpr04.pdf,How features of the human face affect recognition: a statistical comparison of three face recognition algorithms,2004 +628,FERET,feret,61.44964205,23.85877462,Tampere University of Technology,edu,c95e379aab32a1611f1f549fd11a3e9498ab5dae,citation,http://pdfs.semanticscholar.org/c95e/379aab32a1611f1f549fd11a3e9498ab5dae.pdf,Constructing Benchmark Databases and Protocols for Medical Image Analysis: Diabetic Retinopathy,2013 +629,FERET,feret,61.49412325,23.77920678,University of Tampere,edu,c95e379aab32a1611f1f549fd11a3e9498ab5dae,citation,http://pdfs.semanticscholar.org/c95e/379aab32a1611f1f549fd11a3e9498ab5dae.pdf,Constructing Benchmark Databases and Protocols for Medical Image Analysis: Diabetic Retinopathy,2013 +630,FERET,feret,52.4107358,-4.05295501,Aberystwyth University,edu,9264b390aa00521f9bd01095ba0ba4b42bf84d7e,citation,http://pdfs.semanticscholar.org/9264/b390aa00521f9bd01095ba0ba4b42bf84d7e.pdf,Displacement Template with Divide-&-Conquer Algorithm for Significantly Improving Descriptor Based Face Recognition Approaches,2012 +631,FERET,feret,53.8925662,-122.81471592,University of Northern British Columbia,edu,9264b390aa00521f9bd01095ba0ba4b42bf84d7e,citation,http://pdfs.semanticscholar.org/9264/b390aa00521f9bd01095ba0ba4b42bf84d7e.pdf,Displacement Template with Divide-&-Conquer Algorithm for Significantly Improving Descriptor Based Face Recognition Approaches,2012 +632,FERET,feret,40.7423025,-74.17928172,New Jersey Institute of Technology,edu,5bb9540375ba9bba22f8a22ba2990cfe7ff6780c,citation,http://pdfs.semanticscholar.org/5bb9/540375ba9bba22f8a22ba2990cfe7ff6780c.pdf,Discriminant Analysis of Haar Features for Accurate Eye Detection,2011 +633,FERET,feret,40.11116745,-88.22587665,"University of Illinois, Urbana-Champaign",edu,01a19d3e902d7431f533f5f0b54510a7fb9bda23,citation,http://pdfs.semanticscholar.org/3521/15bbb399b94865a7d870d1cd1a79e42104b8.pdf,A Practical Face Relighting Method for Directional Lighting Normalization,2005 +634,FERET,feret,42.718568,-84.47791571,Michigan State University,edu,022f38febc47818a010dc64ca54f6e137055cc88,citation,http://biometrics.cse.msu.edu/Publications/Face/HanJain_3DFaceTextureModeling_UncalibratedFrontalProfileImages_BTAS12.pdf,3D face texture modeling from uncalibrated frontal and profile images,2012 +635,FERET,feret,34.0224149,-118.28634407,University of Southern California,edu,b13014374863715c421ed92d3827fc7e09a3e47a,citation,https://pdfs.semanticscholar.org/fe31/8312fd51fc65d132084c3862c85f067e6edf.pdf,Rapid Correspondence Finding in Networks of Cortical Columns,2006 +636,FERET,feret,44.97308605,-93.23708813,University of Minnesota,edu,8a55c385c8cf76cadaa28c7ab1fde9dc28577b08,citation,http://www-users.cs.umn.edu/~boley/publications/papers/ICCV2011.pdf,Positive definite dictionary learning for region covariances,2011 +637,FERET,feret,30.3125525,120.3430946,Hangzhou Dianzi University,edu,d40cd10f0f3e64fd9b0c2728089e10e72bea9616,citation,http://pdfs.semanticscholar.org/d40c/d10f0f3e64fd9b0c2728089e10e72bea9616.pdf,Enhancing Face Identification Using Local Binary Patterns and K-Nearest Neighbors,2017 diff --git a/site/datasets/final/ijb_c.csv b/site/datasets/final/ijb_c.csv new file mode 100644 index 00000000..15bfccab --- /dev/null +++ b/site/datasets/final/ijb_c.csv @@ -0,0 +1,141 @@ +index,dataset_name,key,lat,lng,loc,loc_type,paper_id,paper_type,paper_url,title,year +0,IJB-A,ijb_c,0.0,0.0,,,140c95e53c619eac594d70f6369f518adfea12ef,main,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1B_089_ext.pdf,Pushing the frontiers of unconstrained face detection and recognition: IARPA Janus Benchmark A,2015 +1,IJB-A,ijb_c,39.2899685,-76.62196103,University of Maryland,edu,872dfdeccf99bbbed7c8f1ea08afb2d713ebe085,citation,https://arxiv.org/pdf/1703.09507.pdf,L2-constrained Softmax Loss for Discriminative Face Verification,2017 +2,IJB-A,ijb_c,38.8920756,-104.79716389,"University of Colorado, Colorado Springs",edu,146a7ecc7e34b85276dd0275c337eff6ba6ef8c0,citation,https://arxiv.org/pdf/1611.06158v1.pdf,AFFACT: Alignment-free facial attribute classification technique,2017 +3,IJB-A,ijb_c,51.7534538,-1.25400997,University of Oxford,edu,313d5eba97fe064bdc1f00b7587a4b3543ef712a,citation,https://pdfs.semanticscholar.org/cb7f/93467b0ec1afd43d995e511f5d7bf052a5af.pdf,Compact Deep Aggregation for Set Retrieval,2018 +4,IJB-A,ijb_c,39.2899685,-76.62196103,University of Maryland,edu,5865b6d83ba6dbbf9167f1481e9339c2ef1d1f6b,citation,https://doi.org/10.1109/ICPR.2016.7900278,Regularized metric adaptation for unconstrained face verification,2016 +5,IJB-A,ijb_c,37.4102193,-122.05965487,Carnegie Mellon University,edu,48a9241edda07252c1aadca09875fabcfee32871,citation,https://arxiv.org/pdf/1611.08657v5.pdf,Convolutional Experts Constrained Local Model for Facial Landmark Detection,2017 +6,IJB-A,ijb_c,42.718568,-84.47791571,Michigan State University,edu,86204fc037936754813b91898377e8831396551a,citation,https://arxiv.org/pdf/1709.01442.pdf,Dense Face Alignment,2017 +7,IJB-A,ijb_c,22.57423855,88.4337303,"Institute of Engineering and Management, Kolkata, India",edu,b2cb335ded99b10f37002d09753bd5a6ea522ef1,citation,https://doi.org/10.1109/ISBA.2017.7947679,Analysis of adaptability of deep features for verifying blurred and cross-resolution images,2017 +8,IJB-A,ijb_c,39.2899685,-76.62196103,University of Maryland,edu,b2cb335ded99b10f37002d09753bd5a6ea522ef1,citation,https://doi.org/10.1109/ISBA.2017.7947679,Analysis of adaptability of deep features for verifying blurred and cross-resolution images,2017 +9,IJB-A,ijb_c,45.7835966,4.7678948,École Centrale de Lyon,edu,486840f4f524e97f692a7f6b42cd19019ee71533,citation,https://arxiv.org/pdf/1703.08388v2.pdf,DeepVisage: Making Face Recognition Simple Yet With Powerful Generalization Skills,2017 +10,IJB-A,ijb_c,48.832493,2.267474,Safran Identity and Security,company,486840f4f524e97f692a7f6b42cd19019ee71533,citation,https://arxiv.org/pdf/1703.08388v2.pdf,DeepVisage: Making Face Recognition Simple Yet With Powerful Generalization Skills,2017 +11,IJB-A,ijb_c,39.2899685,-76.62196103,University of Maryland,edu,2d748f8ee023a5b1fbd50294d176981ded4ad4ee,citation,http://pdfs.semanticscholar.org/2d74/8f8ee023a5b1fbd50294d176981ded4ad4ee.pdf,Triplet Similarity Embedding for Face Verification,2016 +12,IJB-A,ijb_c,38.99203005,-76.9461029,University of Maryland College Park,edu,f7824758800a7b1a386db5bd35f84c81454d017a,citation,https://arxiv.org/pdf/1702.05085.pdf,KEPLER: Keypoint and Pose Estimation of Unconstrained Faces by Learning Efficient H-CNN Regressors,2017 +13,IJB-A,ijb_c,42.718568,-84.47791571,Michigan State University,edu,02467703b6e087799e04e321bea3a4c354c5487d,citation,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2016.27,Grouper: Optimizing Crowdsourced Face Annotations,2016 +14,IJB-A,ijb_c,39.329053,-76.619425,Johns Hopkins University,edu,377f2b65e6a9300448bdccf678cde59449ecd337,citation,https://arxiv.org/pdf/1804.10275.pdf,Pushing the Limits of Unconstrained Face Detection: a Challenge Dataset and Baseline Results,2018 +15,IJB-A,ijb_c,40.47913175,-74.43168868,Rutgers University,edu,377f2b65e6a9300448bdccf678cde59449ecd337,citation,https://arxiv.org/pdf/1804.10275.pdf,Pushing the Limits of Unconstrained Face Detection: a Challenge Dataset and Baseline Results,2018 +16,IJB-A,ijb_c,42.718568,-84.47791571,Michigan State University,edu,cd55fb30737625e86454a2861302b96833ed549d,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7139094,Annotating Unconstrained Face Imagery: A scalable approach,2015 +17,IJB-A,ijb_c,38.95187,-77.363259,"Noblis, Falls Church, VA, U.S.A.",company,cd55fb30737625e86454a2861302b96833ed549d,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7139094,Annotating Unconstrained Face Imagery: A scalable approach,2015 +18,IJB-A,ijb_c,46.0501558,14.46907327,University of Ljubljana,edu,5226296884b3e151ce317a37f94827dbda0b9d16,citation,https://doi.org/10.1109/IWBF.2016.7449690,Deep pair-wise similarity learning for face recognition,2016 +19,IJB-A,ijb_c,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,80be8624771104ff4838dcba9629bacfe6b3ea09,citation,http://www.ifp.illinois.edu/~moulin/Papers/ECCV14-jiwen.pdf,Simultaneous Feature and Dictionary Learning for Image Set Based Face Recognition,2014 +20,IJB-A,ijb_c,1.3484104,103.68297965,Nanyang Technological University,edu,80be8624771104ff4838dcba9629bacfe6b3ea09,citation,http://www.ifp.illinois.edu/~moulin/Papers/ECCV14-jiwen.pdf,Simultaneous Feature and Dictionary Learning for Image Set Based Face Recognition,2014 +21,IJB-A,ijb_c,40.11116745,-88.22587665,"University of Illinois, Urbana-Champaign",edu,80be8624771104ff4838dcba9629bacfe6b3ea09,citation,http://www.ifp.illinois.edu/~moulin/Papers/ECCV14-jiwen.pdf,Simultaneous Feature and Dictionary Learning for Image Set Based Face Recognition,2014 +22,IJB-A,ijb_c,22.304572,114.17976285,Hong Kong Polytechnic University,edu,50b58becaf67e92a6d9633e0eea7d352157377c3,citation,https://pdfs.semanticscholar.org/50b5/8becaf67e92a6d9633e0eea7d352157377c3.pdf,Dependency-Aware Attention Control for Unconstrained Face Recognition with Image Sets,2018 +23,IJB-A,ijb_c,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,cd6aaa37fffd0b5c2320f386be322b8adaa1cc68,citation,https://arxiv.org/pdf/1804.06655.pdf,Deep Face Recognition: A Survey,2018 +24,IJB-A,ijb_c,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,ac2881bdf7b57dc1672a17b221d68a438d79fce8,citation,https://arxiv.org/pdf/1806.08472.pdf,Learning a High Fidelity Pose Invariant Model for High-resolution Face Frontalization,2018 +25,IJB-A,ijb_c,40.0044795,116.370238,Chinese Academy of Sciences,edu,72a7eb68f0955564e1ceafa75aeeb6b5bbb14e7e,citation,https://pdfs.semanticscholar.org/72a7/eb68f0955564e1ceafa75aeeb6b5bbb14e7e.pdf,Face Recognition with Contrastive Convolution,2018 +26,IJB-A,ijb_c,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,72a7eb68f0955564e1ceafa75aeeb6b5bbb14e7e,citation,https://pdfs.semanticscholar.org/72a7/eb68f0955564e1ceafa75aeeb6b5bbb14e7e.pdf,Face Recognition with Contrastive Convolution,2018 +27,IJB-A,ijb_c,42.3889785,-72.5286987,University of Massachusetts,edu,368e99f669ea5fd395b3193cd75b301a76150f9d,citation,https://arxiv.org/pdf/1506.01342.pdf,One-to-many face recognition with bilinear CNNs,2016 +28,IJB-A,ijb_c,32.77824165,34.99565673,Open University of Israel,edu,1e6ed6ca8209340573a5e907a6e2e546a3bf2d28,citation,http://arxiv.org/pdf/1607.01450v1.pdf,Pooling Faces: Template Based Face Recognition with Pooled Face Images,2016 +29,IJB-A,ijb_c,38.88140235,121.52281098,Dalian University of Technology,edu,052f994898c79529955917f3dfc5181586282cf8,citation,https://arxiv.org/pdf/1708.02191.pdf,Unsupervised Domain Adaptation for Face Recognition in Unlabeled Videos,2017 +30,IJB-A,ijb_c,32.9820799,-96.7566278,University of Texas at Dallas,edu,4e8168fbaa615009d1618a9d6552bfad809309e9,citation,http://pdfs.semanticscholar.org/4e81/68fbaa615009d1618a9d6552bfad809309e9.pdf,Deep Convolutional Neural Network Features and the Original Image,2016 +31,IJB-A,ijb_c,39.2899685,-76.62196103,University of Maryland,edu,4e8168fbaa615009d1618a9d6552bfad809309e9,citation,http://pdfs.semanticscholar.org/4e81/68fbaa615009d1618a9d6552bfad809309e9.pdf,Deep Convolutional Neural Network Features and the Original Image,2016 +32,IJB-A,ijb_c,29.7207902,-95.34406271,University of Houston,edu,3cb2841302af1fb9656f144abc79d4f3d0b27380,citation,https://pdfs.semanticscholar.org/3cb2/841302af1fb9656f144abc79d4f3d0b27380.pdf,When 3 D-Aided 2 D Face Recognition Meets Deep Learning : An extended UR 2 D for Pose-Invariant Face Recognition,2017 +33,IJB-A,ijb_c,24.4469025,54.3942563,Khalifa University,edu,0c1d85a197a1f5b7376652a485523e616a406273,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2017.169,Joint Registration and Representation Learning for Unconstrained Face Identification,2017 +34,IJB-A,ijb_c,-35.23656905,149.08446994,University of Canberra,edu,0c1d85a197a1f5b7376652a485523e616a406273,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2017.169,Joint Registration and Representation Learning for Unconstrained Face Identification,2017 +35,IJB-A,ijb_c,32.77824165,34.99565673,Open University of Israel,edu,c75e6ce54caf17b2780b4b53f8d29086b391e839,citation,https://arxiv.org/pdf/1802.00542.pdf,"ExpNet: Landmark-Free, Deep, 3D Facial Expressions",2018 +36,IJB-A,ijb_c,42.718568,-84.47791571,Michigan State University,edu,450c6a57f19f5aa45626bb08d7d5d6acdb863b4b,citation,https://arxiv.org/pdf/1805.00611.pdf,Towards Interpretable Face Recognition,2018 +37,IJB-A,ijb_c,51.7534538,-1.25400997,University of Oxford,edu,30180f66d5b4b7c0367e4b43e2b55367b72d6d2a,citation,http://www.robots.ox.ac.uk/~vgg/publications/2017/Crosswhite17/crosswhite17.pdf,Template Adaptation for Face Verification and Identification,2017 +38,IJB-A,ijb_c,29.7207902,-95.34406271,University of Houston,edu,8334da483f1986aea87b62028672836cb3dc6205,citation,https://arxiv.org/pdf/1805.06306.pdf,Fully Associative Patch-Based 1-to-N Matcher for Face Recognition,2018 +39,IJB-A,ijb_c,-33.8809651,151.20107299,University of Technology Sydney,edu,3b64efa817fd609d525c7244a0e00f98feacc8b4,citation,http://doi.acm.org/10.1145/2845089,A Comprehensive Survey on Pose-Invariant Face Recognition,2016 +40,IJB-A,ijb_c,40.9153196,-73.1270626,Stony Brook University,edu,6fbb179a4ad39790f4558dd32316b9f2818cd106,citation,http://pdfs.semanticscholar.org/6fbb/179a4ad39790f4558dd32316b9f2818cd106.pdf,Input Aggregated Network for Face Video Representation,2016 +41,IJB-A,ijb_c,38.8920756,-104.79716389,"University of Colorado, Colorado Springs",edu,d4f1eb008eb80595bcfdac368e23ae9754e1e745,citation,https://arxiv.org/pdf/1708.02337.pdf,Unconstrained Face Detection and Open-Set Face Recognition Challenge,2017 +42,IJB-A,ijb_c,33.5866784,-101.87539204,Electrical and Computer Engineering,edu,ebb3d5c70bedf2287f9b26ac0031004f8f617b97,citation,https://doi.org/10.1109/MSP.2017.2764116,"Deep Learning for Understanding Faces: Machines May Be Just as Good, or Better, than Humans",2018 +43,IJB-A,ijb_c,39.2899685,-76.62196103,University of Maryland,edu,ebb3d5c70bedf2287f9b26ac0031004f8f617b97,citation,https://doi.org/10.1109/MSP.2017.2764116,"Deep Learning for Understanding Faces: Machines May Be Just as Good, or Better, than Humans",2018 +44,IJB-A,ijb_c,34.0224149,-118.28634407,University of Southern California,edu,d28d32af7ef9889ef9cb877345a90ea85e70f7f1,citation,http://doi.ieeecomputersociety.org/10.1109/FG.2017.84,Local-Global Landmark Confidences for Face Recognition,2017 +45,IJB-A,ijb_c,37.4102193,-122.05965487,Carnegie Mellon University,edu,d28d32af7ef9889ef9cb877345a90ea85e70f7f1,citation,http://doi.ieeecomputersociety.org/10.1109/FG.2017.84,Local-Global Landmark Confidences for Face Recognition,2017 +46,IJB-A,ijb_c,51.5247272,-0.03931035,Queen Mary University of London,edu,a29566375836f37173ccaffa47dea25eb1240187,citation,https://arxiv.org/pdf/1809.09409.pdf,Vehicle Re-Identification in Context,2018 +47,IJB-A,ijb_c,34.0224149,-118.28634407,University of Southern California,edu,29f298dd5f806c99951cb434834bc8dcc765df18,citation,https://doi.org/10.1109/ICPR.2016.7899837,Computationally efficient template-based face recognition,2016 +48,IJB-A,ijb_c,51.49887085,-0.17560797,Imperial College London,edu,54bb25a213944b08298e4e2de54f2ddea890954a,citation,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Moschoglou_AgeDB_The_First_CVPR_2017_paper.pdf,"AgeDB: The First Manually Collected, In-the-Wild Age Database",2017 +49,IJB-A,ijb_c,51.59029705,-0.22963221,Middlesex University,edu,54bb25a213944b08298e4e2de54f2ddea890954a,citation,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Moschoglou_AgeDB_The_First_CVPR_2017_paper.pdf,"AgeDB: The First Manually Collected, In-the-Wild Age Database",2017 +50,IJB-A,ijb_c,50.8142701,8.771435,Philipps-Universität Marburg,edu,5981c309bd0ffd849c51b1d8a2ccc481a8ec2f5c,citation,https://doi.org/10.1109/ICT.2017.7998256,SmartFace: Efficient face detection on smartphones for wireless on-demand emergency networks,2017 +51,IJB-A,ijb_c,42.718568,-84.47791571,Michigan State University,edu,a2b4a6c6b32900a066d0257ae6d4526db872afe2,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8272466,Learning Face Image Quality From Human Assessments,2018 +52,IJB-A,ijb_c,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,3dfb822e16328e0f98a47209d7ecd242e4211f82,citation,https://arxiv.org/pdf/1708.08197.pdf,Cross-Age LFW: A Database for Studying Cross-Age Face Recognition in Unconstrained Environments,2017 +53,IJB-A,ijb_c,47.6423318,-122.1369302,Microsoft,company,291265db88023e92bb8c8e6390438e5da148e8f5,citation,http://pdfs.semanticscholar.org/4603/cb8e05258bb0572ae912ad20903b8f99f4b1.pdf,MS-Celeb-1M: A Dataset and Benchmark for Large-Scale Face Recognition,2016 +54,IJB-A,ijb_c,42.718568,-84.47791571,Michigan State University,edu,d29eec5e047560627c16803029d2eb8a4e61da75,citation,http://pdfs.semanticscholar.org/d29e/ec5e047560627c16803029d2eb8a4e61da75.pdf,Feature Transfer Learning for Deep Face Recognition with Long-Tail Data,2018 +55,IJB-A,ijb_c,36.20304395,117.05842113,Tianjin University,edu,5180df9d5eb26283fb737f491623395304d57497,citation,https://arxiv.org/pdf/1804.10899.pdf,Scalable Angular Discriminative Deep Metric Learning for Face Recognition,2018 +56,IJB-A,ijb_c,22.42031295,114.20788644,Chinese University of Hong Kong,edu,abdd17e411a7bfe043f280abd4e560a04ab6e992,citation,https://arxiv.org/pdf/1803.00839.pdf,Pose-Robust Face Recognition via Deep Residual Equivariant Mapping,2018 +57,IJB-A,ijb_c,28.5456282,77.2731505,"IIIT Delhi, India",edu,3cf1f89d73ca4b25399c237ed3e664a55cd273a2,citation,https://arxiv.org/pdf/1710.02914.pdf,Face Sketch Matching via Coupled Deep Transform Learning,2017 +58,IJB-A,ijb_c,-27.49741805,153.01316956,University of Queensland,edu,f27fd2a1bc229c773238f1912db94991b8bf389a,citation,https://doi.org/10.1109/IVCNZ.2016.7804414,How do you develop a face detector for the unconstrained environment?,2016 +59,IJB-A,ijb_c,39.86742125,32.73519072,Hacettepe University,edu,9865fe20df8fe11717d92b5ea63469f59cf1635a,citation,https://arxiv.org/pdf/1805.07566.pdf,Wildest Faces: Face Detection and Recognition in Violent Settings,2018 +60,IJB-A,ijb_c,39.87549675,32.78553506,Middle East Technical University,edu,9865fe20df8fe11717d92b5ea63469f59cf1635a,citation,https://arxiv.org/pdf/1805.07566.pdf,Wildest Faces: Face Detection and Recognition in Violent Settings,2018 +61,IJB-A,ijb_c,28.2290209,112.99483204,"National University of Defense Technology, China",edu,c1cc2a2a1ab66f6c9c6fabe28be45d1440a57c3d,citation,https://pdfs.semanticscholar.org/aae7/a5182e59f44b7bb49f61999181ce011f800b.pdf,Dual-Agent GANs for Photorealistic and Identity Preserving Profile Face Synthesis,2017 +62,IJB-A,ijb_c,1.2962018,103.77689944,National University of Singapore,edu,c1cc2a2a1ab66f6c9c6fabe28be45d1440a57c3d,citation,https://pdfs.semanticscholar.org/aae7/a5182e59f44b7bb49f61999181ce011f800b.pdf,Dual-Agent GANs for Photorealistic and Identity Preserving Profile Face Synthesis,2017 +63,IJB-A,ijb_c,17.4454957,78.34854698,International Institute of Information Technology,edu,f5eb411217f729ad7ae84bfd4aeb3dedb850206a,citation,https://pdfs.semanticscholar.org/f5eb/411217f729ad7ae84bfd4aeb3dedb850206a.pdf,Tackling Low Resolution for Better Scene Understanding,2018 +64,IJB-A,ijb_c,40.51865195,-74.44099801,State University of New Jersey,edu,96e731e82b817c95d4ce48b9e6b08d2394937cf8,citation,http://arxiv.org/pdf/1508.01722v2.pdf,Unconstrained face verification using deep CNN features,2016 +65,IJB-A,ijb_c,39.2899685,-76.62196103,University of Maryland,edu,96e731e82b817c95d4ce48b9e6b08d2394937cf8,citation,http://arxiv.org/pdf/1508.01722v2.pdf,Unconstrained face verification using deep CNN features,2016 +66,IJB-A,ijb_c,32.77824165,34.99565673,Open University of Israel,edu,870433ba89d8cab1656e57ac78f1c26f4998edfb,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2017.163,Regressing Robust and Discriminative 3D Morphable Models with a Very Deep Neural Network,2017 +67,IJB-A,ijb_c,55.6801502,12.572327,University of Copenhagen,edu,3dfd94d3fad7e17f52a8ae815eb9cc5471172bc0,citation,http://pdfs.semanticscholar.org/3dfd/94d3fad7e17f52a8ae815eb9cc5471172bc0.pdf,Face2Text: Collecting an Annotated Image Description Corpus for the Generation of Rich Face Descriptions,2018 +68,IJB-A,ijb_c,35.9023226,14.4834189,University of Malta,edu,3dfd94d3fad7e17f52a8ae815eb9cc5471172bc0,citation,http://pdfs.semanticscholar.org/3dfd/94d3fad7e17f52a8ae815eb9cc5471172bc0.pdf,Face2Text: Collecting an Annotated Image Description Corpus for the Generation of Rich Face Descriptions,2018 +69,IJB-A,ijb_c,34.0224149,-118.28634407,University of Southern California,edu,6341274aca0c2977c3e1575378f4f2126aa9b050,citation,http://arxiv.org/pdf/1609.03536v1.pdf,A multi-scale cascade fully convolutional network face detector,2016 +70,IJB-A,ijb_c,41.70456775,-86.23822026,University of Notre Dame,edu,17479e015a2dcf15d40190e06419a135b66da4e0,citation,https://arxiv.org/pdf/1610.08119.pdf,Predicting First Impressions With Deep Learning,2017 +71,IJB-A,ijb_c,37.4102193,-122.05965487,Carnegie Mellon University,edu,a0b1990dd2b4cd87e4fd60912cc1552c34792770,citation,https://pdfs.semanticscholar.org/a0b1/990dd2b4cd87e4fd60912cc1552c34792770.pdf,Deep Constrained Local Models for Facial Landmark Detection,2016 +72,IJB-A,ijb_c,30.642769,104.06751175,"Sichuan University, Chengdu",edu,772474b5b0c90629f4d9c223fd9c1ef45e1b1e66,citation,https://doi.org/10.1109/BTAS.2017.8272716,Multi-dim: A multi-dimensional face database towards the application of 3D technology in real-world scenarios,2017 +73,IJB-A,ijb_c,38.8920756,-104.79716389,"University of Colorado, Colorado Springs",edu,4b3f425274b0c2297d136f8833a31866db2f2aec,citation,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2017.85,Toward Open-Set Face Recognition,2017 +74,IJB-A,ijb_c,56.46255985,84.95565495,Tomsk Polytechnic University,edu,17ded725602b4329b1c494bfa41527482bf83a6f,citation,http://pdfs.semanticscholar.org/cb10/434a5d68ffbe9ed0498771192564ecae8894.pdf,Compact Convolutional Neural Network Cascade for Face Detection,2015 +75,IJB-A,ijb_c,37.3351908,-121.88126008,San Jose State University,edu,14b016c7a87d142f4b9a0e6dc470dcfc073af517,citation,http://ws680.nist.gov/publication/get_pdf.cfm?pub_id=918912,Modest proposals for improving biometric recognition papers,2015 +76,IJB-A,ijb_c,39.2899685,-76.62196103,University of Maryland,edu,93420d9212dd15b3ef37f566e4d57e76bb2fab2f,citation,https://arxiv.org/pdf/1611.00851.pdf,An All-In-One Convolutional Neural Network for Face Analysis,2017 +77,IJB-A,ijb_c,39.2899685,-76.62196103,University of Maryland,edu,def2983576001bac7d6461d78451159800938112,citation,https://arxiv.org/pdf/1705.07426.pdf,The Do’s and Don’ts for CNN-Based Face Verification,2017 +78,IJB-A,ijb_c,42.718568,-84.47791571,Michigan State University,edu,4b605e6a9362485bfe69950432fa1f896e7d19bf,citation,http://biometrics.cse.msu.edu/Publications/Face/BlantonAllenMillerKalkaJain_CVPRWB2016_HID.pdf,A Comparison of Human and Automated Face Verification Accuracy on Unconstrained Image Sets,2016 +79,IJB-A,ijb_c,39.2899685,-76.62196103,University of Maryland,edu,8d3e95c31c93548b8c71dbeee2e9f7180067a888,citation,https://doi.org/10.1109/ICPR.2016.7899841,Template regularized sparse coding for face verification,2016 +80,IJB-A,ijb_c,42.8271556,-73.8780481,GE Global Research,company,8d3e95c31c93548b8c71dbeee2e9f7180067a888,citation,https://doi.org/10.1109/ICPR.2016.7899841,Template regularized sparse coding for face verification,2016 +81,IJB-A,ijb_c,25.0410728,121.6147562,Institute of Information Science,edu,337dd4aaca2c5f9b5d2de8e0e2401b5a8feb9958,citation,https://arxiv.org/pdf/1810.11160.pdf,Data-specific Adaptive Threshold for Face Recognition and Authentication,2018 +82,IJB-A,ijb_c,22.59805605,113.98533784,Shenzhen Institutes of Advanced Technology,edu,0aeb5020003e0c89219031b51bd30ff1bceea363,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2016.525,Sparsifying Neural Network Connections for Face Recognition,2016 +83,IJB-A,ijb_c,22.42031295,114.20788644,Chinese University of Hong Kong,edu,0aeb5020003e0c89219031b51bd30ff1bceea363,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2016.525,Sparsifying Neural Network Connections for Face Recognition,2016 +84,IJB-A,ijb_c,42.718568,-84.47791571,Michigan State University,edu,99daa2839213f904e279aec7cef26c1dfb768c43,citation,https://arxiv.org/pdf/1805.02283.pdf,DocFace: Matching ID Document Photos to Selfies,2018 +85,IJB-A,ijb_c,43.7776426,11.259765,University of Florence,edu,71ca8b6e84c17b3e68f980bfb8cddc837100f8bf,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7899774,Effective 3D based frontalization for unconstrained face recognition,2016 +86,IJB-A,ijb_c,51.49887085,-0.17560797,Imperial College London,edu,c43ed9b34cad1a3976bac7979808eb038d88af84,citation,https://arxiv.org/pdf/1804.03675.pdf,Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model,2018 +87,IJB-A,ijb_c,51.24303255,-0.59001382,University of Surrey,edu,c43ed9b34cad1a3976bac7979808eb038d88af84,citation,https://arxiv.org/pdf/1804.03675.pdf,Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model,2018 +88,IJB-A,ijb_c,37.3936717,-122.0807262,Facebook,company,628a3f027b7646f398c68a680add48c7969ab1d9,citation,https://pdfs.semanticscholar.org/628a/3f027b7646f398c68a680add48c7969ab1d9.pdf,Plan for Final Year Project : HKU-Face : A Large Scale Dataset for Deep Face Recognition,2017 +89,IJB-A,ijb_c,40.2773077,-7.5095801,University of Beira Interior,edu,61262450d4d814865a4f9a84299c24daa493f66e,citation,http://doi.org/10.1007/s10462-016-9474-x,Biometric recognition in surveillance scenarios: a survey,2016 +90,IJB-A,ijb_c,-31.95040445,115.79790037,University of Western Australia,edu,626913b8fcbbaee8932997d6c4a78fe1ce646127,citation,https://arxiv.org/pdf/1711.05942.pdf,Learning from Millions of 3D Scans for Large-scale 3D Face Recognition,2017 +91,IJB-A,ijb_c,35.9023226,14.4834189,University of Malta,edu,4efd58102ff46b7435c9ec6d4fc3dd21d93b15b4,citation,https://doi.org/10.1109/TIFS.2017.2788002,"Matching Software-Generated Sketches to Face Photographs With a Very Deep CNN, Morphed Faces, and Transfer Learning",2018 +92,IJB-A,ijb_c,39.2899685,-76.62196103,University of Maryland,edu,b6f758be954d34817d4ebaa22b30c63a4b8ddb35,citation,http://arxiv.org/abs/1703.04835,A Proximity-Aware Hierarchical Clustering of Faces,2017 +93,IJB-A,ijb_c,32.77824165,34.99565673,Open University of Israel,edu,0a34fe39e9938ae8c813a81ae6d2d3a325600e5c,citation,https://arxiv.org/pdf/1708.07517.pdf,FacePoseNet: Making a Case for Landmark-Free Face Alignment,2017 +94,IJB-A,ijb_c,40.2773077,-7.5095801,University of Beira Interior,edu,84ae55603bffda40c225fe93029d39f04793e01f,citation,https://doi.org/10.1109/ICB.2016.7550066,ICB-RW 2016: International challenge on biometric recognition in the wild,2016 +95,IJB-A,ijb_c,41.70456775,-86.23822026,University of Notre Dame,edu,73ea06787925157df519a15ee01cc3dc1982a7e0,citation,https://arxiv.org/pdf/1811.01474.pdf,Fast Face Image Synthesis with Minimal Training,2018 +96,IJB-A,ijb_c,42.718568,-84.47791571,Michigan State University,edu,c6382de52636705be5898017f2f8ed7c70d7ae96,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7139089,Unconstrained face detection: State of the art baseline and challenges,2015 +97,IJB-A,ijb_c,38.95187,-77.363259,"Noblis, Falls Church, VA, U.S.A.",company,c6382de52636705be5898017f2f8ed7c70d7ae96,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7139089,Unconstrained face detection: State of the art baseline and challenges,2015 +98,IJB-A,ijb_c,40.47913175,-74.43168868,Rutgers University,edu,eee06d68497be8bf3a8aba4fde42a13aa090b301,citation,https://arxiv.org/pdf/1806.11191.pdf,CR-GAN: Learning Complete Representations for Multi-view Generation,2018 +99,IJB-A,ijb_c,35.3103441,-80.73261617,University of North Carolina at Charlotte,edu,eee06d68497be8bf3a8aba4fde42a13aa090b301,citation,https://arxiv.org/pdf/1806.11191.pdf,CR-GAN: Learning Complete Representations for Multi-view Generation,2018 +100,IJB-A,ijb_c,39.2899685,-76.62196103,University of Maryland,edu,a3201e955d6607d383332f3a12a7befa08c5a18c,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7900276,VLAD encoded Deep Convolutional features for unconstrained face verification,2016 +101,IJB-A,ijb_c,40.47913175,-74.43168868,Rutgers University,edu,a3201e955d6607d383332f3a12a7befa08c5a18c,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7900276,VLAD encoded Deep Convolutional features for unconstrained face verification,2016 +102,IJB-A,ijb_c,22.42031295,114.20788644,Chinese University of Hong Kong,edu,52d7eb0fbc3522434c13cc247549f74bb9609c5d,citation,https://arxiv.org/pdf/1511.06523.pdf,WIDER FACE: A Face Detection Benchmark,2016 +103,IJB-A,ijb_c,39.2899685,-76.62196103,University of Maryland,edu,19458454308a9f56b7de76bf7d8ff8eaa52b0173,citation,https://pdfs.semanticscholar.org/1945/8454308a9f56b7de76bf7d8ff8eaa52b0173.pdf,Deep Features for Recognizing Disguised Faces in the Wild,0 +104,IJB-A,ijb_c,43.7776426,11.259765,University of Florence,edu,746c0205fdf191a737df7af000eaec9409ede73f,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8423119,Investigating Nuisances in DCNN-Based Face Recognition,2018 +105,IJB-A,ijb_c,47.5612651,7.5752961,University of Basel,edu,0081e2188c8f34fcea3e23c49fb3e17883b33551,citation,http://pdfs.semanticscholar.org/0081/e2188c8f34fcea3e23c49fb3e17883b33551.pdf,Training Deep Face Recognition Systems with Synthetic Data,2018 +106,IJB-A,ijb_c,37.4102193,-122.05965487,Carnegie Mellon University,edu,2b869d5551b10f13bf6fcdb8d13f0aa4d1f59fc4,citation,https://arxiv.org/pdf/1803.00130.pdf,Ring loss: Convex Feature Normalization for Face Recognition,2018 +107,IJB-A,ijb_c,28.2290209,112.99483204,"National University of Defense Technology, China",edu,5f771fed91c8e4b666489ba2384d0705bcf75030,citation,https://arxiv.org/pdf/1804.03287.pdf,Understanding Humans in Crowded Scenes: Deep Nested Adversarial Learning and A New Benchmark for Multi-Human Parsing,2018 +108,IJB-A,ijb_c,1.2962018,103.77689944,National University of Singapore,edu,5f771fed91c8e4b666489ba2384d0705bcf75030,citation,https://arxiv.org/pdf/1804.03287.pdf,Understanding Humans in Crowded Scenes: Deep Nested Adversarial Learning and A New Benchmark for Multi-Human Parsing,2018 +109,IJB-A,ijb_c,42.3889785,-72.5286987,University of Massachusetts,edu,2241eda10b76efd84f3c05bdd836619b4a3df97e,citation,http://arxiv.org/pdf/1506.01342v5.pdf,One-to-many face recognition with bilinear CNNs,2016 +110,IJB-A,ijb_c,22.42031295,114.20788644,Chinese University of Hong Kong,edu,58d76380d194248b3bb291b8c7c5137a0a376897,citation,https://pdfs.semanticscholar.org/58d7/6380d194248b3bb291b8c7c5137a0a376897.pdf,FaceID-GAN : Learning a Symmetry Three-Player GAN for Identity-Preserving Face Synthesis,2018 +111,IJB-A,ijb_c,22.59805605,113.98533784,Shenzhen Institutes of Advanced Technology,edu,58d76380d194248b3bb291b8c7c5137a0a376897,citation,https://pdfs.semanticscholar.org/58d7/6380d194248b3bb291b8c7c5137a0a376897.pdf,FaceID-GAN : Learning a Symmetry Three-Player GAN for Identity-Preserving Face Synthesis,2018 +112,IJB-A,ijb_c,42.718568,-84.47791571,Michigan State University,edu,7fb5006b6522436ece5bedf509e79bdb7b79c9a7,citation,https://pdfs.semanticscholar.org/7fb5/006b6522436ece5bedf509e79bdb7b79c9a7.pdf,Multi-Task Convolutional Neural Network for Face Recognition,2017 +113,IJB-A,ijb_c,-27.49741805,153.01316956,University of Queensland,edu,28646c6220848db46c6944967298d89a6559c700,citation,https://pdfs.semanticscholar.org/2864/6c6220848db46c6944967298d89a6559c700.pdf,It takes two to tango : Cascading off-the-shelf face detectors,2018 +114,IJB-A,ijb_c,51.7534538,-1.25400997,University of Oxford,edu,5812d8239d691e99d4108396f8c26ec0619767a6,citation,https://arxiv.org/pdf/1810.09951.pdf,GhostVLAD for set-based face recognition,2018 +115,IJB-A,ijb_c,25.01353105,121.54173736,National Taiwan University of Science and Technology,edu,e4c3587392d477b7594086c6f28a00a826abf004,citation,https://doi.org/10.1109/ICIP.2017.8296998,Face recognition by facial attribute assisted network,2017 +116,IJB-A,ijb_c,1.3484104,103.68297965,Nanyang Technological University,edu,47190d213caef85e8b9dd0d271dbadc29ed0a953,citation,https://arxiv.org/pdf/1807.11649.pdf,The Devil of Face Recognition is in the Noise,2018 +117,IJB-A,ijb_c,32.87935255,-117.23110049,"University of California, San Diego",edu,47190d213caef85e8b9dd0d271dbadc29ed0a953,citation,https://arxiv.org/pdf/1807.11649.pdf,The Devil of Face Recognition is in the Noise,2018 +118,IJB-A,ijb_c,39.2899685,-76.62196103,University of Maryland,edu,ce6d60b69eb95477596535227958109e07c61e1e,citation,http://www.rci.rutgers.edu/~vmp93/Conference_pub/BTAS_2015_FVFF_JunCheng_Chen.pdf,Unconstrained face verification using fisher vectors computed from frontalized faces,2015 +119,IJB-A,ijb_c,29.7207902,-95.34406271,University of Houston,edu,38d8ff137ff753f04689e6b76119a44588e143f3,citation,http://pdfs.semanticscholar.org/38d8/ff137ff753f04689e6b76119a44588e143f3.pdf,When 3D-Aided 2D Face Recognition Meets Deep Learning: An extended UR2D for Pose-Invariant Face Recognition,2017 +120,IJB-A,ijb_c,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,9627f28ea5f4c389350572b15968386d7ce3fe49,citation,https://arxiv.org/pdf/1802.07447.pdf,Load Balanced GANs for Multi-view Face Image Synthesis,2018 +121,IJB-A,ijb_c,34.0224149,-118.28634407,University of Southern California,edu,4e7ed13e541b8ed868480375785005d33530e06d,citation,http://doi.ieeecomputersociety.org/10.1109/WACV.2016.7477555,Face recognition using deep multi-pose representations,2016 +122,IJB-A,ijb_c,32.77824165,34.99565673,Open University of Israel,edu,582edc19f2b1ab2ac6883426f147196c8306685a,citation,http://pdfs.semanticscholar.org/be6c/db7b181e73f546d43cf2ab6bc7181d7d619b.pdf,Do We Really Need to Collect Millions of Faces for Effective Face Recognition?,2016 +123,IJB-A,ijb_c,37.4102193,-122.05965487,Carnegie Mellon University,edu,87e6cb090aecfc6f03a3b00650a5c5f475dfebe1,citation,https://pdfs.semanticscholar.org/87e6/cb090aecfc6f03a3b00650a5c5f475dfebe1.pdf,Holistically Constrained Local Model: Going Beyond Frontal Poses for Facial Landmark Detection,2016 +124,IJB-A,ijb_c,34.0224149,-118.28634407,University of Southern California,edu,87e6cb090aecfc6f03a3b00650a5c5f475dfebe1,citation,https://pdfs.semanticscholar.org/87e6/cb090aecfc6f03a3b00650a5c5f475dfebe1.pdf,Holistically Constrained Local Model: Going Beyond Frontal Poses for Facial Landmark Detection,2016 +125,IJB-A,ijb_c,39.65404635,-79.96475355,West Virginia University,edu,3b9b200e76a35178da940279d566bbb7dfebb787,citation,http://pdfs.semanticscholar.org/3b9b/200e76a35178da940279d566bbb7dfebb787.pdf,Learning Channel Inter-dependencies at Multiple Scales on Dense Networks for Face Recognition,2017 +126,IJB-A,ijb_c,-27.49741805,153.01316956,University of Queensland,edu,de79437f74e8e3b266afc664decf4e6e4bdf34d7,citation,https://doi.org/10.1109/IVCNZ.2016.7804415,To face or not to face: Towards reducing false positive of face detection,2016 +127,IJB-A,ijb_c,46.0501558,14.46907327,University of Ljubljana,edu,368d59cf1733af511ed8abbcbeb4fb47afd4da1c,citation,http://pdfs.semanticscholar.org/368d/59cf1733af511ed8abbcbeb4fb47afd4da1c.pdf,To Frontalize or Not To Frontalize: A Study of Face Pre-Processing Techniques and Their Impact on Recognition,2016 +128,IJB-A,ijb_c,41.70456775,-86.23822026,University of Notre Dame,edu,368d59cf1733af511ed8abbcbeb4fb47afd4da1c,citation,http://pdfs.semanticscholar.org/368d/59cf1733af511ed8abbcbeb4fb47afd4da1c.pdf,To Frontalize or Not To Frontalize: A Study of Face Pre-Processing Techniques and Their Impact on Recognition,2016 +129,IJB-A,ijb_c,32.77824165,34.99565673,Open University of Israel,edu,62e913431bcef5983955e9ca160b91bb19d9de42,citation,http://pdfs.semanticscholar.org/62e9/13431bcef5983955e9ca160b91bb19d9de42.pdf,Facial Landmark Detection with Tweaked Convolutional Neural Networks,2015 +130,IJB-A,ijb_c,29.5084174,106.57858552,Chongqing University,edu,acd4280453b995cb071c33f7c9db5760432f4279,citation,https://doi.org/10.1007/s00138-018-0907-1,Deep transformation learning for face recognition in the unconstrained scene,2018 +131,IJB-A,ijb_c,38.99203005,-76.9461029,University of Maryland College Park,edu,ceeb67bf53ffab1395c36f1141b516f893bada27,citation,http://pdfs.semanticscholar.org/ceeb/67bf53ffab1395c36f1141b516f893bada27.pdf,Face Alignment by Local Deep Descriptor Regression,2016 +132,IJB-A,ijb_c,40.47913175,-74.43168868,Rutgers University,edu,ceeb67bf53ffab1395c36f1141b516f893bada27,citation,http://pdfs.semanticscholar.org/ceeb/67bf53ffab1395c36f1141b516f893bada27.pdf,Face Alignment by Local Deep Descriptor Regression,2016 +133,IJB-A,ijb_c,39.2899685,-76.62196103,University of Maryland,edu,ceeb67bf53ffab1395c36f1141b516f893bada27,citation,http://pdfs.semanticscholar.org/ceeb/67bf53ffab1395c36f1141b516f893bada27.pdf,Face Alignment by Local Deep Descriptor Regression,2016 +134,IJB-A,ijb_c,39.2899685,-76.62196103,University of Maryland,edu,37619564574856c6184005830deda4310d3ca580,citation,https://doi.org/10.1109/BTAS.2015.7358755,A deep pyramid Deformable Part Model for face detection,2015 +135,IJB-A,ijb_c,51.7534538,-1.25400997,University of Oxford,edu,eb027969f9310e0ae941e2adee2d42cdf07d938c,citation,https://arxiv.org/pdf/1710.08092.pdf,VGGFace2: A Dataset for Recognising Faces across Pose and Age,2018 +136,IJB-A,ijb_c,42.3889785,-72.5286987,University of Massachusetts,edu,3c97c32ff575989ef2869f86d89c63005fc11ba9,citation,http://people.cs.umass.edu/~hzjiang/pubs/face_det_fg_2017.pdf,Face Detection with the Faster R-CNN,2017 +137,IJB-A,ijb_c,39.2899685,-76.62196103,University of Maryland,edu,4f7b92bd678772552b3c3edfc9a7c5c4a8c60a8e,citation,https://pdfs.semanticscholar.org/4f7b/92bd678772552b3c3edfc9a7c5c4a8c60a8e.pdf,Deep Density Clustering of Unconstrained Faces,0 +138,IJB-A,ijb_c,1.2962018,103.77689944,National University of Singapore,edu,fca9ebaa30d69ccec8bb577c31693c936c869e72,citation,https://arxiv.org/pdf/1809.00338.pdf,Look Across Elapse: Disentangled Representation Learning and Photorealistic Cross-Age Face Synthesis for Age-Invariant Face Recognition,2018 +139,IJB-A,ijb_c,40.0044795,116.370238,Chinese Academy of Sciences,edu,fca9ebaa30d69ccec8bb577c31693c936c869e72,citation,https://arxiv.org/pdf/1809.00338.pdf,Look Across Elapse: Disentangled Representation Learning and Photorealistic Cross-Age Face Synthesis for Age-Invariant Face Recognition,2018 diff --git a/site/datasets/final/images_of_groups.csv b/site/datasets/final/images_of_groups.csv new file mode 100644 index 00000000..856d97b1 --- /dev/null +++ b/site/datasets/final/images_of_groups.csv @@ -0,0 +1,103 @@ +index,dataset_name,key,lat,lng,loc,loc_type,paper_id,paper_type,paper_url,title,year +0,Images of Groups,images_of_groups,0.0,0.0,,,21d9d0deed16f0ad62a4865e9acf0686f4f15492,main,http://amp.ece.cmu.edu/people/Andy/Andy_files/cvpr09.pdf,Understanding images of groups of people,2009 +1,Images of Groups,images_of_groups,45.42580475,-75.68740118,University of Ottawa,edu,49e2c1bae80e6b75233348102dc44671ee52b548,citation,http://www.site.uottawa.ca/~laganier/publications/esmaeelICIP2014.pdf,Age and gender recognition using informative features of various types,2014 +2,Images of Groups,images_of_groups,41.70456775,-86.23822026,University of Notre Dame,edu,0235b2d2ae306b7755483ac4f564044f46387648,citation,http://pdfs.semanticscholar.org/0235/b2d2ae306b7755483ac4f564044f46387648.pdf,Recognition of Facial Attributes Using Adaptive Sparse Representations of Random Patches,2014 +3,Images of Groups,images_of_groups,37.43131385,-122.16936535,Stanford University,edu,27a299b834a18e45d73e0bf784bbb5b304c197b3,citation,http://ai.stanford.edu/~vigneshr/cvpr_13/cvpr13_social_roles.pdf,Social Role Discovery in Human Events,2013 +4,Images of Groups,images_of_groups,37.43131385,-122.16936535,Stanford University,edu,d84230a2fc9950fccfd37f0291d65e634b5ffc32,citation,http://pdfs.semanticscholar.org/d842/30a2fc9950fccfd37f0291d65e634b5ffc32.pdf,Historical and Modern Image-to-Image Translation with Generative Adversarial Networks,2017 +5,Images of Groups,images_of_groups,25.01682835,121.53846924,National Taiwan University,edu,046865a5f822346c77e2865668ec014ec3282033,citation,http://www.csie.ntu.edu.tw/~winston/papers/chen12discovering.pdf,Discovering informative social subgraphs and predicting pairwise relationships from group photos,2012 +6,Images of Groups,images_of_groups,28.59899755,-81.19712501,University of Central Florida,edu,0aa303109a3402aa5a203877847d549c4a24d933,citation,http://crcv-web.eecs.ucf.edu/papers/cvpr2014/Resemblance_CVPR14.pdf,Who Do I Look Like? Determining Parent-Offspring Resemblance via Gated Autoencoders,2014 +7,Images of Groups,images_of_groups,37.4102193,-122.05965487,Carnegie Mellon University,edu,c6096986b4d6c374ab2d20031e026b581e7bf7e9,citation,http://pdfs.semanticscholar.org/c609/6986b4d6c374ab2d20031e026b581e7bf7e9.pdf,A Framework for Using Context to Understand Images of People,2009 +8,Images of Groups,images_of_groups,51.5231607,-0.1282037,University College London,edu,6aaa77e241fe55ae0c4ad281e27886ea778f9e23,citation,http://pdfs.semanticscholar.org/b562/ad2ae12920cb318c5309a35000b4d5eb27b8.pdf,F-Formation Detection: Individuating Free-Standing Conversational Groups in Images,2015 +9,Images of Groups,images_of_groups,43.7743911,-79.50481085,York University,edu,ffe4bb47ec15f768e1744bdf530d5796ba56cfc1,citation,https://arxiv.org/pdf/1706.04277.pdf,AFIF4: Deep Gender Classification based on AdaBoost-based Fusion of Isolated Facial Features and Foggy Faces,2017 +10,Images of Groups,images_of_groups,27.18794105,31.17009498,Assiut University,edu,ffe4bb47ec15f768e1744bdf530d5796ba56cfc1,citation,https://arxiv.org/pdf/1706.04277.pdf,AFIF4: Deep Gender Classification based on AdaBoost-based Fusion of Isolated Facial Features and Foggy Faces,2017 +11,Images of Groups,images_of_groups,40.9153196,-73.1270626,Stony Brook University,edu,14e9158daf17985ccbb15c9cd31cf457e5551990,citation,http://pdfs.semanticscholar.org/14e9/158daf17985ccbb15c9cd31cf457e5551990.pdf,ConvNets with Smooth Adaptive Activation Functions for Regression,2017 +12,Images of Groups,images_of_groups,40.90826665,-73.11520891,Stony Brook University Hospital,edu,14e9158daf17985ccbb15c9cd31cf457e5551990,citation,http://pdfs.semanticscholar.org/14e9/158daf17985ccbb15c9cd31cf457e5551990.pdf,ConvNets with Smooth Adaptive Activation Functions for Regression,2017 +13,Images of Groups,images_of_groups,-22.8148374,-47.0647708,University of Campinas (UNICAMP),edu,b161d261fabb507803a9e5834571d56a3b87d147,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8122913,Gender recognition from face images using a geometric descriptor,2017 +14,Images of Groups,images_of_groups,40.9153196,-73.1270626,Stony Brook University,edu,1190cba0cae3c8bb81bf80d6a0a83ae8c41240bc,citation,https://pdfs.semanticscholar.org/1190/cba0cae3c8bb81bf80d6a0a83ae8c41240bc.pdf,Squared Earth Mover ’ s Distance Loss for Training Deep Neural Networks on Ordered-Classes,2017 +15,Images of Groups,images_of_groups,24.94314825,121.36862979,National Taipei University,edu,30cc1ddd7a9b4878cca7783a59086bdc49dc4044,citation,https://doi.org/10.1007/s11042-015-2599-0,Intensity contrast masks for gender classification,2015 +16,Images of Groups,images_of_groups,-35.2776999,149.118527,Australian National University,edu,49e541e0bbc7a082e5c952fc70716e66e5713080,citation,http://ieeexplore.ieee.org/document/6460925/,Group expression intensity estimation in videos via Gaussian Processes,2012 +17,Images of Groups,images_of_groups,50.3755269,-4.13937687,Plymouth University,edu,8bed7ff2f75d956652320270eaf331e1f73efb35,citation,https://arxiv.org/pdf/1709.03820.pdf,Emotion recognition in the wild using deep neural networks and Bayesian classifiers,2017 +18,Images of Groups,images_of_groups,39.3650216,16.2257177,University of Calabria,edu,8bed7ff2f75d956652320270eaf331e1f73efb35,citation,https://arxiv.org/pdf/1709.03820.pdf,Emotion recognition in the wild using deep neural networks and Bayesian classifiers,2017 +19,Images of Groups,images_of_groups,51.7534538,-1.25400997,University of Oxford,edu,0be8b12f194fb604be69c139a195799e8ab53fd3,citation,http://www.robots.ox.ac.uk/~vgg/publications/2014/Hoai14/poster.pdf,Talking Heads: Detecting Humans and Recognizing Their Interactions,2014 +20,Images of Groups,images_of_groups,-35.2776999,149.118527,Australian National University,edu,0d3068b352c3733c9e1cc75e449bf7df1f7b10a4,citation,http://doi.ieeecomputersociety.org/10.1109/ACII.2013.111,Context Based Facial Expression Analysis in the Wild,2013 +21,Images of Groups,images_of_groups,45.42580475,-75.68740118,University of Ottawa,edu,16820ccfb626dcdc893cc7735784aed9f63cbb70,citation,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W12/papers/Azarmehr_Real-Time_Embedded_Age_2015_CVPR_paper.pdf,Real-time embedded age and gender classification in unconstrained video,2015 +22,Images of Groups,images_of_groups,51.5247272,-0.03931035,Queen Mary University of London,edu,fcc82154067dfe778423c2df4ed69f0bec6e1534,citation,https://pdfs.semanticscholar.org/fcc8/2154067dfe778423c2df4ed69f0bec6e1534.pdf,Automatic Analysis of Affect and Membership in Group Settings,2017 +23,Images of Groups,images_of_groups,52.17638955,0.14308882,University of Cambridge,edu,fcc82154067dfe778423c2df4ed69f0bec6e1534,citation,https://pdfs.semanticscholar.org/fcc8/2154067dfe778423c2df4ed69f0bec6e1534.pdf,Automatic Analysis of Affect and Membership in Group Settings,2017 +24,Images of Groups,images_of_groups,30.284151,-97.73195598,University of Texas at Austin,edu,45513d0f2f5c0dac5b61f9ff76c7e46cce62f402,citation,http://pdfs.semanticscholar.org/4551/3d0f2f5c0dac5b61f9ff76c7e46cce62f402.pdf,Face Discovery with Social Context,2011 +25,Images of Groups,images_of_groups,37.26728,126.9841151,Seoul National University,edu,282503fa0285240ef42b5b4c74ae0590fe169211,citation,http://pdfs.semanticscholar.org/2825/03fa0285240ef42b5b4c74ae0590fe169211.pdf,Feeding Hand-Crafted Features for Enhancing the Performance of Convolutional Neural Networks,2018 +26,Images of Groups,images_of_groups,-35.2776999,149.118527,Australian National University,edu,1ab881ec87167af9071b2ad8ff6d4ce3eee38477,citation,http://pdfs.semanticscholar.org/1ab8/81ec87167af9071b2ad8ff6d4ce3eee38477.pdf,Finding Happiest Moments in a Social Context,2012 +27,Images of Groups,images_of_groups,-35.23656905,149.08446994,University of Canberra,edu,1ab881ec87167af9071b2ad8ff6d4ce3eee38477,citation,http://pdfs.semanticscholar.org/1ab8/81ec87167af9071b2ad8ff6d4ce3eee38477.pdf,Finding Happiest Moments in a Social Context,2012 +28,Images of Groups,images_of_groups,-35.23656905,149.08446994,University of Canberra,edu,572dbaee6648eefa4c9de9b42551204b985ff863,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163151,The more the merrier: Analysing the affect of a group of people in images,2015 +29,Images of Groups,images_of_groups,32.87935255,-117.23110049,"University of California, San Diego",edu,572dbaee6648eefa4c9de9b42551204b985ff863,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163151,The more the merrier: Analysing the affect of a group of people in images,2015 +30,Images of Groups,images_of_groups,46.0658836,11.1159894,University of Trento,edu,572dbaee6648eefa4c9de9b42551204b985ff863,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163151,The more the merrier: Analysing the affect of a group of people in images,2015 +31,Images of Groups,images_of_groups,35.90503535,-79.04775327,University of North Carolina,edu,dbf6d2619bd41ce4c36488e15d114a2da31b51c9,citation,https://arxiv.org/pdf/1810.00028.pdf,Data-Driven Modeling of Group Entitativity in Virtual Environments,2018 +32,Images of Groups,images_of_groups,39.2899685,-76.62196103,University of Maryland,edu,dbf6d2619bd41ce4c36488e15d114a2da31b51c9,citation,https://arxiv.org/pdf/1810.00028.pdf,Data-Driven Modeling of Group Entitativity in Virtual Environments,2018 +33,Images of Groups,images_of_groups,37.4102193,-122.05965487,Carnegie Mellon University,edu,b593f13f974cf444a5781bbd487e1c69e056a1f7,citation,https://pdfs.semanticscholar.org/b593/f13f974cf444a5781bbd487e1c69e056a1f7.pdf,Query Image Query Image Retrievals Retrievals Transferred Poses Transferred Poses,2018 +34,Images of Groups,images_of_groups,43.7776426,11.259765,University of Florence,edu,02cc96ad997102b7c55e177ac876db3b91b4e72c,citation,http://www.micc.unifi.it/wp-content/uploads/2015/12/2015_museum-visitors-dataset.pdf,"MuseumVisitors: A dataset for pedestrian and group detection, gaze estimation and behavior understanding",2015 +35,Images of Groups,images_of_groups,40.8419836,-73.94368971,Columbia University,edu,02cc96ad997102b7c55e177ac876db3b91b4e72c,citation,http://www.micc.unifi.it/wp-content/uploads/2015/12/2015_museum-visitors-dataset.pdf,"MuseumVisitors: A dataset for pedestrian and group detection, gaze estimation and behavior understanding",2015 +36,Images of Groups,images_of_groups,58.38131405,26.72078081,University of Tartu,edu,1b248ed8e7c9514648cd598960fadf9ab17e7fe8,citation,https://pdfs.semanticscholar.org/1b24/8ed8e7c9514648cd598960fadf9ab17e7fe8.pdf,"From apparent to real age: gender, age, ethnic, makeup, and expression bias analysis in real age estimation",0 +37,Images of Groups,images_of_groups,41.3868913,2.16352385,University of Barcelona,edu,1b248ed8e7c9514648cd598960fadf9ab17e7fe8,citation,https://pdfs.semanticscholar.org/1b24/8ed8e7c9514648cd598960fadf9ab17e7fe8.pdf,"From apparent to real age: gender, age, ethnic, makeup, and expression bias analysis in real age estimation",0 +38,Images of Groups,images_of_groups,51.49887085,-0.17560797,Imperial College London,edu,54bb25a213944b08298e4e2de54f2ddea890954a,citation,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Moschoglou_AgeDB_The_First_CVPR_2017_paper.pdf,"AgeDB: The First Manually Collected, In-the-Wild Age Database",2017 +39,Images of Groups,images_of_groups,51.59029705,-0.22963221,Middlesex University,edu,54bb25a213944b08298e4e2de54f2ddea890954a,citation,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Moschoglou_AgeDB_The_First_CVPR_2017_paper.pdf,"AgeDB: The First Manually Collected, In-the-Wild Age Database",2017 +40,Images of Groups,images_of_groups,39.2899685,-76.62196103,University of Maryland,edu,3b092733f428b12f1f920638f868ed1e8663fe57,citation,http://www.math.jhu.edu/~data/RamaPapers/PerformanceBounds.pdf,On the size of Convolutional Neural Networks and generalization performance,2016 +41,Images of Groups,images_of_groups,33.6431901,-117.84016494,"University of California, Irvine",edu,3991223b1dc3b87883cec7af97cf56534178f74a,citation,http://doi.acm.org/10.1145/2461466.2461469,A unified framework for context assisted face clustering,2013 +42,Images of Groups,images_of_groups,65.0592157,25.46632601,University of Oulu,edu,1e516273554d87bbe1902fa0298179c493299035,citation,http://www.ee.oulu.fi/~hadid/Age-ICPR2012.pdf,Age Classification in Unconstrained Conditions Using LBP Variants,2012 +43,Images of Groups,images_of_groups,50.89273635,-1.39464295,University of Southampton,edu,fd67d0efbd94c9d8f9d2f0a972edd7320bc7604f,citation,http://pdfs.semanticscholar.org/fd67/d0efbd94c9d8f9d2f0a972edd7320bc7604f.pdf,Real-Time Semantic Clothing Segmentation,2012 +44,Images of Groups,images_of_groups,47.6543238,-122.30800894,University of Washington,edu,f2c30594d917ea915028668bc2a481371a72a14d,citation,http://pdfs.semanticscholar.org/f2c3/0594d917ea915028668bc2a481371a72a14d.pdf,Scene Understanding Using Internet Photo Collections,2010 +45,Images of Groups,images_of_groups,40.47913175,-74.43168868,Rutgers University,edu,31f1e711fcf82c855f27396f181bf5e565a2f58d,citation,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2015.54,Unconstrained Age Estimation with Deep Convolutional Neural Networks,2015 +46,Images of Groups,images_of_groups,39.2899685,-76.62196103,University of Maryland,edu,31f1e711fcf82c855f27396f181bf5e565a2f58d,citation,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2015.54,Unconstrained Age Estimation with Deep Convolutional Neural Networks,2015 +47,Images of Groups,images_of_groups,35.93006535,-84.31240032,Oak Ridge National Laboratory,edu,2cf3564d7421b661e84251d280d159d4b3ebb336,citation,https://doi.org/10.1109/BTAS.2014.6996287,Discriminating projections for estimating face age in wild images,2014 +48,Images of Groups,images_of_groups,34.2239869,-77.8701325,"UNCW, USA",edu,2cf3564d7421b661e84251d280d159d4b3ebb336,citation,https://doi.org/10.1109/BTAS.2014.6996287,Discriminating projections for estimating face age in wild images,2014 +49,Images of Groups,images_of_groups,34.2249827,-77.86907744,University of North Carolina at Wilmington,edu,2cf3564d7421b661e84251d280d159d4b3ebb336,citation,https://doi.org/10.1109/BTAS.2014.6996287,Discriminating projections for estimating face age in wild images,2014 +50,Images of Groups,images_of_groups,41.3868913,2.16352385,University of Barcelona,edu,500fbe18afd44312738cab91b4689c12b4e0eeee,citation,http://www.maia.ub.es/~sergio/linked/ijcnn_age_and_cultural_2015.pdf,ChaLearn looking at people 2015 new competitions: Age estimation and cultural event recognition,2015 +51,Images of Groups,images_of_groups,45.4312742,12.3265377,University of Venezia,edu,500fbe18afd44312738cab91b4689c12b4e0eeee,citation,http://www.maia.ub.es/~sergio/linked/ijcnn_age_and_cultural_2015.pdf,ChaLearn looking at people 2015 new competitions: Age estimation and cultural event recognition,2015 +52,Images of Groups,images_of_groups,42.4505507,-76.4783513,Cornell University,edu,0d57d3d2d04fc96d731cac99a7a8ef79050dac75,citation,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR2013/data/Papers/Workshops/4990a269.pdf,Not Everybody's Special: Using Neighbors in Referring Expressions with Uncertain Attributes,2013 +53,Images of Groups,images_of_groups,42.4505507,-76.4783513,Cornell University,edu,fbc9ba70e36768efff130c7d970ce52810b044ff,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6738500,Face-graph matching for classifying groups of people,2013 +54,Images of Groups,images_of_groups,37.43131385,-122.16936535,Stanford University,edu,fbc9ba70e36768efff130c7d970ce52810b044ff,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6738500,Face-graph matching for classifying groups of people,2013 +55,Images of Groups,images_of_groups,1.340216,103.965089,Singapore University of Technology and Design,edu,00823e6c0b6f1cf22897b8d0b2596743723ec51c,citation,https://arxiv.org/pdf/1708.07689.pdf,Understanding and Comparing Deep Neural Networks for Age and Gender Classification,2017 +56,Images of Groups,images_of_groups,41.1664858,-73.1920564,University of Bridgeport,edu,ac9a331327cceda4e23f9873f387c9fd161fad76,citation,http://pdfs.semanticscholar.org/ac9a/331327cceda4e23f9873f387c9fd161fad76.pdf,Deep Convolutional Neural Network for Age Estimation based on VGG-Face Model,2017 +57,Images of Groups,images_of_groups,42.4505507,-76.4783513,Cornell University,edu,5aad56cfa2bac5d6635df4184047e809f8fecca2,citation,http://chenlab.ece.cornell.edu/people/Amir/publications/picture_password.pdf,A visual dictionary attack on Picture Passwords,2013 +58,Images of Groups,images_of_groups,42.9336278,-78.88394479,SUNY Buffalo,edu,4793f11fbca4a7dba898b9fff68f70d868e2497c,citation,http://pdfs.semanticscholar.org/4793/f11fbca4a7dba898b9fff68f70d868e2497c.pdf,Kinship Verification through Transfer Learning,2011 +59,Images of Groups,images_of_groups,37.4102193,-122.05965487,Carnegie Mellon University,edu,eddc4989cdb20c8cdfb22e989bdb2cb9031d0439,citation,https://arxiv.org/pdf/1804.03080.pdf,Binge Watching: Scaling Affordance Learning from Sitcoms,2017 +60,Images of Groups,images_of_groups,42.3383668,-71.08793524,Northeastern University,edu,090e4713bcccff52dcd0c01169591affd2af7e76,citation,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Shao_What_Do_You_2013_ICCV_paper.pdf,What Do You Do? Occupation Recognition in a Photo via Social Context,2013 +61,Images of Groups,images_of_groups,53.21967825,6.56251482,University of Groningen,edu,4ff4c27e47b0aa80d6383427642bb8ee9d01c0ac,citation,https://doi.org/10.1109/SSCI.2015.37,Deep Convolutional Neural Networks and Support Vector Machines for Gender Recognition,2015 +62,Images of Groups,images_of_groups,40.11116745,-88.22587665,"University of Illinois, Urbana-Champaign",edu,291f527598c589fb0519f890f1beb2749082ddfd,citation,http://pdfs.semanticscholar.org/3215/ceb94227451a958bcf6b1205c710d17e53f5.pdf,Seeing People in Social Context: Recognizing People and Social Relationships,2010 +63,Images of Groups,images_of_groups,42.4505507,-76.4783513,Cornell University,edu,28d06fd508d6f14cd15f251518b36da17909b79e,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Chen_Whats_in_a_2013_CVPR_paper.pdf,What's in a Name? First Names as Facial Attributes,2013 +64,Images of Groups,images_of_groups,37.43131385,-122.16936535,Stanford University,edu,28d06fd508d6f14cd15f251518b36da17909b79e,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Chen_Whats_in_a_2013_CVPR_paper.pdf,What's in a Name? First Names as Facial Attributes,2013 +65,Images of Groups,images_of_groups,47.0570222,21.922709,Queen Mary University,edu,34022637860443c052375c45c4f700afcb438cd0,citation,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2016.185,Automatic Recognition of Emotions and Membership in Group Videos,2016 +66,Images of Groups,images_of_groups,52.17638955,0.14308882,University of Cambridge,edu,34022637860443c052375c45c4f700afcb438cd0,citation,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2016.185,Automatic Recognition of Emotions and Membership in Group Videos,2016 +67,Images of Groups,images_of_groups,38.8964679,-104.8050594,University of Colorado at Colorado Springs,edu,e3e2c106ccbd668fb9fca851498c662add257036,citation,http://www.vast.uccs.edu/~tboult/PAPERS/BTAS13-Sapkota-et-al-Ensembles.pdf,"Appearance, context and co-occurrence ensembles for identity recognition in personal photo collections",2013 +68,Images of Groups,images_of_groups,25.01682835,121.53846924,National Taiwan University,edu,8ba67f45fbb1ce47a90df38f21834db37c840079,citation,http://www.cmlab.csie.ntu.edu.tw/~yanying/paper/dsp006-chen.pdf,People search and activity mining in large-scale community-contributed photos,2012 +69,Images of Groups,images_of_groups,1.2962018,103.77689944,National University of Singapore,edu,a5219fff98dfe3ec81dee95c4ead69a8e24cc802,citation,https://arxiv.org/pdf/1708.00634.pdf,Dual-Glance Model for Deciphering Social Relationships,2017 +70,Images of Groups,images_of_groups,44.97308605,-93.23708813,University of Minnesota,edu,a5219fff98dfe3ec81dee95c4ead69a8e24cc802,citation,https://arxiv.org/pdf/1708.00634.pdf,Dual-Glance Model for Deciphering Social Relationships,2017 +71,Images of Groups,images_of_groups,40.742252,-74.0270949,Stevens Institute of Technology,edu,1e1d7cbbef67e9e042a3a0a9a1bcefcc4a9adacf,citation,http://personal.stevens.edu/~hli18//data/papers/CVPR2016_CameraReady.pdf,A Multi-level Contextual Model for Person Recognition in Photo Albums,2016 +72,Images of Groups,images_of_groups,-34.9189226,138.60423668,University of Adelaide,edu,3d24b386d003bee176a942c26336dbe8f427aadd,citation,http://arxiv.org/abs/1611.09967,Sequential Person Recognition in Photo Albums with a Recurrent Network,2017 +73,Images of Groups,images_of_groups,37.43131385,-122.16936535,Stanford University,edu,111ae23b60284927f2545dfc59b0147bb3423792,citation,https://pdfs.semanticscholar.org/111a/e23b60284927f2545dfc59b0147bb3423792.pdf,Classroom Data Collection and Analysis using Computer Vision,2016 +74,Images of Groups,images_of_groups,51.99882735,4.37396037,Delft University of Technology,edu,dfbf941adeea19f5dff4a70a466ddd1b77f3b727,citation,https://pdfs.semanticscholar.org/dfbf/941adeea19f5dff4a70a466ddd1b77f3b727.pdf,Models for supervised learning in sequence data,2018 +75,Images of Groups,images_of_groups,40.8419836,-73.94368971,Columbia University,edu,774cbb45968607a027ae4729077734db000a1ec5,citation,http://pdfs.semanticscholar.org/774c/bb45968607a027ae4729077734db000a1ec5.pdf,From Bikers to Surfers: Visual Recognition of Urban Tribes,2013 +76,Images of Groups,images_of_groups,32.87935255,-117.23110049,"University of California, San Diego",edu,774cbb45968607a027ae4729077734db000a1ec5,citation,http://pdfs.semanticscholar.org/774c/bb45968607a027ae4729077734db000a1ec5.pdf,From Bikers to Surfers: Visual Recognition of Urban Tribes,2013 +77,Images of Groups,images_of_groups,47.6543238,-122.30800894,University of Washington,edu,5b2bc289b607ca1a0634555158464f28fe68a6d3,citation,http://vision.ics.uci.edu/papers/GargRSS_CVPR_2011/GargRSS_CVPR_2011.pdf,Where's Waldo: Matching people in images of crowds,2011 +78,Images of Groups,images_of_groups,42.4505507,-76.4783513,Cornell University,edu,5b2bc289b607ca1a0634555158464f28fe68a6d3,citation,http://vision.ics.uci.edu/papers/GargRSS_CVPR_2011/GargRSS_CVPR_2011.pdf,Where's Waldo: Matching people in images of crowds,2011 +79,Images of Groups,images_of_groups,42.4505507,-76.4783513,Cornell University,edu,b185f0a39384ceb3c4923196aeed6d68830a069f,citation,http://pdfs.semanticscholar.org/b185/f0a39384ceb3c4923196aeed6d68830a069f.pdf,Describing Clothing by Semantic Attributes,2012 +80,Images of Groups,images_of_groups,37.43131385,-122.16936535,Stanford University,edu,b185f0a39384ceb3c4923196aeed6d68830a069f,citation,http://pdfs.semanticscholar.org/b185/f0a39384ceb3c4923196aeed6d68830a069f.pdf,Describing Clothing by Semantic Attributes,2012 +81,Images of Groups,images_of_groups,42.4505507,-76.4783513,Cornell University,edu,14c37ea85ba8d74d053a34aedd7e484659fd54d4,citation,http://users.ece.cmu.edu/~dbatra/publications/assets/opd_cvpr10.pdf,Beyond trees: MRF inference via outer-planar decomposition,2010 +82,Images of Groups,images_of_groups,65.0592157,25.46632601,University of Oulu,edu,8d95317d0e366cecae1dd3f7c1ba69fe3fc4a8e0,citation,http://pdfs.semanticscholar.org/f7c7/f4494f73f2fe845be3b82ee711bc00be7508.pdf,Riesz-based Volume Local Binary Pattern and A Novel Group Expression Model for Group Happiness Intensity Analysis,2015 +83,Images of Groups,images_of_groups,-35.23656905,149.08446994,University of Canberra,edu,8d95317d0e366cecae1dd3f7c1ba69fe3fc4a8e0,citation,http://pdfs.semanticscholar.org/f7c7/f4494f73f2fe845be3b82ee711bc00be7508.pdf,Riesz-based Volume Local Binary Pattern and A Novel Group Expression Model for Group Happiness Intensity Analysis,2015 +84,Images of Groups,images_of_groups,-35.2776999,149.118527,Australian National University,edu,8d95317d0e366cecae1dd3f7c1ba69fe3fc4a8e0,citation,http://pdfs.semanticscholar.org/f7c7/f4494f73f2fe845be3b82ee711bc00be7508.pdf,Riesz-based Volume Local Binary Pattern and A Novel Group Expression Model for Group Happiness Intensity Analysis,2015 +85,Images of Groups,images_of_groups,45.42580475,-75.68740118,University of Ottawa,edu,65293ecf6a4c5ab037a2afb4a9a1def95e194e5f,citation,http://pdfs.semanticscholar.org/6529/3ecf6a4c5ab037a2afb4a9a1def95e194e5f.pdf,"Face , Age and Gender Recognition using Local Descriptors",2014 +86,Images of Groups,images_of_groups,32.8536333,-117.2035286,Kyung Hee University,edu,854b1f0581f5d3340f15eb79452363cbf38c04c8,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7903648,Directional Age-Primitive Pattern (DAPP) for Human Age Group Recognition and Age Estimation,2017 +87,Images of Groups,images_of_groups,24.7246403,46.62335012,King Saud University,edu,854b1f0581f5d3340f15eb79452363cbf38c04c8,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7903648,Directional Age-Primitive Pattern (DAPP) for Human Age Group Recognition and Age Estimation,2017 +88,Images of Groups,images_of_groups,23.7289899,90.3982682,Institute of Information Technology,edu,854b1f0581f5d3340f15eb79452363cbf38c04c8,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7903648,Directional Age-Primitive Pattern (DAPP) for Human Age Group Recognition and Age Estimation,2017 +89,Images of Groups,images_of_groups,42.9336278,-78.88394479,SUNY Buffalo,edu,2eb84aaba316b095d4bb51da1a3e4365bbf9ab1d,citation,https://doi.org/10.1109/CVPRW.2011.5981801,Genealogical face recognition based on UB KinFace database,2011 +90,Images of Groups,images_of_groups,35.9042272,-78.85565763,"IBM Research, North Carolina",company,aea50d3414ecb20dc2ba77b0277d0df59bde2c2c,citation,http://pdfs.semanticscholar.org/aea5/0d3414ecb20dc2ba77b0277d0df59bde2c2c.pdf,The #selfiestation: Design and Use of a Kiosk for Taking Selfies in the Enterprise,2015 +91,Images of Groups,images_of_groups,40.00229045,116.32098908,Tsinghua University,edu,0a0d5283439f088c158fcec732e2593bb3cd57ad,citation,http://media.cs.tsinghua.edu.cn/~ahz/papers/whoblockswho_iccv2011_final.pdf,Who Blocks Who: Simultaneous clothing segmentation for grouping images,2011 +92,Images of Groups,images_of_groups,42.36782045,-71.12666653,Harvard University,edu,0ba402af3b8682e2aa89f76bd823ddffdf89fa0a,citation,http://pdfs.semanticscholar.org/c0d8/4377168c554cb8e83099bed940091fe49dec.pdf,Squared Earth Mover's Distance-based Loss for Training Deep Neural Networks,2016 +93,Images of Groups,images_of_groups,40.9153196,-73.1270626,Stony Brook University,edu,0ba402af3b8682e2aa89f76bd823ddffdf89fa0a,citation,http://pdfs.semanticscholar.org/c0d8/4377168c554cb8e83099bed940091fe49dec.pdf,Squared Earth Mover's Distance-based Loss for Training Deep Neural Networks,2016 +94,Images of Groups,images_of_groups,51.5217668,-0.13019072,University of London,edu,b9eb55c2c573e2fffd686b00a39185f0142ef816,citation,http://elvera.nue.tu-berlin.de/files/1241Ramzan2010.pdf,The participation payoff: challenges and opportunities for multimedia access in networked communities,2010 +95,Images of Groups,images_of_groups,51.99882735,4.37396037,Delft University of Technology,edu,b9eb55c2c573e2fffd686b00a39185f0142ef816,citation,http://elvera.nue.tu-berlin.de/files/1241Ramzan2010.pdf,The participation payoff: challenges and opportunities for multimedia access in networked communities,2010 +96,Images of Groups,images_of_groups,1.2962018,103.77689944,National University of Singapore,edu,cc3ef62b4a7eb6c4e45302deb89df2e547b6efcc,citation,http://pdfs.semanticscholar.org/cc3e/f62b4a7eb6c4e45302deb89df2e547b6efcc.pdf,Creating Picture Legends for Group Photos,2012 +97,Images of Groups,images_of_groups,37.4585796,-122.17560525,SRI International,edu,683f5c838ea2c9c50f3f5c5fa064c00868751733,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Chakraborty_3D_Visual_Proxemics_2013_CVPR_paper.pdf,3D Visual Proxemics: Recognizing Human Interactions in 3D from a Single Image,2013 +98,Images of Groups,images_of_groups,40.51865195,-74.44099801,State University of New Jersey,edu,d00e9a6339e34c613053d3b2c132fccbde547b56,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7791154,A cascaded convolutional neural network for age estimation of unconstrained faces,2016 +99,Images of Groups,images_of_groups,39.2899685,-76.62196103,University of Maryland,edu,d00e9a6339e34c613053d3b2c132fccbde547b56,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7791154,A cascaded convolutional neural network for age estimation of unconstrained faces,2016 +100,Images of Groups,images_of_groups,31.2284923,121.40211389,East China Normal University,edu,5364e58ba1f4cdfcffb247c2421e8f56a75fad8d,citation,https://doi.org/10.1109/VCIP.2017.8305113,Facial age estimation through self-paced learning,2017 +101,Images of Groups,images_of_groups,42.3383668,-71.08793524,Northeastern University,edu,c9f588d295437009994ddaabb64fd4e4c499b294,citation,http://pdfs.semanticscholar.org/c9f5/88d295437009994ddaabb64fd4e4c499b294.pdf,Predicting Professions through Probabilistic Model under Social Context,2013 diff --git a/site/datasets/final/imdb_wiki.csv b/site/datasets/final/imdb_wiki.csv new file mode 100644 index 00000000..645649ff --- /dev/null +++ b/site/datasets/final/imdb_wiki.csv @@ -0,0 +1,130 @@ +index,dataset_name,key,lat,lng,loc,loc_type,paper_id,paper_type,paper_url,title,year +0,IMDB,imdb_wiki,0.0,0.0,,,10195a163ab6348eef37213a46f60a3d87f289c5,main,https://doi.org/10.1007/s11263-016-0940-3,Deep Expectation of Real and Apparent Age from a Single Image Without Facial Landmarks,2016 +1,IMDB,imdb_wiki,40.9153196,-73.1270626,Stony Brook University,edu,14e9158daf17985ccbb15c9cd31cf457e5551990,citation,http://pdfs.semanticscholar.org/14e9/158daf17985ccbb15c9cd31cf457e5551990.pdf,ConvNets with Smooth Adaptive Activation Functions for Regression,2017 +2,IMDB,imdb_wiki,40.90826665,-73.11520891,Stony Brook University Hospital,edu,14e9158daf17985ccbb15c9cd31cf457e5551990,citation,http://pdfs.semanticscholar.org/14e9/158daf17985ccbb15c9cd31cf457e5551990.pdf,ConvNets with Smooth Adaptive Activation Functions for Regression,2017 +3,IMDB,imdb_wiki,51.5231607,-0.1282037,University College London,edu,3c4f6d24b55b1fd3c5b85c70308d544faef3f69a,citation,http://pdfs.semanticscholar.org/3c4f/6d24b55b1fd3c5b85c70308d544faef3f69a.pdf,A Hybrid Deep Learning Architecture for Privacy-Preserving Mobile Analytics,2017 +4,IMDB,imdb_wiki,45.5039761,-73.5749687,McGill University,edu,13719bbb4bb8bbe0cbcdad009243a926d93be433,citation,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w6/papers/Tian_Deep_LDA-Pruned_Nets_CVPR_2017_paper.pdf,Deep LDA-Pruned Nets for Efficient Facial Gender Classification,2017 +5,IMDB,imdb_wiki,41.3868913,2.16352385,University of Barcelona,edu,b7845e0b0ce17cde7db37d5524ef2a61dee3e540,citation,https://doi.org/10.1109/ICPR.2016.7899608,Fusion of classifier predictions for audio-visual emotion recognition,2016 +6,IMDB,imdb_wiki,44.812384,20.453501,Singidunum University,edu,b7845e0b0ce17cde7db37d5524ef2a61dee3e540,citation,https://doi.org/10.1109/ICPR.2016.7899608,Fusion of classifier predictions for audio-visual emotion recognition,2016 +7,IMDB,imdb_wiki,58.38131405,26.72078081,University of Tartu,edu,b7845e0b0ce17cde7db37d5524ef2a61dee3e540,citation,https://doi.org/10.1109/ICPR.2016.7899608,Fusion of classifier predictions for audio-visual emotion recognition,2016 +8,IMDB,imdb_wiki,1.2962018,103.77689944,National University of Singapore,edu,fca9ebaa30d69ccec8bb577c31693c936c869e72,citation,https://arxiv.org/pdf/1809.00338.pdf,Look Across Elapse: Disentangled Representation Learning and Photorealistic Cross-Age Face Synthesis for Age-Invariant Face Recognition,2018 +9,IMDB,imdb_wiki,40.0044795,116.370238,Chinese Academy of Sciences,edu,fca9ebaa30d69ccec8bb577c31693c936c869e72,citation,https://arxiv.org/pdf/1809.00338.pdf,Look Across Elapse: Disentangled Representation Learning and Photorealistic Cross-Age Face Synthesis for Age-Invariant Face Recognition,2018 +10,IMDB,imdb_wiki,55.91029135,-3.32345777,Heriot-Watt University,edu,2cdc40f20b70ca44d9fd8e7716080ee05ca7924a,citation,http://pdfs.semanticscholar.org/2cdc/40f20b70ca44d9fd8e7716080ee05ca7924a.pdf,Real-time Convolutional Neural Networks for Emotion and Gender Classification,2017 +11,IMDB,imdb_wiki,56.45796755,-2.98214831,University of Dundee,edu,d5b0e73b584be507198b6665bcddeba92b62e1e5,citation,http://pdfs.semanticscholar.org/d5b0/e73b584be507198b6665bcddeba92b62e1e5.pdf,Multi-Region Ensemble Convolutional Neural Networks for High-Accuracy Age Estimation,2017 +12,IMDB,imdb_wiki,22.15263985,113.56803206,Macau University of Science and Technology,edu,d5b0e73b584be507198b6665bcddeba92b62e1e5,citation,http://pdfs.semanticscholar.org/d5b0/e73b584be507198b6665bcddeba92b62e1e5.pdf,Multi-Region Ensemble Convolutional Neural Networks for High-Accuracy Age Estimation,2017 +13,IMDB,imdb_wiki,24.12084345,120.67571165,National Chung Hsing University,edu,6feafc5c1d8b0e9d65ebe4c1512b7860c538fbdc,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8448885,Smart Facial Age Estimation with Stacked Deep Network Fusion,2018 +14,IMDB,imdb_wiki,24.15031065,120.68325501,National Taichung University of Science and Technology,edu,6feafc5c1d8b0e9d65ebe4c1512b7860c538fbdc,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8448885,Smart Facial Age Estimation with Stacked Deep Network Fusion,2018 +15,IMDB,imdb_wiki,41.10427915,29.02231159,Istanbul Technical University,edu,fd53be2e0a9f33080a9db4b5a5e416e24ae8e198,citation,https://arxiv.org/pdf/1606.02909.pdf,Apparent Age Estimation Using Ensemble of Deep Learning Models,2016 +16,IMDB,imdb_wiki,42.357757,-83.06286711,Wayne State University,edu,4f1249369127cc2e2894f6b2f1052d399794919a,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8239663,Deep Age Estimation: From Classification to Ranking,2018 +17,IMDB,imdb_wiki,45.47567215,9.23336232,Università degli Studi di Milano,edu,a713a01971e73d0c3118d0409dc7699a24f521d6,citation,https://doi.org/10.1109/SSCI.2017.8285381,Age estimation based on face images and pre-trained convolutional neural networks,2017 +18,IMDB,imdb_wiki,35.6894875,139.6917064,"IBJ, Inc., Tokyo, Japan",company,df7af280771a6c8302b75ed0a14ffe7854cca679,citation,http://doi.ieeecomputersociety.org/10.1109/ICMEW.2017.8026293,Prediction of users' facial attractiveness on an online dating website,2017 +19,IMDB,imdb_wiki,35.9020448,139.93622009,University of Tokyo,edu,df7af280771a6c8302b75ed0a14ffe7854cca679,citation,http://doi.ieeecomputersociety.org/10.1109/ICMEW.2017.8026293,Prediction of users' facial attractiveness on an online dating website,2017 +20,IMDB,imdb_wiki,35.9990522,-78.9290629,Duke University,edu,cca9ae621e8228cfa787ec7954bb375536160e0d,citation,https://arxiv.org/pdf/1805.07410.pdf,Learning to Collaborate for User-Controlled Privacy,2018 +21,IMDB,imdb_wiki,51.5231607,-0.1282037,University College London,edu,cca9ae621e8228cfa787ec7954bb375536160e0d,citation,https://arxiv.org/pdf/1805.07410.pdf,Learning to Collaborate for User-Controlled Privacy,2018 +22,IMDB,imdb_wiki,51.7534538,-1.25400997,University of Oxford,edu,3ca5d3b8f5f071148cb50f22955fd8c1c1992719,citation,http://pdfs.semanticscholar.org/3ca5/d3b8f5f071148cb50f22955fd8c1c1992719.pdf,Evaluating race and sex diversity in the world's largest companies using deep neural networks,2017 +23,IMDB,imdb_wiki,53.57227,9.99472,"Dermalog Identification Systems, Hamburg, Germany",company,5b64584d6b01e66dfd0b6025b2552db1447ccdeb,citation,https://doi.org/10.1109/BTAS.2017.8272697,Deep expectation for estimation of fingerprint orientation fields,2017 +24,IMDB,imdb_wiki,60.7897318,10.6821927,"Norwegian Biometrics Lab, NTNU, Norway",edu,5b64584d6b01e66dfd0b6025b2552db1447ccdeb,citation,https://doi.org/10.1109/BTAS.2017.8272697,Deep expectation for estimation of fingerprint orientation fields,2017 +25,IMDB,imdb_wiki,51.49887085,-0.17560797,Imperial College London,edu,56e079f4eb40744728fd1d7665938b06426338e5,citation,https://arxiv.org/pdf/1705.04293.pdf,Bayesian Approaches to Distribution Regression,2018 +26,IMDB,imdb_wiki,51.5231607,-0.1282037,University College London,edu,56e079f4eb40744728fd1d7665938b06426338e5,citation,https://arxiv.org/pdf/1705.04293.pdf,Bayesian Approaches to Distribution Regression,2018 +27,IMDB,imdb_wiki,51.7534538,-1.25400997,University of Oxford,edu,56e079f4eb40744728fd1d7665938b06426338e5,citation,https://arxiv.org/pdf/1705.04293.pdf,Bayesian Approaches to Distribution Regression,2018 +28,IMDB,imdb_wiki,45.5039761,-73.5749687,McGill University,edu,407bb798ab153bf6156ba2956f8cf93256b6910a,citation,http://pdfs.semanticscholar.org/407b/b798ab153bf6156ba2956f8cf93256b6910a.pdf,Fisher Pruning of Deep Nets for Facial Trait Classification,2018 +29,IMDB,imdb_wiki,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,39c10888a470b92b917788c57a6fd154c97b421c,citation,https://doi.org/10.1109/VCIP.2017.8305036,Joint multi-feature fusion and attribute relationships for facial attribute prediction,2017 +30,IMDB,imdb_wiki,51.7534538,-1.25400997,University of Oxford,edu,eb027969f9310e0ae941e2adee2d42cdf07d938c,citation,https://arxiv.org/pdf/1710.08092.pdf,VGGFace2: A Dataset for Recognising Faces across Pose and Age,2018 +31,IMDB,imdb_wiki,45.5039761,-73.5749687,McGill University,edu,ed9d11e995baeec17c5d2847ec1a8d5449254525,citation,https://pdfs.semanticscholar.org/ed9d/11e995baeec17c5d2847ec1a8d5449254525.pdf,Efficient Gender Classification Using a Deep LDA-Pruned Net,2017 +32,IMDB,imdb_wiki,31.32235655,121.38400941,Shanghai University,edu,d454ad60b061c1a1450810a0f335fafbfeceeccc,citation,https://arxiv.org/pdf/1712.07195.pdf,Deep Regression Forests for Age Estimation,2017 +33,IMDB,imdb_wiki,40.0044795,116.370238,Chinese Academy of Sciences,edu,288964068cd87d97a98b8bc927d6e0d2349458a2,citation,https://pdfs.semanticscholar.org/2889/64068cd87d97a98b8bc927d6e0d2349458a2.pdf,Mean-Variance Loss for Deep Age Estimation from a Face,0 +34,IMDB,imdb_wiki,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,288964068cd87d97a98b8bc927d6e0d2349458a2,citation,https://pdfs.semanticscholar.org/2889/64068cd87d97a98b8bc927d6e0d2349458a2.pdf,Mean-Variance Loss for Deep Age Estimation from a Face,0 +35,IMDB,imdb_wiki,40.51865195,-74.44099801,State University of New Jersey,edu,d00e9a6339e34c613053d3b2c132fccbde547b56,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7791154,A cascaded convolutional neural network for age estimation of unconstrained faces,2016 +36,IMDB,imdb_wiki,39.2899685,-76.62196103,University of Maryland,edu,d00e9a6339e34c613053d3b2c132fccbde547b56,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7791154,A cascaded convolutional neural network for age estimation of unconstrained faces,2016 +37,IMDB,imdb_wiki,37.2830003,127.04548469,Ajou University,edu,c43dc4ae68a317b34a79636fadb3bcc4d1ccb61c,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8369763,Age and gender estimation using deep residual learning network,2018 +38,IMDB,imdb_wiki,37.403917,127.159786,Korea Electronics Technology Institute,edu,c43dc4ae68a317b34a79636fadb3bcc4d1ccb61c,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8369763,Age and gender estimation using deep residual learning network,2018 +39,IMDB,imdb_wiki,37.26728,126.9841151,Seoul National University,edu,c43dc4ae68a317b34a79636fadb3bcc4d1ccb61c,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8369763,Age and gender estimation using deep residual learning network,2018 +40,IMDB,imdb_wiki,1.2962018,103.77689944,National University of Singapore,edu,5f94969b9491db552ffebc5911a45def99026afe,citation,https://pdfs.semanticscholar.org/5f94/969b9491db552ffebc5911a45def99026afe.pdf,Multimodal Learning and Reasoning for Visual Question Answering,2017 +41,IMDB,imdb_wiki,42.357757,-83.06286711,Wayne State University,edu,28d99dc2d673d62118658f8375b414e5192eac6f,citation,http://www.cs.wayne.edu/~mdong/cvpr17.pdf,Using Ranking-CNN for Age Estimation,2017 +42,IMDB,imdb_wiki,49.2767454,-122.91777375,Simon Fraser University,edu,975978ee6a32383d6f4f026b944099e7739e5890,citation,https://pdfs.semanticscholar.org/9759/78ee6a32383d6f4f026b944099e7739e5890.pdf,Privacy-Preserving Age Estimation for Content Rating,2018 +43,IMDB,imdb_wiki,49.8091536,-97.13304179,University of Manitoba,edu,975978ee6a32383d6f4f026b944099e7739e5890,citation,https://pdfs.semanticscholar.org/9759/78ee6a32383d6f4f026b944099e7739e5890.pdf,Privacy-Preserving Age Estimation for Content Rating,2018 +44,IMDB,imdb_wiki,43.66333345,-79.39769975,University of Toronto,edu,36a3a96ef54000a0cd63de867a5eb7e84396de09,citation,http://www.cs.toronto.edu/~guerzhoy/oriviz/crv17.pdf,Automatic Photo Orientation Detection with Convolutional Neural Networks,2017 +45,IMDB,imdb_wiki,31.32235655,121.38400941,Shanghai University,edu,5f0d4a0b5f72d8700cdf8cb179263a8fa866b59b,citation,https://pdfs.semanticscholar.org/5f0d/4a0b5f72d8700cdf8cb179263a8fa866b59b.pdf,Memo No . 85 06 / 2018 Deep Regression Forests for Age Estimation,2018 +46,IMDB,imdb_wiki,51.5247272,-0.03931035,Queen Mary University of London,edu,6cefb70f4668ee6c0bf0c18ea36fd49dd60e8365,citation,http://pdfs.semanticscholar.org/6cef/b70f4668ee6c0bf0c18ea36fd49dd60e8365.pdf,Privacy-Preserving Deep Inference for Rich User Data on The Cloud,2017 +47,IMDB,imdb_wiki,35.7036227,51.35125097,Sharif University of Technology,edu,6cefb70f4668ee6c0bf0c18ea36fd49dd60e8365,citation,http://pdfs.semanticscholar.org/6cef/b70f4668ee6c0bf0c18ea36fd49dd60e8365.pdf,Privacy-Preserving Deep Inference for Rich User Data on The Cloud,2017 +48,IMDB,imdb_wiki,51.99882735,4.37396037,Delft University of Technology,edu,dfbf941adeea19f5dff4a70a466ddd1b77f3b727,citation,https://pdfs.semanticscholar.org/dfbf/941adeea19f5dff4a70a466ddd1b77f3b727.pdf,Models for supervised learning in sequence data,2018 +49,IMDB,imdb_wiki,36.3697191,127.362537,Korea Advanced Institute of Science and Technology,edu,cb27b45329d61f5f95ed213798d4b2a615e76be2,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8329236,Deep Facial Age Estimation Using Conditional Multitask Learning With Weak Label Expansion,2018 +50,IMDB,imdb_wiki,37.2520226,127.0555019,"Samsung SAIT, Korea",company,cb27b45329d61f5f95ed213798d4b2a615e76be2,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8329236,Deep Facial Age Estimation Using Conditional Multitask Learning With Weak Label Expansion,2018 +51,IMDB,imdb_wiki,35.9042272,-78.85565763,"IBM Research, North Carolina",company,00a967cb2d18e1394226ad37930524a31351f6cf,citation,https://arxiv.org/pdf/1611.05377v1.pdf,Fully-Adaptive Feature Sharing in Multi-Task Networks with Applications in Person Attribute Classification,2017 +52,IMDB,imdb_wiki,12.9803537,77.6975101,"Samsung R&D Institute, Bangalore, India",company,cf736f596bf881ca97ec4b29776baaa493b9d50e,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7952629,Low Dimensional Deep Features for facial landmark alignment,2017 +53,IMDB,imdb_wiki,-35.0636071,147.3552234,Charles Sturt University,edu,2e231f1e7e641dd3619bec59e14d02e91360ac01,citation,https://arxiv.org/pdf/1807.10421.pdf,Fusion Network for Face-Based Age Estimation,2018 +54,IMDB,imdb_wiki,51.3791442,-2.3252332,University of Bath,edu,2e231f1e7e641dd3619bec59e14d02e91360ac01,citation,https://arxiv.org/pdf/1807.10421.pdf,Fusion Network for Face-Based Age Estimation,2018 +55,IMDB,imdb_wiki,1.340216,103.965089,Singapore University of Technology and Design,edu,00823e6c0b6f1cf22897b8d0b2596743723ec51c,citation,https://arxiv.org/pdf/1708.07689.pdf,Understanding and Comparing Deep Neural Networks for Age and Gender Classification,2017 +56,IMDB,imdb_wiki,31.2284923,121.40211389,East China Normal University,edu,5364e58ba1f4cdfcffb247c2421e8f56a75fad8d,citation,https://doi.org/10.1109/VCIP.2017.8305113,Facial age estimation through self-paced learning,2017 +57,IMDB,imdb_wiki,61.44964205,23.85877462,Tampere University of Technology,edu,7f21a7441c6ded38008c1fd0b91bdd54425d3f80,citation,https://arxiv.org/pdf/1809.05474.pdf,Real Time System for Facial Analysis,2018 +58,IMDB,imdb_wiki,55.94951105,-3.19534913,University of Edinburgh,edu,f5fae7810a33ed67852ad6a3e0144cb278b24b41,citation,https://pdfs.semanticscholar.org/f5fa/e7810a33ed67852ad6a3e0144cb278b24b41.pdf,Multilingual Gender Classification with Multi-view Deep Learning: Notebook for PAN at CLEF 2018,2018 +59,IMDB,imdb_wiki,40.9153196,-73.1270626,Stony Brook University,edu,1190cba0cae3c8bb81bf80d6a0a83ae8c41240bc,citation,https://pdfs.semanticscholar.org/1190/cba0cae3c8bb81bf80d6a0a83ae8c41240bc.pdf,Squared Earth Mover ’ s Distance Loss for Training Deep Neural Networks on Ordered-Classes,2017 +60,IMDB,imdb_wiki,26.88111275,112.62850666,Hunan University,edu,86d0127e1fd04c3d8ea78401c838af621647dc95,citation,https://arxiv.org/pdf/1804.02810.pdf,A Novel Multi-Task Tensor Correlation Neural Network for Facial Attribute Prediction,2018 +61,IMDB,imdb_wiki,28.2290209,112.99483204,"National University of Defense Technology, China",edu,86d0127e1fd04c3d8ea78401c838af621647dc95,citation,https://arxiv.org/pdf/1804.02810.pdf,A Novel Multi-Task Tensor Correlation Neural Network for Facial Attribute Prediction,2018 +62,IMDB,imdb_wiki,29.58333105,-98.61944505,University of Texas at San Antonio,edu,86d0127e1fd04c3d8ea78401c838af621647dc95,citation,https://arxiv.org/pdf/1804.02810.pdf,A Novel Multi-Task Tensor Correlation Neural Network for Facial Attribute Prediction,2018 +63,IMDB,imdb_wiki,22.42031295,114.20788644,Chinese University of Hong Kong,edu,d80a3d1f3a438e02a6685e66ee908446766fefa9,citation,https://arxiv.org/pdf/1708.09687.pdf,Quantifying Facial Age by Posterior of Age Comparisons,2017 +64,IMDB,imdb_wiki,51.49887085,-0.17560797,Imperial College London,edu,54bb25a213944b08298e4e2de54f2ddea890954a,citation,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Moschoglou_AgeDB_The_First_CVPR_2017_paper.pdf,"AgeDB: The First Manually Collected, In-the-Wild Age Database",2017 +65,IMDB,imdb_wiki,51.59029705,-0.22963221,Middlesex University,edu,54bb25a213944b08298e4e2de54f2ddea890954a,citation,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Moschoglou_AgeDB_The_First_CVPR_2017_paper.pdf,"AgeDB: The First Manually Collected, In-the-Wild Age Database",2017 +66,IMDB,imdb_wiki,40.00229045,116.32098908,Tsinghua University,edu,493c8591d6a1bef5d7b84164a73761cefb9f5a25,citation,http://dl.acm.org/citation.cfm?id=3159691,User Profiling through Deep Multimodal Fusion,2018 +67,IMDB,imdb_wiki,47.6543238,-122.30800894,University of Washington,edu,493c8591d6a1bef5d7b84164a73761cefb9f5a25,citation,http://dl.acm.org/citation.cfm?id=3159691,User Profiling through Deep Multimodal Fusion,2018 +68,IMDB,imdb_wiki,30.44235995,-84.29747867,Florida State University,edu,b8c08c1330779283b3fbf06d133faf8bd55ea941,citation,https://arxiv.org/pdf/1803.11521.pdf,Online Regression with Feature Selection in Stochastic Data Streams,2018 +69,IMDB,imdb_wiki,30.44235995,-84.29747867,Florida State University,edu,1cfca6b71b0ead87bbb79a8614ddec3a10100faa,citation,https://arxiv.org/pdf/1809.05465.pdf,Are screening methods useful in feature selection? An empirical study,2018 +70,IMDB,imdb_wiki,51.49887085,-0.17560797,Imperial College London,edu,a06b6d30e2b31dc600f622ab15afe5e2929581a7,citation,https://ibug.doc.ic.ac.uk/media/uploads/documents/2209.pdf,Robust Joint and Individual Variance Explained,2017 +71,IMDB,imdb_wiki,51.59029705,-0.22963221,Middlesex University,edu,a06b6d30e2b31dc600f622ab15afe5e2929581a7,citation,https://ibug.doc.ic.ac.uk/media/uploads/documents/2209.pdf,Robust Joint and Individual Variance Explained,2017 +72,IMDB,imdb_wiki,32.0575279,118.78682252,Southeast University,edu,8ff8c64288a2f7e4e8bf8fda865820b04ab3dbe8,citation,https://pdfs.semanticscholar.org/0056/92b9fa6728df3a7f14578c43410867bba425.pdf,Age Estimation Using Expectation of Label Distribution Learning,2018 +73,IMDB,imdb_wiki,32.0565957,118.77408833,Nanjing University,edu,8ff8c64288a2f7e4e8bf8fda865820b04ab3dbe8,citation,https://pdfs.semanticscholar.org/0056/92b9fa6728df3a7f14578c43410867bba425.pdf,Age Estimation Using Expectation of Label Distribution Learning,2018 +74,IMDB,imdb_wiki,58.38131405,26.72078081,University of Tartu,edu,1b248ed8e7c9514648cd598960fadf9ab17e7fe8,citation,https://pdfs.semanticscholar.org/1b24/8ed8e7c9514648cd598960fadf9ab17e7fe8.pdf,"From apparent to real age: gender, age, ethnic, makeup, and expression bias analysis in real age estimation",0 +75,IMDB,imdb_wiki,41.3868913,2.16352385,University of Barcelona,edu,1b248ed8e7c9514648cd598960fadf9ab17e7fe8,citation,https://pdfs.semanticscholar.org/1b24/8ed8e7c9514648cd598960fadf9ab17e7fe8.pdf,"From apparent to real age: gender, age, ethnic, makeup, and expression bias analysis in real age estimation",0 +76,IMDB,imdb_wiki,35.9542493,-83.9307395,University of Tennessee,edu,7fab17ef7e25626643f1d55257a3e13348e435bd,citation,https://arxiv.org/pdf/1702.08423.pdf,Age Progression/Regression by Conditional Adversarial Autoencoder,2017 +77,IMDB,imdb_wiki,37.4102193,-122.05965487,Carnegie Mellon University,edu,ec05078be14a11157ac0e1c6b430ac886124589b,citation,http://pdfs.semanticscholar.org/ec05/078be14a11157ac0e1c6b430ac886124589b.pdf,Longitudinal Face Aging in the Wild - Recent Deep Learning Approaches,2018 +78,IMDB,imdb_wiki,45.57022705,-122.63709346,Concordia University,edu,ec05078be14a11157ac0e1c6b430ac886124589b,citation,http://pdfs.semanticscholar.org/ec05/078be14a11157ac0e1c6b430ac886124589b.pdf,Longitudinal Face Aging in the Wild - Recent Deep Learning Approaches,2018 +79,IMDB,imdb_wiki,40.00229045,116.32098908,Tsinghua University,edu,2149d49c84a83848d6051867290d9c8bfcef0edb,citation,https://doi.org/10.1109/TIFS.2017.2746062,Label-Sensitive Deep Metric Learning for Facial Age Estimation,2018 +80,IMDB,imdb_wiki,42.36782045,-71.12666653,Harvard University,edu,0ba402af3b8682e2aa89f76bd823ddffdf89fa0a,citation,http://pdfs.semanticscholar.org/c0d8/4377168c554cb8e83099bed940091fe49dec.pdf,Squared Earth Mover's Distance-based Loss for Training Deep Neural Networks,2016 +81,IMDB,imdb_wiki,40.9153196,-73.1270626,Stony Brook University,edu,0ba402af3b8682e2aa89f76bd823ddffdf89fa0a,citation,http://pdfs.semanticscholar.org/c0d8/4377168c554cb8e83099bed940091fe49dec.pdf,Squared Earth Mover's Distance-based Loss for Training Deep Neural Networks,2016 +82,IMDB,imdb_wiki,46.0658836,11.1159894,University of Trento,edu,df31e9c882dfb3ea5a3abe3b139ceacb1d90a302,citation,https://arxiv.org/pdf/1808.09211.pdf,DeepGUM: Learning Deep Robust Regression with a Gaussian-Uniform Mixture Model,2018 +83,IMDB,imdb_wiki,51.7534538,-1.25400997,University of Oxford,edu,523854a7d8755e944bd50217c14481fe1329a969,citation,https://arxiv.org/pdf/1808.00380.pdf,A Differentially Private Kernel Two-Sample Test,2018 +84,IMDB,imdb_wiki,51.49887085,-0.17560797,Imperial College London,edu,9b0489f2d5739213ef8c3e2e18739c4353c3a3b7,citation,http://pdfs.semanticscholar.org/9b04/89f2d5739213ef8c3e2e18739c4353c3a3b7.pdf,Visual Data Augmentation through Learning,2018 +85,IMDB,imdb_wiki,51.59029705,-0.22963221,Middlesex University,edu,9b0489f2d5739213ef8c3e2e18739c4353c3a3b7,citation,http://pdfs.semanticscholar.org/9b04/89f2d5739213ef8c3e2e18739c4353c3a3b7.pdf,Visual Data Augmentation through Learning,2018 +86,IMDB,imdb_wiki,40.00229045,116.32098908,Tsinghua University,edu,51f626540860ad75b68206025a45466a6d087aa6,citation,https://doi.org/10.1109/ICIP.2017.8296595,Cluster convolutional neural networks for facial age estimation,2017 +87,IMDB,imdb_wiki,49.2593879,-122.9151893,"AltumView Systems Inc., Burnaby, BC, Canada",company,b44f03b5fa8c6275238c2d13345652e6ff7e6ea9,citation,https://doi.org/10.1109/GlobalSIP.2017.8309138,Lapped convolutional neural networks for embedded systems,2017 +88,IMDB,imdb_wiki,39.2899685,-76.62196103,University of Maryland,edu,93420d9212dd15b3ef37f566e4d57e76bb2fab2f,citation,https://arxiv.org/pdf/1611.00851.pdf,An All-In-One Convolutional Neural Network for Face Analysis,2017 +89,IMDB,imdb_wiki,22.15263985,113.56803206,Macau University of Science and Technology,edu,56f231fc40424ed9a7c93cbc9f5a99d022e1d242,citation,http://pdfs.semanticscholar.org/d060/f2f3641c6a89ade021eea749414a5c6b443f.pdf,Age Estimation Based on a Single Network with Soft Softmax of Aging Modeling,2016 +90,IMDB,imdb_wiki,40.0044795,116.370238,Chinese Academy of Sciences,edu,56f231fc40424ed9a7c93cbc9f5a99d022e1d242,citation,http://pdfs.semanticscholar.org/d060/f2f3641c6a89ade021eea749414a5c6b443f.pdf,Age Estimation Based on a Single Network with Soft Softmax of Aging Modeling,2016 +91,IMDB,imdb_wiki,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,56f231fc40424ed9a7c93cbc9f5a99d022e1d242,citation,http://pdfs.semanticscholar.org/d060/f2f3641c6a89ade021eea749414a5c6b443f.pdf,Age Estimation Based on a Single Network with Soft Softmax of Aging Modeling,2016 +92,IMDB,imdb_wiki,43.614386,7.071125,EURECOM,edu,1648cf24c042122af2f429641ba9599a2187d605,citation,https://doi.org/10.1109/BTAS.2017.8272698,Boosting cross-age face verification via generative age normalization,2017 +93,IMDB,imdb_wiki,21.003952,105.84360183,Hanoi University of Science and Technology,edu,ca37933b6297cdca211aa7250cbe6b59f8be40e5,citation,http://doi.acm.org/10.1145/3155133.3155207,"Multi-task learning for smile detection, emotion recognition and gender classification",2017 +94,IMDB,imdb_wiki,51.49887085,-0.17560797,Imperial College London,edu,cf2002fac81ccdccdadb5cc43f7b1cd30882d2c2,citation,https://arxiv.org/pdf/1803.09546.pdf,Calibrated Prediction Intervals for Neural Network Regressors,2018 +95,IMDB,imdb_wiki,51.7534538,-1.25400997,University of Oxford,edu,75f9d3533f175943e33c9155f4038488f32a24bc,citation,https://arxiv.org/pdf/1811.06817.pdf,Evaluating Uncertainty Quantification in End-to-End Autonomous Driving Control,2018 +96,IMDB,imdb_wiki,32.8536333,-117.2035286,Kyung Hee University,edu,854b1f0581f5d3340f15eb79452363cbf38c04c8,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7903648,Directional Age-Primitive Pattern (DAPP) for Human Age Group Recognition and Age Estimation,2017 +97,IMDB,imdb_wiki,24.7246403,46.62335012,King Saud University,edu,854b1f0581f5d3340f15eb79452363cbf38c04c8,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7903648,Directional Age-Primitive Pattern (DAPP) for Human Age Group Recognition and Age Estimation,2017 +98,IMDB,imdb_wiki,23.7289899,90.3982682,Institute of Information Technology,edu,854b1f0581f5d3340f15eb79452363cbf38c04c8,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7903648,Directional Age-Primitive Pattern (DAPP) for Human Age Group Recognition and Age Estimation,2017 +99,IMDB,imdb_wiki,28.5456282,77.2731505,"IIIT Delhi, India",edu,f726738954e7055bb3615fa7e8f59f136d3e0bdc,citation,https://arxiv.org/pdf/1803.07385.pdf,Are you eligible? Predicting adulthood from face images via class specific mean autoencoder,2018 +100,IMDB,imdb_wiki,42.0551164,-87.67581113,Northwestern University,edu,c1586ee25e660f31cba0ca9ba5bf39ffcc020aab,citation,https://arxiv.org/pdf/1807.06708.pdf,A Modulation Module for Multi-task Learning with Applications in Image Retrieval,2018 +101,IMDB,imdb_wiki,37.4102193,-122.05965487,Carnegie Mellon University,edu,c1586ee25e660f31cba0ca9ba5bf39ffcc020aab,citation,https://arxiv.org/pdf/1807.06708.pdf,A Modulation Module for Multi-task Learning with Applications in Image Retrieval,2018 +102,IMDB,imdb_wiki,30.04287695,31.23664139,American University in Cairo,edu,3a2c90e0963bfb07fc7cd1b5061383e9a99c39d2,citation,https://arxiv.org/pdf/1710.03804.pdf,End-to-End Deep Learning for Steering Autonomous Vehicles Considering Temporal Dependencies,2017 +103,IMDB,imdb_wiki,31.83907195,117.26420748,University of Science and Technology of China,edu,47cd161546c59ab1e05f8841b82e985f72e5ddcb,citation,https://doi.org/10.1109/ICIP.2017.8296552,Gender classification in live videos,2017 +104,IMDB,imdb_wiki,39.2899685,-76.62196103,University of Maryland,edu,1491d0938bb4183bd19f2fee3b61997e1918160d,citation,https://arxiv.org/pdf/1807.00453.pdf,Elastic Neural Networks: A Scalable Framework for Embedded Computer Vision,2018 +105,IMDB,imdb_wiki,30.44235995,-84.29747867,Florida State University,edu,b88bace97d214d279e3a2053ccff0b6425295708,citation,https://arxiv.org/pdf/1803.11521.pdf,A Novel Framework for Online Supervised Learning with Feature Selection,2018 +106,IMDB,imdb_wiki,61.44964205,23.85877462,Tampere University of Technology,edu,b20cfbb2348984b4e25b6b9174f3c7b65b6aed9e,citation,http://pdfs.semanticscholar.org/b20c/fbb2348984b4e25b6b9174f3c7b65b6aed9e.pdf,Learning with Ambiguous Label Distribution for Apparent Age Estimation,2016 +107,IMDB,imdb_wiki,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,f3ec43a7b22f6e5414fec473acda8ffd843e7baf,citation,https://arxiv.org/pdf/1809.07447.pdf,A Coupled Evolutionary Network for Age Estimation,2018 +108,IMDB,imdb_wiki,39.94976005,116.33629046,Beijing Jiaotong University,edu,4b9ec224949c79a980a5a66664d0ac6233c3d575,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7565501,Human Facial Age Estimation by Cost-Sensitive Label Ranking and Trace Norm Regularization,2017 +109,IMDB,imdb_wiki,43.1576969,-77.58829158,University of Rochester,edu,4b9ec224949c79a980a5a66664d0ac6233c3d575,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7565501,Human Facial Age Estimation by Cost-Sensitive Label Ranking and Trace Norm Regularization,2017 +110,IMDB,imdb_wiki,1.2962018,103.77689944,National University of Singapore,edu,4b9ec224949c79a980a5a66664d0ac6233c3d575,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7565501,Human Facial Age Estimation by Cost-Sensitive Label Ranking and Trace Norm Regularization,2017 +111,IMDB,imdb_wiki,31.846918,117.29053367,Hefei University of Technology,edu,dc9c0527f8d4461b1742cccc7317fec8dd96d81a,citation,https://arxiv.org/pdf/1805.08373.pdf,Speeding-Up Age Estimation in Intelligent Demographics System via Network Optimization,2018 +112,IMDB,imdb_wiki,1.3484104,103.68297965,Nanyang Technological University,edu,dc9c0527f8d4461b1742cccc7317fec8dd96d81a,citation,https://arxiv.org/pdf/1805.08373.pdf,Speeding-Up Age Estimation in Intelligent Demographics System via Network Optimization,2018 +113,IMDB,imdb_wiki,43.614386,7.071125,EURECOM,edu,f7b422df567ce9813926461251517761e3e6cda0,citation,https://arxiv.org/pdf/1702.01983.pdf,Face aging with conditional generative adversarial networks,2017 +114,IMDB,imdb_wiki,21.003952,105.84360183,Hanoi University of Science and Technology,edu,68573e296f069071d071fc158e974e8bc70c893f,citation,https://pdfs.semanticscholar.org/6857/3e296f069071d071fc158e974e8bc70c893f.pdf,"Effective Deep Multi-source Multi-task Learning Frameworks for Smile Detection, Emotion Recognition and Gender Classification",2018 +115,IMDB,imdb_wiki,46.0658836,11.1159894,University of Trento,edu,cb43519894258b125624dc0df655ab5357b1e42f,citation,https://arxiv.org/pdf/1802.00237.pdf,Face Aging with Contextual Generative Adversarial Nets,2017 +116,IMDB,imdb_wiki,1.2962018,103.77689944,National University of Singapore,edu,cb43519894258b125624dc0df655ab5357b1e42f,citation,https://arxiv.org/pdf/1802.00237.pdf,Face Aging with Contextual Generative Adversarial Nets,2017 +117,IMDB,imdb_wiki,43.614386,7.071125,EURECOM,edu,70569810e46f476515fce80a602a210f8d9a2b95,citation,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2016.105,Apparent Age Estimation from Face Images Combining General and Children-Specialized Deep Learning Models,2016 +118,IMDB,imdb_wiki,43.614386,7.071125,EURECOM,edu,f519723238701849f1160d5a9cedebd31017da89,citation,http://pdfs.semanticscholar.org/f519/723238701849f1160d5a9cedebd31017da89.pdf,Impact of multi-focused images on recognition of soft biometric traits,2016 +119,IMDB,imdb_wiki,51.7534538,-1.25400997,University of Oxford,edu,4eab317b5ac436a949849ed286baa3de2a541eef,citation,https://arxiv.org/pdf/1809.02169.pdf,Turning a Blind Eye: Explicit Removal of Biases and Variation from Deep Neural Network Embeddings,2018 +120,IMDB,imdb_wiki,33.5866784,-101.87539204,Electrical and Computer Engineering,edu,ebb3d5c70bedf2287f9b26ac0031004f8f617b97,citation,https://doi.org/10.1109/MSP.2017.2764116,"Deep Learning for Understanding Faces: Machines May Be Just as Good, or Better, than Humans",2018 +121,IMDB,imdb_wiki,39.2899685,-76.62196103,University of Maryland,edu,ebb3d5c70bedf2287f9b26ac0031004f8f617b97,citation,https://doi.org/10.1109/MSP.2017.2764116,"Deep Learning for Understanding Faces: Machines May Be Just as Good, or Better, than Humans",2018 +122,IMDB,imdb_wiki,51.7534538,-1.25400997,University of Oxford,edu,70c59dc3470ae867016f6ab0e008ac8ba03774a1,citation,https://arxiv.org/pdf/1710.08092.pdf,VGGFace2: A Dataset for Recognising Faces across Pose and Age,2018 +123,IMDB,imdb_wiki,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,3dfb822e16328e0f98a47209d7ecd242e4211f82,citation,https://arxiv.org/pdf/1708.08197.pdf,Cross-Age LFW: A Database for Studying Cross-Age Face Recognition in Unconstrained Environments,2017 +124,IMDB,imdb_wiki,30.44235995,-84.29747867,Florida State University,edu,bc99ff149c3c75b90f0110b8e72a9ae1300e29e7,citation,https://arxiv.org/pdf/1804.02744.pdf,Unsupervised Learning of Mixture Models with a Uniform Background Component,2018 +125,IMDB,imdb_wiki,60.18558755,24.8242733,Aalto University,edu,08d41d2f68a2bf0091dc373573ca379de9b16385,citation,https://arxiv.org/pdf/1802.05023.pdf,Recursive Chaining of Reversible Image-to-image Translators For Face Aging,2018 +126,IMDB,imdb_wiki,25.0410728,121.6147562,Institute of Information Science,edu,0951f42abbf649bb564a21d4ff5dddf9a5ea54d9,citation,https://arxiv.org/pdf/1806.02023.pdf,Joint Estimation of Age and Gender from Unconstrained Face Images Using Lightweight Multi-Task CNN for Mobile Applications,2018 +127,IMDB,imdb_wiki,53.21967825,6.56251482,University of Groningen,edu,8efda5708bbcf658d4f567e3866e3549fe045bbb,citation,http://pdfs.semanticscholar.org/8efd/a5708bbcf658d4f567e3866e3549fe045bbb.pdf,Pre-trained Deep Convolutional Neural Networks for Face Recognition,2018 +128,IMDB,imdb_wiki,22.5447154,113.9357164,Tencent,company,7a7fddb3020e0c2dd4e3fe275329eb10f1cfbb8a,citation,https://arxiv.org/pdf/1810.07599.pdf,Orthogonal Deep Features Decomposition for Age-Invariant Face Recognition,2018 diff --git a/site/datasets/final/morph.csv b/site/datasets/final/morph.csv new file mode 100644 index 00000000..cf7ad22b --- /dev/null +++ b/site/datasets/final/morph.csv @@ -0,0 +1,286 @@ +index,dataset_name,key,lat,lng,loc,loc_type,paper_id,paper_type,paper_url,title,year +0,MORPH Commercial,morph,0.0,0.0,,,9055b155cbabdce3b98e16e5ac9c0edf00f9552f,main,http://doi.ieeecomputersociety.org/10.1109/FGR.2006.78,MORPH: a longitudinal image database of normal adult age-progression,2006 +1,MORPH Commercial,morph,34.80809035,135.45785218,Osaka University,edu,dad6b36fd515bda801f3d22a462cc62348f6aad8,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6117531,Gait-based age estimation using a whole-generation gait database,2011 +2,MORPH Commercial,morph,40.0044795,116.370238,Chinese Academy of Sciences,edu,ddd0f1c53f76d7fc20e11b7e33bbdc0437516d2b,citation,https://doi.org/10.1109/ICDSP.2016.7868598,Deep learning-based learning to rank with ties for image re-ranking,2016 +3,MORPH Commercial,morph,39.1118774,117.3497451,Civil Aviation University of China,edu,ddd0f1c53f76d7fc20e11b7e33bbdc0437516d2b,citation,https://doi.org/10.1109/ICDSP.2016.7868598,Deep learning-based learning to rank with ties for image re-ranking,2016 +4,MORPH Commercial,morph,25.0410728,121.6147562,Institute of Information Science,edu,4c71b0cdb6b80889b976e8eb4457942bd4dd7b66,citation,https://doi.org/10.1109/TIP.2014.2387379,A Learning Framework for Age Rank Estimation Based on Face Images With Scattering Transform,2015 +5,MORPH Commercial,morph,51.0267513,-1.3972576,"IBM Hursley Labs, UK",company,7123e510dea783035b02f6c35e35a1a09677c5ab,citation,https://doi.org/10.1109/ICPR.2016.7900297,Back to the future: A fully automatic method for robust age progression,2016 +6,MORPH Commercial,morph,35.9042272,-78.85565763,"IBM Research, North Carolina",company,7123e510dea783035b02f6c35e35a1a09677c5ab,citation,https://doi.org/10.1109/ICPR.2016.7900297,Back to the future: A fully automatic method for robust age progression,2016 +7,MORPH Commercial,morph,51.49887085,-0.17560797,Imperial College London,edu,7123e510dea783035b02f6c35e35a1a09677c5ab,citation,https://doi.org/10.1109/ICPR.2016.7900297,Back to the future: A fully automatic method for robust age progression,2016 +8,MORPH Commercial,morph,35.5167538,139.48342251,Tokyo Institute of Technology,edu,3083d2c6d4f456e01cbb72930dc2207af98a6244,citation,http://pdfs.semanticscholar.org/3083/d2c6d4f456e01cbb72930dc2207af98a6244.pdf,Perceived Age Estimation from Face Images,2011 +9,MORPH Commercial,morph,41.3868913,2.16352385,University of Barcelona,edu,500fbe18afd44312738cab91b4689c12b4e0eeee,citation,http://www.maia.ub.es/~sergio/linked/ijcnn_age_and_cultural_2015.pdf,ChaLearn looking at people 2015 new competitions: Age estimation and cultural event recognition,2015 +10,MORPH Commercial,morph,45.4312742,12.3265377,University of Venezia,edu,500fbe18afd44312738cab91b4689c12b4e0eeee,citation,http://www.maia.ub.es/~sergio/linked/ijcnn_age_and_cultural_2015.pdf,ChaLearn looking at people 2015 new competitions: Age estimation and cultural event recognition,2015 +11,MORPH Commercial,morph,41.10427915,29.02231159,Istanbul Technical University,edu,fd53be2e0a9f33080a9db4b5a5e416e24ae8e198,citation,https://arxiv.org/pdf/1606.02909.pdf,Apparent Age Estimation Using Ensemble of Deep Learning Models,2016 +12,MORPH Commercial,morph,40.6341322,-8.6599726,"University of Beira Interior, Portugal",edu,81c21f4aafab39b7f5965829ec9e0f828d6a6182,citation,https://doi.org/10.1109/BTAS.2015.7358744,Acquiring high-resolution face images in outdoor environments: A master-slave calibration algorithm,2015 +13,MORPH Commercial,morph,42.36782045,-71.12666653,Harvard University,edu,0ba402af3b8682e2aa89f76bd823ddffdf89fa0a,citation,http://pdfs.semanticscholar.org/c0d8/4377168c554cb8e83099bed940091fe49dec.pdf,Squared Earth Mover's Distance-based Loss for Training Deep Neural Networks,2016 +14,MORPH Commercial,morph,40.9153196,-73.1270626,Stony Brook University,edu,0ba402af3b8682e2aa89f76bd823ddffdf89fa0a,citation,http://pdfs.semanticscholar.org/c0d8/4377168c554cb8e83099bed940091fe49dec.pdf,Squared Earth Mover's Distance-based Loss for Training Deep Neural Networks,2016 +15,MORPH Commercial,morph,40.47913175,-74.43168868,Rutgers University,edu,31f1e711fcf82c855f27396f181bf5e565a2f58d,citation,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2015.54,Unconstrained Age Estimation with Deep Convolutional Neural Networks,2015 +16,MORPH Commercial,morph,39.2899685,-76.62196103,University of Maryland,edu,31f1e711fcf82c855f27396f181bf5e565a2f58d,citation,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2015.54,Unconstrained Age Estimation with Deep Convolutional Neural Networks,2015 +17,MORPH Commercial,morph,39.65404635,-79.96475355,West Virginia University,edu,af12a79892bd030c19dfea392f7a7ccb0e7ebb72,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2012.6247972,A study on human age estimation under facial expression changes,2012 +18,MORPH Commercial,morph,23.09461185,113.28788994,Sun Yat-Sen University,edu,2d7c2c015053fff5300515a7addcd74b523f3f66,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8323422,Age-Related Factor Guided Joint Task Modeling Convolutional Neural Network for Cross-Age Face Recognition,2018 +19,MORPH Commercial,morph,40.0044795,116.370238,Chinese Academy of Sciences,edu,b234d429c9ea682e54fca52f4b889b3170f65ffc,citation,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2012.22,A Concatenational Graph Evolution Aging Model,2012 +20,MORPH Commercial,morph,39.9922379,116.30393816,Peking University,edu,b234d429c9ea682e54fca52f4b889b3170f65ffc,citation,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2012.22,A Concatenational Graph Evolution Aging Model,2012 +21,MORPH Commercial,morph,40.00229045,116.32098908,Tsinghua University,edu,b234d429c9ea682e54fca52f4b889b3170f65ffc,citation,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2012.22,A Concatenational Graph Evolution Aging Model,2012 +22,MORPH Commercial,morph,30.19331415,120.11930822,Zhejiang University,edu,ee65cee5151928c63d3ef36fcbb582fabb2b6d2c,citation,https://doi.org/10.1109/LSP.2016.2602538,Structure-Aware Slow Feature Analysis for Age Estimation,2016 +23,MORPH Commercial,morph,40.0141905,-83.0309143,University of Electronic Science and Technology of China,edu,ee65cee5151928c63d3ef36fcbb582fabb2b6d2c,citation,https://doi.org/10.1109/LSP.2016.2602538,Structure-Aware Slow Feature Analysis for Age Estimation,2016 +24,MORPH Commercial,morph,40.0044795,116.370238,Chinese Academy of Sciences,edu,288964068cd87d97a98b8bc927d6e0d2349458a2,citation,https://pdfs.semanticscholar.org/2889/64068cd87d97a98b8bc927d6e0d2349458a2.pdf,Mean-Variance Loss for Deep Age Estimation from a Face,0 +25,MORPH Commercial,morph,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,288964068cd87d97a98b8bc927d6e0d2349458a2,citation,https://pdfs.semanticscholar.org/2889/64068cd87d97a98b8bc927d6e0d2349458a2.pdf,Mean-Variance Loss for Deep Age Estimation from a Face,0 +26,MORPH Commercial,morph,39.65404635,-79.96475355,West Virginia University,edu,cd63759842a56bd2ede3999f6e11a74ccbec318b,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5995404,Simultaneous dimensionality reduction and human age estimation via kernel partial least squares regression,2011 +27,MORPH Commercial,morph,28.5456282,77.2731505,"IIIT Delhi, India",edu,ffc81ced9ee8223ab0adb18817321cbee99606e6,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7791157,A multibiometrics-based CAPTCHA for improved online security,2016 +28,MORPH Commercial,morph,39.65404635,-79.96475355,West Virginia University,edu,ffc81ced9ee8223ab0adb18817321cbee99606e6,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7791157,A multibiometrics-based CAPTCHA for improved online security,2016 +29,MORPH Commercial,morph,41.25713055,-72.9896696,Yale University,edu,df7312cbabb7d75d915ba0d91dea77100ded5c56,citation,https://arxiv.org/pdf/1811.06446.pdf,Preliminary Studies on a Large Face Database,2018 +30,MORPH Commercial,morph,29.6328784,-82.3490133,University of Florida,edu,df7312cbabb7d75d915ba0d91dea77100ded5c56,citation,https://arxiv.org/pdf/1811.06446.pdf,Preliminary Studies on a Large Face Database,2018 +31,MORPH Commercial,morph,31.83907195,117.26420748,University of Science and Technology of China,edu,56c700693b63e3da3b985777da6d9256e2e0dc21,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1A_079.pdf,Global refinement of random forest,2015 +32,MORPH Commercial,morph,40.00229045,116.32098908,Tsinghua University,edu,1e344b99583b782e3eaf152cdfa15f217b781181,citation,http://doi.acm.org/10.1145/2499788.2499789,A new biologically inspired active appearance model for face age estimation by using local ordinal ranking,2013 +33,MORPH Commercial,morph,39.94976005,116.33629046,Beijing Jiaotong University,edu,4b9ec224949c79a980a5a66664d0ac6233c3d575,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7565501,Human Facial Age Estimation by Cost-Sensitive Label Ranking and Trace Norm Regularization,2017 +34,MORPH Commercial,morph,43.1576969,-77.58829158,University of Rochester,edu,4b9ec224949c79a980a5a66664d0ac6233c3d575,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7565501,Human Facial Age Estimation by Cost-Sensitive Label Ranking and Trace Norm Regularization,2017 +35,MORPH Commercial,morph,1.2962018,103.77689944,National University of Singapore,edu,4b9ec224949c79a980a5a66664d0ac6233c3d575,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7565501,Human Facial Age Estimation by Cost-Sensitive Label Ranking and Trace Norm Regularization,2017 +36,MORPH Commercial,morph,40.0044795,116.370238,Chinese Academy of Sciences,edu,bd8b7599acf53e3053aa27cfd522764e28474e57,citation,http://www.jdl.ac.cn/doc/2009/iccv09_Learning%20Long%20Term%20Face%20Aging%20Patterns%20from%20Partially%20Dense%20Aging%20Databases.pdf,Learning long term face aging patterns from partially dense aging databases,2009 +37,MORPH Commercial,morph,39.9922379,116.30393816,Peking University,edu,bd8b7599acf53e3053aa27cfd522764e28474e57,citation,http://www.jdl.ac.cn/doc/2009/iccv09_Learning%20Long%20Term%20Face%20Aging%20Patterns%20from%20Partially%20Dense%20Aging%20Databases.pdf,Learning long term face aging patterns from partially dense aging databases,2009 +38,MORPH Commercial,morph,43.614386,7.071125,EURECOM,edu,70569810e46f476515fce80a602a210f8d9a2b95,citation,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2016.105,Apparent Age Estimation from Face Images Combining General and Children-Specialized Deep Learning Models,2016 +39,MORPH Commercial,morph,39.9213097,32.7988233,"TOBB Economy and Technology University, Ankara, Turkey",edu,cc1ed45b02d7fffb42a0fd8cffe5f11792b6ea74,citation,https://doi.org/10.1109/SIU.2016.7495874,Analysis of the effect of image resolution on automatic face gender and age classification,2016 +40,MORPH Commercial,morph,-33.91758275,151.23124025,University of New South Wales,edu,29631ca6cff21c9199c70bcdbbcd5f812d331a96,citation,http://pdfs.semanticscholar.org/2963/1ca6cff21c9199c70bcdbbcd5f812d331a96.pdf,Error Rates in Users of Automatic Face Recognition Software,2015 +41,MORPH Commercial,morph,-33.88890695,151.18943366,University of Sydney,edu,29631ca6cff21c9199c70bcdbbcd5f812d331a96,citation,http://pdfs.semanticscholar.org/2963/1ca6cff21c9199c70bcdbbcd5f812d331a96.pdf,Error Rates in Users of Automatic Face Recognition Software,2015 +42,MORPH Commercial,morph,42.718568,-84.47791571,Michigan State University,edu,1a53ca294bbe5923c46a339955e8207907e9c8c6,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7273870,What Else Does Your Biometric Data Reveal? A Survey on Soft Biometrics,2016 +43,MORPH Commercial,morph,43.614386,7.071125,EURECOM,edu,1a53ca294bbe5923c46a339955e8207907e9c8c6,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7273870,What Else Does Your Biometric Data Reveal? A Survey on Soft Biometrics,2016 +44,MORPH Commercial,morph,40.4319722,-86.92389368,Purdue University,edu,c7c53d75f6e963b403057d8ba5952e4974a779ad,citation,https://pdfs.semanticscholar.org/c7c5/3d75f6e963b403057d8ba5952e4974a779ad.pdf,Aging effects in automated face recognition,2018 +45,MORPH Commercial,morph,41.02451875,28.97697953,Bahçeşehir University,edu,0c2370e156a4eb8d84a5fdb049c5a894c3431f1c,citation,https://doi.org/10.1109/CIBIM.2014.7015437,Biometric template update under facial aging,2014 +46,MORPH Commercial,morph,53.22853665,-0.54873472,University of Lincoln,edu,0c2370e156a4eb8d84a5fdb049c5a894c3431f1c,citation,https://doi.org/10.1109/CIBIM.2014.7015437,Biometric template update under facial aging,2014 +47,MORPH Commercial,morph,46.0810723,13.2119474,University of Udine,edu,0c2370e156a4eb8d84a5fdb049c5a894c3431f1c,citation,https://doi.org/10.1109/CIBIM.2014.7015437,Biometric template update under facial aging,2014 +48,MORPH Commercial,morph,25.0410728,121.6147562,Institute of Information Science,edu,1c17450c4d616e1e1eece248c42eba4f87de9e0d,citation,http://pdfs.semanticscholar.org/d269/39a00a8d3964de612cd3faa86764343d5622.pdf,Automatic Age Estimation from Face Images via Deep Ranking,2015 +49,MORPH Commercial,morph,43.47061295,-80.54724732,University of Waterloo,edu,f2902f5956d7e2dca536d9131d4334f85f52f783,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6460191,Facial age estimation using Clustered Multi-task Support Vector Regression Machine,2012 +50,MORPH Commercial,morph,39.65404635,-79.96475355,West Virginia University,edu,ba2bbef34f05551291410103e3de9e82fdf9dddd,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Guo_A_Study_on_2014_CVPR_paper.pdf,A Study on Cross-Population Age Estimation,2014 +51,MORPH Commercial,morph,31.32235655,121.38400941,Shanghai University,edu,d454ad60b061c1a1450810a0f335fafbfeceeccc,citation,https://arxiv.org/pdf/1712.07195.pdf,Deep Regression Forests for Age Estimation,2017 +52,MORPH Commercial,morph,42.718568,-84.47791571,Michigan State University,edu,ad2cb5c255e555d9767d526721a4c7053fa2ac58,citation,https://arxiv.org/pdf/1711.03990.pdf,Longitudinal Study of Child Face Recognition,2018 +53,MORPH Commercial,morph,39.95472495,-75.15346905,Temple University,edu,0cf2eecf20cfbcb7f153713479e3206670ea0e9c,citation,https://arxiv.org/pdf/1806.08906.pdf,Privacy-Protective-GAN for Face De-identification,2018 +54,MORPH Commercial,morph,31.32235655,121.38400941,Shanghai University,edu,c0b02be66a5a1907e8cfb8117de50f80b90a65a8,citation,http://doi.acm.org/10.1145/2808492.2808523,Manifold learning in sparse selected feature subspaces,2015 +55,MORPH Commercial,morph,47.6423318,-122.1369302,Microsoft,company,ff012c56b9b1de969328dacd13e26b7138ff298b,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7762921,Facial Age Estimation With Age Difference,2017 +56,MORPH Commercial,morph,1.2962018,103.77689944,National University of Singapore,edu,ff012c56b9b1de969328dacd13e26b7138ff298b,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7762921,Facial Age Estimation With Age Difference,2017 +57,MORPH Commercial,morph,31.846918,117.29053367,Hefei University of Technology,edu,ff012c56b9b1de969328dacd13e26b7138ff298b,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7762921,Facial Age Estimation With Age Difference,2017 +58,MORPH Commercial,morph,1.3484104,103.68297965,Nanyang Technological University,edu,ff012c56b9b1de969328dacd13e26b7138ff298b,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7762921,Facial Age Estimation With Age Difference,2017 +59,MORPH Commercial,morph,40.00229045,116.32098908,Tsinghua University,edu,2149d49c84a83848d6051867290d9c8bfcef0edb,citation,https://doi.org/10.1109/TIFS.2017.2746062,Label-Sensitive Deep Metric Learning for Facial Age Estimation,2018 +60,MORPH Commercial,morph,25.0410728,121.6147562,Institute of Information Science,edu,c44c84540db1c38ace232ef34b03bda1c81ba039,citation,http://pdfs.semanticscholar.org/c44c/84540db1c38ace232ef34b03bda1c81ba039.pdf,Cross-Age Reference Coding for Age-Invariant Face Recognition and Retrieval,2014 +61,MORPH Commercial,morph,25.01682835,121.53846924,National Taiwan University,edu,c44c84540db1c38ace232ef34b03bda1c81ba039,citation,http://pdfs.semanticscholar.org/c44c/84540db1c38ace232ef34b03bda1c81ba039.pdf,Cross-Age Reference Coding for Age-Invariant Face Recognition and Retrieval,2014 +62,MORPH Commercial,morph,33.5866784,-101.87539204,Electrical and Computer Engineering,edu,ebb3d5c70bedf2287f9b26ac0031004f8f617b97,citation,https://doi.org/10.1109/MSP.2017.2764116,"Deep Learning for Understanding Faces: Machines May Be Just as Good, or Better, than Humans",2018 +63,MORPH Commercial,morph,39.2899685,-76.62196103,University of Maryland,edu,ebb3d5c70bedf2287f9b26ac0031004f8f617b97,citation,https://doi.org/10.1109/MSP.2017.2764116,"Deep Learning for Understanding Faces: Machines May Be Just as Good, or Better, than Humans",2018 +64,MORPH Commercial,morph,42.718568,-84.47791571,Michigan State University,edu,2f2406551c693d616a840719ae1e6ea448e2f5d3,citation,http://biometrics.cse.msu.edu/Presentations/CharlesOtto_ICB13_AgeEstimationFaceImages_HumanVsMachinePerformance.pdf,Age estimation from face images: Human vs. machine performance,2013 +65,MORPH Commercial,morph,1.3037257,103.7737763,"Advanced Digital Sciences Center, Singapore",edu,15fbb5fc3bdd692a6b2dd737cce7f39f7c89a25c,citation,https://doi.org/10.1109/TMM.2011.2167317,Web Image and Video Mining Towards Universal and Robust Age Estimator,2011 +66,MORPH Commercial,morph,1.2962018,103.77689944,National University of Singapore,edu,15fbb5fc3bdd692a6b2dd737cce7f39f7c89a25c,citation,https://doi.org/10.1109/TMM.2011.2167317,Web Image and Video Mining Towards Universal and Robust Age Estimator,2011 +67,MORPH Commercial,morph,42.718568,-84.47791571,Michigan State University,edu,b446bcd7fb78adfe346cf7a01a38e4f43760f363,citation,http://pdfs.semanticscholar.org/b446/bcd7fb78adfe346cf7a01a38e4f43760f363.pdf,To appear in ICB 2018 Longitudinal Study of Child Face Recognition,2017 +68,MORPH Commercial,morph,42.718568,-84.47791571,Michigan State University,edu,c035c193eed5d72c7f187f0bc880a17d217dada0,citation,http://pdfs.semanticscholar.org/c035/c193eed5d72c7f187f0bc880a17d217dada0.pdf,"Local Gradient Gabor Pattern (LGGP) with Applications in Face Recognition, Cross-spectral Matching and Soft Biometrics",2013 +69,MORPH Commercial,morph,39.65404635,-79.96475355,West Virginia University,edu,c035c193eed5d72c7f187f0bc880a17d217dada0,citation,http://pdfs.semanticscholar.org/c035/c193eed5d72c7f187f0bc880a17d217dada0.pdf,"Local Gradient Gabor Pattern (LGGP) with Applications in Face Recognition, Cross-spectral Matching and Soft Biometrics",2013 +70,MORPH Commercial,morph,34.66869155,-82.83743476,Clemson University,edu,c907104680ad53bdc673f2648d713e4d26335825,citation,http://doi.acm.org/10.1145/3077286.3077304,Dataset and Metrics for Adult Age-Progression Evaluation,2017 +71,MORPH Commercial,morph,34.2375581,-77.9270129,University of North Carolina Wilmington,edu,c907104680ad53bdc673f2648d713e4d26335825,citation,http://doi.acm.org/10.1145/3077286.3077304,Dataset and Metrics for Adult Age-Progression Evaluation,2017 +72,MORPH Commercial,morph,37.5600406,126.9369248,Yonsei University,edu,fde41dc4ec6ac6474194b99e05b43dd6a6c4f06f,citation,https://arxiv.org/pdf/1809.01990.pdf,Multi-Expert Gender Classification on Age Group by Integrating Deep Neural Networks,2018 +73,MORPH Commercial,morph,34.2375581,-77.9270129,University of North Carolina Wilmington,edu,31a36014354ee7c89aa6d94e656db77922b180a5,citation,http://doi.acm.org/10.1145/2304496.2304509,An interactive tool for extremely dense landmarking of faces,2012 +74,MORPH Commercial,morph,37.5901411,127.0362318,Korea University,edu,4b519e2e88ccd45718b0fc65bfd82ebe103902f7,citation,http://biometrics.cse.msu.edu/Publications/Face/LiParkJain_DiscriminativeModelAgeInvariantFR_TIFS11.pdf,A Discriminative Model for Age Invariant Face Recognition,2011 +75,MORPH Commercial,morph,42.718568,-84.47791571,Michigan State University,edu,4b519e2e88ccd45718b0fc65bfd82ebe103902f7,citation,http://biometrics.cse.msu.edu/Publications/Face/LiParkJain_DiscriminativeModelAgeInvariantFR_TIFS11.pdf,A Discriminative Model for Age Invariant Face Recognition,2011 +76,MORPH Commercial,morph,22.59805605,113.98533784,Shenzhen Institutes of Advanced Technology,edu,4b519e2e88ccd45718b0fc65bfd82ebe103902f7,citation,http://biometrics.cse.msu.edu/Publications/Face/LiParkJain_DiscriminativeModelAgeInvariantFR_TIFS11.pdf,A Discriminative Model for Age Invariant Face Recognition,2011 +77,MORPH Commercial,morph,23.09461185,113.28788994,Sun Yat-Sen University,edu,23edcd0d2011d9c0d421193af061f2eb3e155da3,citation,http://doi.org/10.1007/s00371-015-1137-4,Facial age estimation by using stacked feature composition and selection,2015 +78,MORPH Commercial,morph,23.04436505,113.36668458,Guangzhou University,edu,23edcd0d2011d9c0d421193af061f2eb3e155da3,citation,http://doi.org/10.1007/s00371-015-1137-4,Facial age estimation by using stacked feature composition and selection,2015 +79,MORPH Commercial,morph,38.9530519,-77.3354508,"Cernium Corporation, Reston, VA, USA",company,604a281100784b4d5bc1a6db993d423abc5dc8f0,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5353681,Face Verification Across Age Progression Using Discriminative Methods,2010 +80,MORPH Commercial,morph,39.2899685,-76.62196103,University of Maryland,edu,604a281100784b4d5bc1a6db993d423abc5dc8f0,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5353681,Face Verification Across Age Progression Using Discriminative Methods,2010 +81,MORPH Commercial,morph,39.95472495,-75.15346905,Temple University,edu,604a281100784b4d5bc1a6db993d423abc5dc8f0,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5353681,Face Verification Across Age Progression Using Discriminative Methods,2010 +82,MORPH Commercial,morph,51.2975344,1.07296165,University of Kent,edu,6486b36c6f7fd7675257d26e896223a02a1881d9,citation,https://doi.org/10.1109/THMS.2014.2376874,Selective Review and Analysis of Aging Effects in Biometric System Implementation,2015 +83,MORPH Commercial,morph,22.42031295,114.20788644,Chinese University of Hong Kong,edu,16bce9f940bb01aa5ec961892cc021d4664eb9e4,citation,http://www.cise.ufl.edu/~dihong/assets/TIST-2014-10-0214.R2.pdf,Mutual Component Analysis for Heterogeneous Face Recognition,2016 +84,MORPH Commercial,morph,22.59805605,113.98533784,Shenzhen Institutes of Advanced Technology,edu,16bce9f940bb01aa5ec961892cc021d4664eb9e4,citation,http://www.cise.ufl.edu/~dihong/assets/TIST-2014-10-0214.R2.pdf,Mutual Component Analysis for Heterogeneous Face Recognition,2016 +85,MORPH Commercial,morph,34.67567405,33.04577648,Cyprus University of Technology,edu,9d3aa3b7d392fad596b067b13b9e42443bbc377c,citation,http://pdfs.semanticscholar.org/9d3a/a3b7d392fad596b067b13b9e42443bbc377c.pdf,Facial Biometric Templates and Aging: Problems and Challenges for Artificial Intelligence,2009 +86,MORPH Commercial,morph,22.59805605,113.98533784,Shenzhen Institutes of Advanced Technology,edu,217a21d60bb777d15cd9328970cab563d70b5d23,citation,http://www.cise.ufl.edu/~dihong/assets/iccv2013.pdf,Hidden Factor Analysis for Age Invariant Face Recognition,2013 +87,MORPH Commercial,morph,22.42031295,114.20788644,Chinese University of Hong Kong,edu,217a21d60bb777d15cd9328970cab563d70b5d23,citation,http://www.cise.ufl.edu/~dihong/assets/iccv2013.pdf,Hidden Factor Analysis for Age Invariant Face Recognition,2013 +88,MORPH Commercial,morph,32.0565957,118.77408833,Nanjing University,edu,b1bb517bd87a1212174033fc786b2237844b04e6,citation,https://doi.org/10.1016/j.neucom.2015.03.078,Cumulative attribute relation regularization learning for human age estimation,2015 +89,MORPH Commercial,morph,40.8419836,-73.94368971,Columbia University,edu,a0dc68c546e0fc72eb0d9ca822cf0c9ccb4b4c4f,citation,http://www.cs.columbia.edu/~neeraj/base/papers/nk_ijcb2011_fusion.pdf,Fusing with context: A Bayesian approach to combining descriptive attributes,2011 +90,MORPH Commercial,morph,34.2375581,-77.9270129,University of North Carolina Wilmington,edu,a0dc68c546e0fc72eb0d9ca822cf0c9ccb4b4c4f,citation,http://www.cs.columbia.edu/~neeraj/base/papers/nk_ijcb2011_fusion.pdf,Fusing with context: A Bayesian approach to combining descriptive attributes,2011 +91,MORPH Commercial,morph,1.3484104,103.68297965,Nanyang Technological University,edu,d119443de1d75cad384d897c2ed5a7b9c1661d98,citation,https://doi.org/10.1109/ICIP.2010.5650873,Cost-sensitive subspace learning for human age estimation,2010 +92,MORPH Commercial,morph,34.2249827,-77.86907744,University of North Carolina at Wilmington,edu,97c59db934ff85c60c460a4591106682b5ab9caa,citation,https://doi.org/10.1109/BTAS.2012.6374568,Extremely dense face registration: Comparing automatic landmarking algorithms for general and ethno-gender models,2012 +93,MORPH Commercial,morph,43.2213516,-75.4085577,"Air Force Research Lab, Rome, NY",mil,834736698f2cc5c221c22369abe95515243a9fc3,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6996249,GARP-face: Balancing privacy protection and utility preservation in face de-identification,2014 +94,MORPH Commercial,morph,39.95472495,-75.15346905,Temple University,edu,834736698f2cc5c221c22369abe95515243a9fc3,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6996249,GARP-face: Balancing privacy protection and utility preservation in face de-identification,2014 +95,MORPH Commercial,morph,32.0575279,118.78682252,Southeast University,edu,3cb488a3b71f221a8616716a1fc2b951dd0de549,citation,http://doi.ieeecomputersociety.org/10.1109/ICPR.2014.764,Facial Age Estimation by Adaptive Label Distribution Learning,2014 +96,MORPH Commercial,morph,22.3386304,114.2620337,Hong Kong University of Science and Technology,edu,8000c4f278e9af4d087c0d0895fff7012c5e3d78,citation,https://www.cse.ust.hk/~yuzhangcse/papers/Zhang_Yeung_CVPR10.pdf,Multi-task warped Gaussian process for personalized age estimation,2010 +97,MORPH Commercial,morph,31.20081505,121.42840681,Shanghai Jiao Tong University,edu,59fe66eeb06d1a7e1496a85f7ffc7b37512cd7e5,citation,http://doi.ieeecomputersociety.org/10.1109/ICME.2016.7552862,Robust feature encoding for age-invariant face recognition,2016 +98,MORPH Commercial,morph,23.0502042,113.39880323,South China University of Technology,edu,4bd3de97b256b96556d19a5db71dda519934fd53,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2016.529,Latent Factor Guided Convolutional Neural Networks for Age-Invariant Face Recognition,2016 +99,MORPH Commercial,morph,22.59805605,113.98533784,Shenzhen Institutes of Advanced Technology,edu,4bd3de97b256b96556d19a5db71dda519934fd53,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2016.529,Latent Factor Guided Convolutional Neural Networks for Age-Invariant Face Recognition,2016 +100,MORPH Commercial,morph,22.59805605,113.98533784,Shenzhen Institutes of Advanced Technology,edu,1d3dd9aba79a53390317ec1e0b7cd742cba43132,citation,http://www.cise.ufl.edu/~dihong/assets/Gong_A_Maximum_Entropy_2015_CVPR_paper.pdf,A maximum entropy feature descriptor for age invariant face recognition,2015 +101,MORPH Commercial,morph,40.0044795,116.370238,Chinese Academy of Sciences,edu,1d3dd9aba79a53390317ec1e0b7cd742cba43132,citation,http://www.cise.ufl.edu/~dihong/assets/Gong_A_Maximum_Entropy_2015_CVPR_paper.pdf,A maximum entropy feature descriptor for age invariant face recognition,2015 +102,MORPH Commercial,morph,22.42031295,114.20788644,Chinese University of Hong Kong,edu,1d3dd9aba79a53390317ec1e0b7cd742cba43132,citation,http://www.cise.ufl.edu/~dihong/assets/Gong_A_Maximum_Entropy_2015_CVPR_paper.pdf,A maximum entropy feature descriptor for age invariant face recognition,2015 +103,MORPH Commercial,morph,32.0575279,118.78682252,Southeast University,edu,1c530de1a94ac70bf9086e39af1712ea8d2d2781,citation,http://pdfs.semanticscholar.org/1c53/0de1a94ac70bf9086e39af1712ea8d2d2781.pdf,Sparsity Conditional Energy Label Distribution Learning for Age Estimation,2016 +104,MORPH Commercial,morph,37.4102193,-122.05965487,Carnegie Mellon University,edu,eb8519cec0d7a781923f68fdca0891713cb81163,citation,https://arxiv.org/pdf/1703.08617.pdf,Temporal Non-volume Preserving Approach to Facial Age-Progression and Age-Invariant Face Recognition,2017 +105,MORPH Commercial,morph,45.57022705,-122.63709346,Concordia University,edu,eb8519cec0d7a781923f68fdca0891713cb81163,citation,https://arxiv.org/pdf/1703.08617.pdf,Temporal Non-volume Preserving Approach to Facial Age-Progression and Age-Invariant Face Recognition,2017 +106,MORPH Commercial,morph,57.6252103,39.8845656,Yaroslavl State University,edu,cfaf61bacf61901b7e1ac25b779a1f87c1e8cf7f,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6737950,Application for video analysis based on machine learning and computer vision algorithms,2013 +107,MORPH Commercial,morph,51.49887085,-0.17560797,Imperial College London,edu,54bb25a213944b08298e4e2de54f2ddea890954a,citation,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Moschoglou_AgeDB_The_First_CVPR_2017_paper.pdf,"AgeDB: The First Manually Collected, In-the-Wild Age Database",2017 +108,MORPH Commercial,morph,51.59029705,-0.22963221,Middlesex University,edu,54bb25a213944b08298e4e2de54f2ddea890954a,citation,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Moschoglou_AgeDB_The_First_CVPR_2017_paper.pdf,"AgeDB: The First Manually Collected, In-the-Wild Age Database",2017 +109,MORPH Commercial,morph,37.4102193,-122.05965487,Carnegie Mellon University,edu,17670b60dcfb5cbf8fdae0b266e18cf995f6014c,citation,http://arxiv.org/abs/1606.02254,Longitudinal Face Modeling via Temporal Deep Restricted Boltzmann Machines,2016 +110,MORPH Commercial,morph,45.57022705,-122.63709346,Concordia University,edu,17670b60dcfb5cbf8fdae0b266e18cf995f6014c,citation,http://arxiv.org/abs/1606.02254,Longitudinal Face Modeling via Temporal Deep Restricted Boltzmann Machines,2016 +111,MORPH Commercial,morph,46.0658836,11.1159894,University of Trento,edu,2fd96238a7e372146cdf6c2338edc932031dd1f0,citation,https://arxiv.org/pdf/1802.00237.pdf,Face Aging with Contextual Generative Adversarial Nets,2017 +112,MORPH Commercial,morph,1.2962018,103.77689944,National University of Singapore,edu,2fd96238a7e372146cdf6c2338edc932031dd1f0,citation,https://arxiv.org/pdf/1802.00237.pdf,Face Aging with Contextual Generative Adversarial Nets,2017 +113,MORPH Commercial,morph,51.44415765,7.26096541,Ruhr-University Bochum,edu,b249f10a30907a80f2a73582f696bc35ba4db9e2,citation,http://pdfs.semanticscholar.org/f06d/6161eef9325285b32356e1c4b5527479eb9b.pdf,Improved graph-based SFA: Information preservation complements the slowness principle,2016 +114,MORPH Commercial,morph,39.9808333,116.34101249,Beihang University,edu,8b266e68cc71f98ee42b04dc8f3e336c47f199cb,citation,https://arxiv.org/pdf/1711.10352.pdf,Learning Face Age Progression: A Pyramid Architecture of GANs,2017 +115,MORPH Commercial,morph,42.718568,-84.47791571,Michigan State University,edu,8b266e68cc71f98ee42b04dc8f3e336c47f199cb,citation,https://arxiv.org/pdf/1711.10352.pdf,Learning Face Age Progression: A Pyramid Architecture of GANs,2017 +116,MORPH Commercial,morph,32.0565957,118.77408833,Nanjing University,edu,0e2d956790d3b8ab18cee8df6c949504ee78ad42,citation,https://doi.org/10.1109/IVCNZ.2013.6727024,Scalable face image retrieval integrating multi-feature quantization and constrained reference re-ranking,2013 +117,MORPH Commercial,morph,40.0044795,116.370238,Chinese Academy of Sciences,edu,2a7e6a1b2638550370a47f2f6f6e38e76fe9ac13,citation,http://doi.acm.org/10.1145/3090311,Multifeature Anisotropic Orthogonal Gaussian Process for Automatic Age Estimation,2017 +118,MORPH Commercial,morph,-33.88890695,151.18943366,University of Sydney,edu,2a7e6a1b2638550370a47f2f6f6e38e76fe9ac13,citation,http://doi.acm.org/10.1145/3090311,Multifeature Anisotropic Orthogonal Gaussian Process for Automatic Age Estimation,2017 +119,MORPH Commercial,morph,51.2975344,1.07296165,University of Kent,edu,2336de3a81dada63eb00ea82f7570c4069342fb5,citation,http://doi.acm.org/10.1145/2361407.2361428,A methodological framework for investigating age factors on the performance of biometric systems,2012 +120,MORPH Commercial,morph,39.2899685,-76.62196103,University of Maryland,edu,93420d9212dd15b3ef37f566e4d57e76bb2fab2f,citation,https://arxiv.org/pdf/1611.00851.pdf,An All-In-One Convolutional Neural Network for Face Analysis,2017 +121,MORPH Commercial,morph,39.95472495,-75.15346905,Temple University,edu,019e471667c72b5b3728b4a9ba9fe301a7426fb2,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/2A_012.pdf,Cross-age face verification by coordinating with cross-face age verification,2015 +122,MORPH Commercial,morph,45.57022705,-122.63709346,Concordia University,edu,c418a3441f992fea523926f837f4bfb742548c16,citation,http://pdfs.semanticscholar.org/c418/a3441f992fea523926f837f4bfb742548c16.pdf,A Computer Approach for Face Aging Problems,2010 +123,MORPH Commercial,morph,22.42031295,114.20788644,Chinese University of Hong Kong,edu,d80a3d1f3a438e02a6685e66ee908446766fefa9,citation,https://arxiv.org/pdf/1708.09687.pdf,Quantifying Facial Age by Posterior of Age Comparisons,2017 +124,MORPH Commercial,morph,34.67567405,33.04577648,Cyprus University of Technology,edu,ebbceab4e15bf641f74e335b70c6c4490a043961,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4813349,Evaluating the performance of face-aging algorithms,2008 +125,MORPH Commercial,morph,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,d84a48f7d242d73b32a9286f9b148f5575acf227,citation,http://pdfs.semanticscholar.org/d84a/48f7d242d73b32a9286f9b148f5575acf227.pdf,Global and Local Consistent Age Generative Adversarial Networks,2018 +126,MORPH Commercial,morph,12.9551259,77.5741985,Bangalore Institute of Technology,edu,8f5facdc0a2a79283864aad03edc702e2a400346,citation,http://pdfs.semanticscholar.org/8f5f/acdc0a2a79283864aad03edc702e2a400346.pdf,Estimation Framework using Bio - Inspired Features for Facial Image,0 +127,MORPH Commercial,morph,42.718568,-84.47791571,Michigan State University,edu,08f6ad0a3e75b715852f825d12b6f28883f5ca05,citation,http://www.cse.msu.edu/biometrics/Publications/Face/JainKlarePark_FaceRecognition_ChallengesinForensics_FG11.pdf,Face recognition: Some challenges in forensics,2011 +128,MORPH Commercial,morph,41.10427915,29.02231159,Istanbul Technical University,edu,2050847bc7a1a0453891f03aeeb4643e360fde7d,citation,https://cvhci.anthropomatik.kit.edu/~mtapaswi/papers/ICMR2015.pdf,Accio: A Data Set for Face Track Retrieval in Movies Across Age,2015 +129,MORPH Commercial,morph,49.10184375,8.4331256,Karlsruhe Institute of Technology,edu,2050847bc7a1a0453891f03aeeb4643e360fde7d,citation,https://cvhci.anthropomatik.kit.edu/~mtapaswi/papers/ICMR2015.pdf,Accio: A Data Set for Face Track Retrieval in Movies Across Age,2015 +130,MORPH Commercial,morph,40.62984145,22.9588935,Aristotle University of Thessaloniki,edu,3cc46bf79fb9225cf308815c7d41c8dd5625cc29,citation,http://poseidon.csd.auth.gr/papers/PUBLISHED/CONFERENCE/pdf/2016/Pantraki2016.pdf,Age interval and gender prediction using PARAFAC2 applied to speech utterances,2016 +131,MORPH Commercial,morph,34.67567405,33.04577648,Cyprus University of Technology,edu,3cc46bf79fb9225cf308815c7d41c8dd5625cc29,citation,http://poseidon.csd.auth.gr/papers/PUBLISHED/CONFERENCE/pdf/2016/Pantraki2016.pdf,Age interval and gender prediction using PARAFAC2 applied to speech utterances,2016 +132,MORPH Commercial,morph,23.09461185,113.28788994,Sun Yat-Sen University,edu,189e5a2fa51ed471c0e7227d82dffb52736070d8,citation,https://doi.org/10.1109/ICIP.2017.8296995,Cross-age face recognition using reference coding with kernel direct discriminant analysis,2017 +133,MORPH Commercial,morph,42.357757,-83.06286711,Wayne State University,edu,4f1249369127cc2e2894f6b2f1052d399794919a,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8239663,Deep Age Estimation: From Classification to Ranking,2018 +134,MORPH Commercial,morph,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,cd6aaa37fffd0b5c2320f386be322b8adaa1cc68,citation,https://arxiv.org/pdf/1804.06655.pdf,Deep Face Recognition: A Survey,2018 +135,MORPH Commercial,morph,52.3553655,4.9501644,University of Amsterdam,edu,14014a1bdeb5d63563b68b52593e3ac1e3ce7312,citation,http://pdfs.semanticscholar.org/1401/4a1bdeb5d63563b68b52593e3ac1e3ce7312.pdf,Expression-Invariant Age Estimation,2014 +136,MORPH Commercial,morph,31.83907195,117.26420748,University of Science and Technology of China,edu,659dc6aa517645a118b79f0f0273e46ab7b53cd9,citation,https://doi.org/10.1109/ACPR.2015.7486608,Age-invariant face recognition using a feature progressing model,2015 +137,MORPH Commercial,morph,30.0818727,31.24454841,Benha University,edu,a9fc23d612e848250d5b675e064dba98f05ad0d9,citation,http://pdfs.semanticscholar.org/a9fc/23d612e848250d5b675e064dba98f05ad0d9.pdf,Face Age Estimation Approach based on Deep Learning and Principle Component Analysis,2018 +138,MORPH Commercial,morph,31.51368535,34.44019341,"Islamic University of Gaza, Palestine",edu,d5fa9d98c8da54a57abf353767a927d662b7f026,citation,http://pdfs.semanticscholar.org/f15e/9712b8731e1f5fd9566aca513edda910b5b8.pdf,Age Estimation based on Neural Networks using Face Features,2010 +139,MORPH Commercial,morph,32.0575279,118.78682252,Southeast University,edu,8ff8c64288a2f7e4e8bf8fda865820b04ab3dbe8,citation,https://pdfs.semanticscholar.org/0056/92b9fa6728df3a7f14578c43410867bba425.pdf,Age Estimation Using Expectation of Label Distribution Learning,2018 +140,MORPH Commercial,morph,32.0565957,118.77408833,Nanjing University,edu,8ff8c64288a2f7e4e8bf8fda865820b04ab3dbe8,citation,https://pdfs.semanticscholar.org/0056/92b9fa6728df3a7f14578c43410867bba425.pdf,Age Estimation Using Expectation of Label Distribution Learning,2018 +141,MORPH Commercial,morph,34.0224149,-118.28634407,University of Southern California,edu,eb6ee56e085ebf473da990d032a4249437a3e462,citation,http://www-scf.usc.edu/~chuntinh/doc/Age_Gender_Classification_APSIPA_2017.pdf,Age/gender classification with whole-component convolutional neural networks (WC-CNN),2017 +142,MORPH Commercial,morph,42.718568,-84.47791571,Michigan State University,edu,e506cdb250eba5e70c5147eb477fbd069714765b,citation,https://pdfs.semanticscholar.org/e506/cdb250eba5e70c5147eb477fbd069714765b.pdf,Heterogeneous Face Recognition,2012 +143,MORPH Commercial,morph,35.90503535,-79.04775327,University of North Carolina,edu,f374ac9307be5f25145b44931f5a53b388a77e49,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5339060,Improvements in Active Appearance Model based synthetic age progression for adult aging,2009 +144,MORPH Commercial,morph,38.83133325,-77.30798839,George Mason University,edu,62750d78e819d745b9200b0c5c35fcae6fb9f404,citation,http://doi.org/10.1007/s11042-016-4085-8,Leveraging implicit demographic information for face recognition using a multi-expert system,2016 +145,MORPH Commercial,morph,41.9037626,12.5144384,Sapienza University of Rome,edu,62750d78e819d745b9200b0c5c35fcae6fb9f404,citation,http://doi.org/10.1007/s11042-016-4085-8,Leveraging implicit demographic information for face recognition using a multi-expert system,2016 +146,MORPH Commercial,morph,40.845492,14.2578058,University of Naples Federico II,edu,62750d78e819d745b9200b0c5c35fcae6fb9f404,citation,http://doi.org/10.1007/s11042-016-4085-8,Leveraging implicit demographic information for face recognition using a multi-expert system,2016 +147,MORPH Commercial,morph,25.01353105,121.54173736,National Taiwan University of Science and Technology,edu,e4c3587392d477b7594086c6f28a00a826abf004,citation,https://doi.org/10.1109/ICIP.2017.8296998,Face recognition by facial attribute assisted network,2017 +148,MORPH Commercial,morph,39.9922379,116.30393816,Peking University,edu,c4ca092972abb74ee1c20b7cae6e69c654479e2c,citation,https://doi.org/10.1109/ICIP.2016.7532960,Linear canonical correlation analysis based ranking approach for facial age estimation,2016 +149,MORPH Commercial,morph,40.0044795,116.370238,Chinese Academy of Sciences,edu,575141e42740564f64d9be8ab88d495192f5b3bc,citation,http://pdfs.semanticscholar.org/5751/41e42740564f64d9be8ab88d495192f5b3bc.pdf,Age Estimation Based on Multi-Region Convolutional Neural Network,2016 +150,MORPH Commercial,morph,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,575141e42740564f64d9be8ab88d495192f5b3bc,citation,http://pdfs.semanticscholar.org/5751/41e42740564f64d9be8ab88d495192f5b3bc.pdf,Age Estimation Based on Multi-Region Convolutional Neural Network,2016 +151,MORPH Commercial,morph,56.66340325,12.87929727,Halmstad University,edu,555f75077a02f33a05841f9b63a1388ec5fbcba5,citation,https://arxiv.org/pdf/1810.03360.pdf,A Survey on Periocular Biometrics Research,2016 +152,MORPH Commercial,morph,39.94976005,116.33629046,Beijing Jiaotong University,edu,0821028073981f9bd2dba2ad2557b25403fe7d7d,citation,http://doi.acm.org/10.1145/2733373.2806318,Facial Age Estimation Based on Structured Low-rank Representation,2015 +153,MORPH Commercial,morph,46.109237,7.08453549,IDIAP Research Institute,edu,939123cf21dc9189a03671484c734091b240183e,citation,http://publications.idiap.ch/downloads/papers/2015/Erdogmus_MMSP_2015.pdf,Within- and cross- database evaluations for face gender classification via befit protocols,2014 +154,MORPH Commercial,morph,36.689487,2.981877,"Center for Development of Advanced Technologies, Algeria",edu,4551194408383b12db19a22cca5db0f185cced5c,citation,https://doi.org/10.1109/TNNLS.2014.2341634,Nonlinear Topological Component Analysis: Application to Age-Invariant Face Recognition,2015 +155,MORPH Commercial,morph,56.45796755,-2.98214831,University of Dundee,edu,8b10383ef569ea0029a2c4a60cc2d8c87391b4db,citation,http://pdfs.semanticscholar.org/fe2d/20dca6dcedc7944cc2d9fea76de6cbb9d90c.pdf,Age classification using Radon transform and entropy based scaling SVM,2011 +156,MORPH Commercial,morph,40.0044795,116.370238,Chinese Academy of Sciences,edu,d37ca68742b2999667faf464f78d2fbf81e0cb07,citation,https://doi.org/10.1007/978-3-319-25417-3_76,DFDnet: Discriminant Face Descriptor Network for Facial Age Estimation,2015 +157,MORPH Commercial,morph,-35.2776999,149.118527,Australian National University,edu,a7191958e806fce2505a057196ccb01ea763b6ea,citation,http://pdfs.semanticscholar.org/a719/1958e806fce2505a057196ccb01ea763b6ea.pdf,Convolutional Neural Network based Age Estimation from Facial Image and Depth Prediction from Single Image,2016 +158,MORPH Commercial,morph,35.907757,127.766922,"Electronics and Telecommunications Research Institute, Korea",edu,abbc6dcbd032ff80e0535850f1bc27c4610b0d45,citation,https://doi.org/10.1109/ICIP.2015.7350983,Facial age estimation via extended curvature Gabor filter,2015 +159,MORPH Commercial,morph,36.3697191,127.362537,Korea Advanced Institute of Science and Technology,edu,abbc6dcbd032ff80e0535850f1bc27c4610b0d45,citation,https://doi.org/10.1109/ICIP.2015.7350983,Facial age estimation via extended curvature Gabor filter,2015 +160,MORPH Commercial,morph,1.2962018,103.77689944,National University of Singapore,edu,989332c5f1b22604d6bb1f78e606cb6b1f694e1a,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Wang_Recurrent_Face_Aging_CVPR_2016_paper.pdf,Recurrent Face Aging,2016 +161,MORPH Commercial,morph,32.0575279,118.78682252,Southeast University,edu,989332c5f1b22604d6bb1f78e606cb6b1f694e1a,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Wang_Recurrent_Face_Aging_CVPR_2016_paper.pdf,Recurrent Face Aging,2016 +162,MORPH Commercial,morph,46.0658836,11.1159894,University of Trento,edu,989332c5f1b22604d6bb1f78e606cb6b1f694e1a,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Wang_Recurrent_Face_Aging_CVPR_2016_paper.pdf,Recurrent Face Aging,2016 +163,MORPH Commercial,morph,40.62984145,22.9588935,Aristotle University of Thessaloniki,edu,1fd3dbb6e910708fa85c8a86e17ba0b6fef5617c,citation,http://pdfs.semanticscholar.org/1fd3/dbb6e910708fa85c8a86e17ba0b6fef5617c.pdf,Age interval and gender prediction using PARAFAC2 on speech recordings and face images,2016 +164,MORPH Commercial,morph,40.00229045,116.32098908,Tsinghua University,edu,6c6f0e806e4e286f3b18b934f42c72b67030ce17,citation,https://doi.org/10.1109/FG.2011.5771345,Combination of age and head pose for adult face verification,2011 +165,MORPH Commercial,morph,46.5190557,6.5667576,"Swiss Federal, Institute of Technology, Lausanne",edu,6c6f0e806e4e286f3b18b934f42c72b67030ce17,citation,https://doi.org/10.1109/FG.2011.5771345,Combination of age and head pose for adult face verification,2011 +166,MORPH Commercial,morph,52.6221571,1.2409136,University of East Anglia,edu,05a0d04693b2a51a8131d195c68ad9f5818b2ce1,citation,http://pdfs.semanticscholar.org/05a0/d04693b2a51a8131d195c68ad9f5818b2ce1.pdf,Dual-reference Face Retrieval: What Does He/She Look Like at Age 'X'?,2017 +167,MORPH Commercial,morph,40.44415295,-79.96243993,University of Pittsburgh,edu,05a0d04693b2a51a8131d195c68ad9f5818b2ce1,citation,http://pdfs.semanticscholar.org/05a0/d04693b2a51a8131d195c68ad9f5818b2ce1.pdf,Dual-reference Face Retrieval: What Does He/She Look Like at Age 'X'?,2017 +168,MORPH Commercial,morph,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,387b54cf6c186c12d83f95df6bd458c5eb1254ee,citation,https://doi.org/10.1109/VCIP.2017.8305123,Deep probabilities for age estimation,2017 +169,MORPH Commercial,morph,35.97320905,-78.89755054,North Carolina Central University,edu,1ca1b4f787712ede215030d22a0eea41534a601e,citation,https://doi.org/10.1109/CVPRW.2010.5543609,Human age estimation: What is the influence across race and gender?,2010 +170,MORPH Commercial,morph,39.65404635,-79.96475355,West Virginia University,edu,1ca1b4f787712ede215030d22a0eea41534a601e,citation,https://doi.org/10.1109/CVPRW.2010.5543609,Human age estimation: What is the influence across race and gender?,2010 +171,MORPH Commercial,morph,1.3484104,103.68297965,Nanyang Technological University,edu,b6a23f72007cb40223d7e1e1cc47e466716de945,citation,https://doi.org/10.1109/CVPRW.2010.5544598,Ordinary preserving manifold analysis for human age estimation,2010 +172,MORPH Commercial,morph,60.7897318,10.6821927,"Norwegian Biometrics Lab, NTNU, Norway",edu,0647c9d56cf11215894d57d677997826b22f6a13,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8401557,Transgender face recognition with off-the-shelf pre-trained CNNs: A comprehensive study,2018 +173,MORPH Commercial,morph,52.3553655,4.9501644,University of Amsterdam,edu,935a7793cbb8f102924fa34fce1049727de865c2,citation,https://doi.org/10.1109/ICIP.2015.7351554,Age estimation under changes in image quality: An experimental study,2015 +174,MORPH Commercial,morph,40.01407945,-105.26695944,"University of Colorado, Boulder",edu,4aabd6db4594212019c9af89b3e66f39f3108aac,citation,http://pdfs.semanticscholar.org/4aab/d6db4594212019c9af89b3e66f39f3108aac.pdf,The Mere Exposure Effect and Classical Conditioning,2015 +175,MORPH Commercial,morph,34.2375581,-77.9270129,University of North Carolina Wilmington,edu,73d15a975b0595e0cc2e0981a9396a89c474dc7e,citation,https://arxiv.org/pdf/1811.03680.pdf,Gender Effect on Face Recognition for a Large Longitudinal Database,2018 +176,MORPH Commercial,morph,40.00229045,116.32098908,Tsinghua University,edu,51bb86dc8748088a198b216f7e97616634147388,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6890496,Face age estimation by using Bisection Search Tree,2013 +177,MORPH Commercial,morph,1.3037257,103.7737763,"Advanced Digital Sciences Center, Singapore",edu,8cffe360a05085d4bcba111a3a3cd113d96c0369,citation,http://doi.ieeecomputersociety.org/10.1109/ICCV.2011.6126248,Learning universal multi-view age estimator using video context,2011 +178,MORPH Commercial,morph,1.3170417,103.8321041,"Facebook, Singapore",company,8cffe360a05085d4bcba111a3a3cd113d96c0369,citation,http://doi.ieeecomputersociety.org/10.1109/ICCV.2011.6126248,Learning universal multi-view age estimator using video context,2011 +179,MORPH Commercial,morph,1.2962018,103.77689944,National University of Singapore,edu,8cffe360a05085d4bcba111a3a3cd113d96c0369,citation,http://doi.ieeecomputersociety.org/10.1109/ICCV.2011.6126248,Learning universal multi-view age estimator using video context,2011 +180,MORPH Commercial,morph,23.143197,113.34009651,South China Normal University,edu,dc6ad30c7a4bc79bb06b4725b16e202d3d7d8935,citation,http://doi.org/10.1007/s11042-017-4646-5,Age classification with deep learning face representation,2017 +181,MORPH Commercial,morph,23.0502042,113.39880323,South China University of Technology,edu,dc6ad30c7a4bc79bb06b4725b16e202d3d7d8935,citation,http://doi.org/10.1007/s11042-017-4646-5,Age classification with deep learning face representation,2017 +182,MORPH Commercial,morph,50.0764296,14.41802312,Czech Technical University,edu,023ed32ac3ea6029f09b8c582efbe3866de7d00a,citation,http://pdfs.semanticscholar.org/023e/d32ac3ea6029f09b8c582efbe3866de7d00a.pdf,Discriminative learning from partially annotated examples,2016 +183,MORPH Commercial,morph,35.5167538,139.48342251,Tokyo Institute of Technology,edu,435dc062d565ce87c6c20a5f49430eb9a4b573c4,citation,http://pdfs.semanticscholar.org/435d/c062d565ce87c6c20a5f49430eb9a4b573c4.pdf,Lighting Condition Adaptation for Perceived Age Estimation,2011 +184,MORPH Commercial,morph,42.718568,-84.47791571,Michigan State University,edu,6a5d7d20a8c4993d56bcf702c772aa3f95f99450,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4813408,Face recognition with temporal invariance: A 3D aging model,2008 +185,MORPH Commercial,morph,35.97320905,-78.89755054,North Carolina Central University,edu,2a6783ae51d7ee781d584ef9a3eb8ab1997d0489,citation,https://doi.org/10.1109/CVPRW.2010.5543608,A study of large-scale ethnicity estimation with gender and age variations,2010 +186,MORPH Commercial,morph,39.65404635,-79.96475355,West Virginia University,edu,2a6783ae51d7ee781d584ef9a3eb8ab1997d0489,citation,https://doi.org/10.1109/CVPRW.2010.5543608,A study of large-scale ethnicity estimation with gender and age variations,2010 +187,MORPH Commercial,morph,40.00229045,116.32098908,Tsinghua University,edu,a53d13b9110cddb2a5f38b9d7ed69d328e3c6db9,citation,https://doi.org/10.1109/TIP.2015.2481327,Cost-Sensitive Local Binary Feature Learning for Facial Age Estimation,2015 +188,MORPH Commercial,morph,1.3484104,103.68297965,Nanyang Technological University,edu,a53d13b9110cddb2a5f38b9d7ed69d328e3c6db9,citation,https://doi.org/10.1109/TIP.2015.2481327,Cost-Sensitive Local Binary Feature Learning for Facial Age Estimation,2015 +189,MORPH Commercial,morph,42.718568,-84.47791571,Michigan State University,edu,141cb9ee401f223220d3468592effa90f0c255fa,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7815403,Longitudinal Study of Automatic Face Recognition,2015 +190,MORPH Commercial,morph,42.718568,-84.47791571,Michigan State University,edu,e22adcd2a6a7544f017ec875ce8f89d5c59e09c8,citation,https://arxiv.org/pdf/1807.11936.pdf,Gender Privacy: An Ensemble of Semi Adversarial Networks for Confounding Arbitrary Gender Classifiers,2018 +191,MORPH Commercial,morph,25.01682835,121.53846924,National Taiwan University,edu,6ab33fa51467595f18a7a22f1d356323876f8262,citation,http://www.iis.sinica.edu.tw/~kuangyu/OHRank_files/0523.pdf,Ordinal hyperplanes ranker with cost sensitivities for age estimation,2011 +192,MORPH Commercial,morph,25.0410728,121.6147562,Institute of Information Science,edu,6ab33fa51467595f18a7a22f1d356323876f8262,citation,http://www.iis.sinica.edu.tw/~kuangyu/OHRank_files/0523.pdf,Ordinal hyperplanes ranker with cost sensitivities for age estimation,2011 +193,MORPH Commercial,morph,25.0411727,121.6146518,"Academia Sinica, Taiwan",edu,6ab33fa51467595f18a7a22f1d356323876f8262,citation,http://www.iis.sinica.edu.tw/~kuangyu/OHRank_files/0523.pdf,Ordinal hyperplanes ranker with cost sensitivities for age estimation,2011 +194,MORPH Commercial,morph,1.2962018,103.77689944,National University of Singapore,edu,63488398f397b55552f484409b86d812dacde99a,citation,http://pdfs.semanticscholar.org/6348/8398f397b55552f484409b86d812dacde99a.pdf,Learning Universal Multi-view Age Estimator by Video Contexts,2011 +195,MORPH Commercial,morph,40.00229045,116.32098908,Tsinghua University,edu,6adecb82edbf84a0097ff623428f4f1936e31de0,citation,https://doi.org/10.1007/s11760-011-0246-4,Client-specific A-stack model for adult face verification across aging,2011 +196,MORPH Commercial,morph,1.3037257,103.7737763,"Advanced Digital Sciences Center, Singapore",edu,fcb97ede372c5bddde7a61924ac2fd29788c82ce,citation,https://doi.org/10.1109/TSMCC.2012.2192727,Ordinary Preserving Manifold Analysis for Human Age and Head Pose Estimation,2013 +197,MORPH Commercial,morph,1.3484104,103.68297965,Nanyang Technological University,edu,fcb97ede372c5bddde7a61924ac2fd29788c82ce,citation,https://doi.org/10.1109/TSMCC.2012.2192727,Ordinary Preserving Manifold Analysis for Human Age and Head Pose Estimation,2013 +198,MORPH Commercial,morph,36.3697191,127.362537,Korea Advanced Institute of Science and Technology,edu,cb27b45329d61f5f95ed213798d4b2a615e76be2,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8329236,Deep Facial Age Estimation Using Conditional Multitask Learning With Weak Label Expansion,2018 +199,MORPH Commercial,morph,37.2520226,127.0555019,"Samsung SAIT, Korea",company,cb27b45329d61f5f95ed213798d4b2a615e76be2,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8329236,Deep Facial Age Estimation Using Conditional Multitask Learning With Weak Label Expansion,2018 +200,MORPH Commercial,morph,35.14479945,33.90492318,Eastern Mediterranean University,edu,c5421a18583f629b49ca20577022f201692c4f5d,citation,http://pdfs.semanticscholar.org/c542/1a18583f629b49ca20577022f201692c4f5d.pdf,Facial Age Classification using Subpattern-based Approaches,2011 +201,MORPH Commercial,morph,40.0044795,116.370238,Chinese Academy of Sciences,edu,68c4a1d438ea1c6dfba92e3aee08d48f8e7f7090,citation,http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w11/papers/Liu_AgeNet_Deeply_Learned_ICCV_2015_paper.pdf,AgeNet: Deeply Learned Regressor and Classifier for Robust Apparent Age Estimation,2015 +202,MORPH Commercial,morph,31.32235655,121.38400941,Shanghai University,edu,5f0d4a0b5f72d8700cdf8cb179263a8fa866b59b,citation,https://pdfs.semanticscholar.org/5f0d/4a0b5f72d8700cdf8cb179263a8fa866b59b.pdf,Memo No . 85 06 / 2018 Deep Regression Forests for Age Estimation,2018 +203,MORPH Commercial,morph,24.96841805,121.19139696,National Central University,edu,c58ece1a3fa23608f022e424ec5a93cddda31308,citation,https://doi.org/10.1109/JSYST.2014.2325957,Extraction of Visual Facial Features for Health Management,2016 +204,MORPH Commercial,morph,50.0764296,14.41802312,Czech Technical University,edu,56e25358ebfaf8a8b3c7c33ed007e24f026065d0,citation,https://doi.org/10.1007/s10994-015-5541-9,V-shaped interval insensitive loss for ordinal classification,2015 +205,MORPH Commercial,morph,5.7648848,102.6281702,"University Sultan Zainal Abidin, Malaysia",edu,3337cfc3de2c16dee6f7cbeda5f263409a9ad81e,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8398675,Age prediction on face features via multiple classifiers,2018 +206,MORPH Commercial,morph,1.2962018,103.77689944,National University of Singapore,edu,2836d68c86f29bb87537ea6066d508fde838ad71,citation,http://arxiv.org/pdf/1510.06503v1.pdf,Personalized Age Progression with Aging Dictionary,2015 +207,MORPH Commercial,morph,32.0565957,118.77408833,Nanjing University,edu,2836d68c86f29bb87537ea6066d508fde838ad71,citation,http://arxiv.org/pdf/1510.06503v1.pdf,Personalized Age Progression with Aging Dictionary,2015 +208,MORPH Commercial,morph,22.42031295,114.20788644,Chinese University of Hong Kong,edu,55966926e7c28b1eee1c7eb7a0b11b10605a1af0,citation,http://pdfs.semanticscholar.org/baa8/bdeb5aa545af5b5f43efaf9dda08490da0bc.pdf,Surpassing Human-Level Face Verification Performance on LFW with GaussianFace,2015 +209,MORPH Commercial,morph,40.0044795,116.370238,Chinese Academy of Sciences,edu,d492dbfaa42b4f8b8a74786d7343b3be6a3e9a1d,citation,https://pdfs.semanticscholar.org/d492/dbfaa42b4f8b8a74786d7343b3be6a3e9a1d.pdf,Deep Cost-Sensitive and Order-Preserving Feature Learning for Cross-Population Age Estimation,0 +210,MORPH Commercial,morph,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,d492dbfaa42b4f8b8a74786d7343b3be6a3e9a1d,citation,https://pdfs.semanticscholar.org/d492/dbfaa42b4f8b8a74786d7343b3be6a3e9a1d.pdf,Deep Cost-Sensitive and Order-Preserving Feature Learning for Cross-Population Age Estimation,0 +211,MORPH Commercial,morph,34.67567405,33.04577648,Cyprus University of Technology,edu,fa518a033b1f6299d1826389bd1520cf52291b56,citation,https://pdfs.semanticscholar.org/fa51/8a033b1f6299d1826389bd1520cf52291b56.pdf,Facial Age Simulation using Age-specific 3D Models and Recursive PCA,2013 +212,MORPH Commercial,morph,38.83133325,-77.30798839,George Mason University,edu,1c147261f5ab1b8ee0a54021a3168fa191096df8,citation,http://pdfs.semanticscholar.org/1c14/7261f5ab1b8ee0a54021a3168fa191096df8.pdf,Face Recognition across Time Lapse Using Convolutional Neural Networks,2016 +213,MORPH Commercial,morph,32.05765485,118.7550004,HoHai University,edu,b84b7b035c574727e4c30889e973423fe15560d7,citation,http://pdfs.semanticscholar.org/b84b/7b035c574727e4c30889e973423fe15560d7.pdf,Human Age Estimation Using Ranking SVM,2012 +214,MORPH Commercial,morph,40.0044795,116.370238,Chinese Academy of Sciences,edu,b84b7b035c574727e4c30889e973423fe15560d7,citation,http://pdfs.semanticscholar.org/b84b/7b035c574727e4c30889e973423fe15560d7.pdf,Human Age Estimation Using Ranking SVM,2012 +215,MORPH Commercial,morph,39.6810328,-75.7540184,University of Delaware,edu,19da9f3532c2e525bf92668198b8afec14f9efea,citation,http://pdfs.semanticscholar.org/19da/9f3532c2e525bf92668198b8afec14f9efea.pdf,Challenge: Face verification across age progression using real-world data,2011 +216,MORPH Commercial,morph,39.95472495,-75.15346905,Temple University,edu,f24e379e942e134d41c4acec444ecf02b9d0d3a9,citation,http://pdfs.semanticscholar.org/f24e/379e942e134d41c4acec444ecf02b9d0d3a9.pdf,Analysis of Facial Images across Age Progression by Humans,2011 +217,MORPH Commercial,morph,39.65404635,-79.96475355,West Virginia University,edu,f24e379e942e134d41c4acec444ecf02b9d0d3a9,citation,http://pdfs.semanticscholar.org/f24e/379e942e134d41c4acec444ecf02b9d0d3a9.pdf,Analysis of Facial Images across Age Progression by Humans,2011 +218,MORPH Commercial,morph,40.00229045,116.32098908,Tsinghua University,edu,51f626540860ad75b68206025a45466a6d087aa6,citation,https://doi.org/10.1109/ICIP.2017.8296595,Cluster convolutional neural networks for facial age estimation,2017 +219,MORPH Commercial,morph,37.4102193,-122.05965487,Carnegie Mellon University,edu,452ea180cf4d08d7500fc4bc046fd7141fd3d112,citation,https://doi.org/10.1109/BTAS.2012.6374569,A robust approach to facial ethnicity classification on large scale face databases,2012 +220,MORPH Commercial,morph,47.3764534,8.54770931,ETH Zürich,edu,2facf3e85240042a02f289a0d40fee376c478d0f,citation,https://doi.org/10.1109/BTAS.2010.5634544,Aging face verification in score-age space using single reference image template,2010 +221,MORPH Commercial,morph,38.88140235,121.52281098,Dalian University of Technology,edu,ed70d1a9435c0b32c0c75c1a062f4f07556f7016,citation,https://doi.org/10.1109/ICIP.2015.7350774,Correlated warped Gaussian processes for gender-specific age estimation,2015 +222,MORPH Commercial,morph,40.0141905,-83.0309143,University of Electronic Science and Technology of China,edu,ed70d1a9435c0b32c0c75c1a062f4f07556f7016,citation,https://doi.org/10.1109/ICIP.2015.7350774,Correlated warped Gaussian processes for gender-specific age estimation,2015 +223,MORPH Commercial,morph,1.2962018,103.77689944,National University of Singapore,edu,0e5557a0cc58194ad53fab5dd6f4d4195d19ce4e,citation,https://doi.org/10.1109/TMM.2015.2500730,Deep Aging Face Verification With Large Gaps,2016 +224,MORPH Commercial,morph,51.52344665,-0.25973535,"North Acton, London",edu,0e5557a0cc58194ad53fab5dd6f4d4195d19ce4e,citation,https://doi.org/10.1109/TMM.2015.2500730,Deep Aging Face Verification With Large Gaps,2016 +225,MORPH Commercial,morph,31.846918,117.29053367,Hefei University of Technology,edu,0e5557a0cc58194ad53fab5dd6f4d4195d19ce4e,citation,https://doi.org/10.1109/TMM.2015.2500730,Deep Aging Face Verification With Large Gaps,2016 +226,MORPH Commercial,morph,29.58333105,-98.61944505,University of Texas at San Antonio,edu,f2896dd2701fbb3564492a12c64f11a5ad456a67,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5495414,Cross-database age estimation based on transfer learning,2010 +227,MORPH Commercial,morph,34.1235825,108.83546,Xidian University,edu,f2896dd2701fbb3564492a12c64f11a5ad456a67,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5495414,Cross-database age estimation based on transfer learning,2010 +228,MORPH Commercial,morph,56.66340325,12.87929727,Halmstad University,edu,9cda3e56cec21bd8f91f7acfcefc04ac10973966,citation,https://doi.org/10.1109/IWBF.2016.7449688,"Periocular biometrics: databases, algorithms and directions",2016 +229,MORPH Commercial,morph,34.2375581,-77.9270129,University of North Carolina Wilmington,edu,13aef395f426ca8bd93640c9c3f848398b189874,citation,https://pdfs.semanticscholar.org/13ae/f395f426ca8bd93640c9c3f848398b189874.pdf,1 Image Preprocessing and Complete 2 DPCA with Feature Extraction for Gender Recognition NSF REU 2017 : Statistical Learning and Data Mining,2017 +230,MORPH Commercial,morph,24.7925484,120.9951183,National Tsing Hua University,edu,cfa40560fa74b2fb5c26bdd6ea7c610ba5130e2f,citation,https://doi.org/10.1109/TIFS.2013.2286265,Subspace Learning for Facial Age Estimation Via Pairwise Age Ranking,2013 +231,MORPH Commercial,morph,58.38131405,26.72078081,University of Tartu,edu,1b248ed8e7c9514648cd598960fadf9ab17e7fe8,citation,https://pdfs.semanticscholar.org/1b24/8ed8e7c9514648cd598960fadf9ab17e7fe8.pdf,"From apparent to real age: gender, age, ethnic, makeup, and expression bias analysis in real age estimation",0 +232,MORPH Commercial,morph,41.3868913,2.16352385,University of Barcelona,edu,1b248ed8e7c9514648cd598960fadf9ab17e7fe8,citation,https://pdfs.semanticscholar.org/1b24/8ed8e7c9514648cd598960fadf9ab17e7fe8.pdf,"From apparent to real age: gender, age, ethnic, makeup, and expression bias analysis in real age estimation",0 +233,MORPH Commercial,morph,39.65404635,-79.96475355,West Virginia University,edu,86a8b3d0f753cb49ac3250fa14d277983e30a4b7,citation,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2013.75,Exploiting Unlabeled Ages for Aging Pattern Analysis on a Large Database,2013 +234,MORPH Commercial,morph,34.2239869,-77.8701325,"UNCW, USA",edu,2b5cb5466eecb131f06a8100dcaf0c7a0e30d391,citation,http://doi.acm.org/10.1145/1924559.1924608,A comparative study of active appearance model annotation schemes for the face,2010 +235,MORPH Commercial,morph,42.718568,-84.47791571,Michigan State University,edu,fc798314994bf94d1cde8d615ba4d5e61b6268b6,citation,http://pdfs.semanticscholar.org/fc79/8314994bf94d1cde8d615ba4d5e61b6268b6.pdf,"Face Recognition : face in video , age invariance , and facial marks",2009 +236,MORPH Commercial,morph,24.12084345,120.67571165,National Chung Hsing University,edu,635d2696aa597a278dd6563f079be06aa76a33c0,citation,https://doi.org/10.1109/ICIP.2016.7532429,Age estimation via fusion of multiple binary age grouping systems,2016 +237,MORPH Commercial,morph,25.01682835,121.53846924,National Taiwan University,edu,635d2696aa597a278dd6563f079be06aa76a33c0,citation,https://doi.org/10.1109/ICIP.2016.7532429,Age estimation via fusion of multiple binary age grouping systems,2016 +238,MORPH Commercial,morph,25.0411727,121.6146518,"Academia Sinica, Taiwan",edu,635d2696aa597a278dd6563f079be06aa76a33c0,citation,https://doi.org/10.1109/ICIP.2016.7532429,Age estimation via fusion of multiple binary age grouping systems,2016 +239,MORPH Commercial,morph,31.20081505,121.42840681,Shanghai Jiao Tong University,edu,36486944b4feeb88c0499fecd253c5a53034a23f,citation,https://doi.org/10.1109/CISP-BMEI.2017.8301986,Deep feature selection and projection for cross-age face retrieval,2017 +240,MORPH Commercial,morph,1.2988926,103.7873107,"Institute for Infocomm Research, Singapore",edu,85f7f03b79d03da5fae3a7f79d9aac228a635166,citation,https://doi.org/10.1109/WACV.2009.5403085,Age categorization via ECOC with fused gabor and LBP features,2009 +241,MORPH Commercial,morph,39.6810328,-75.7540184,University of Delaware,edu,aee3427d0814d8a398fd31f4f46941e9e5488d83,citation,http://dl.acm.org/citation.cfm?id=1924573,Face verification with aging using AdaBoost and local binary patterns,2010 +242,MORPH Commercial,morph,23.09461185,113.28788994,Sun Yat-Sen University,edu,d1b5b3e4b803dc4e50c5b80c1bc69c6d98751698,citation,https://doi.org/10.1109/LSP.2017.2661983,Modified Hidden Factor Analysis for Cross-Age Face Recognition,2017 +243,MORPH Commercial,morph,39.65404635,-79.96475355,West Virginia University,edu,55bc7abcef8266d76667896bbc652d081d00f797,citation,http://www.cse.msu.edu/~rossarun/pubs/ChenCosmeticsGenderAge_VISAPP2014.pdf,Impact of facial cosmetics on automatic gender and age estimation algorithms,2014 +244,MORPH Commercial,morph,42.718568,-84.47791571,Michigan State University,edu,55bc7abcef8266d76667896bbc652d081d00f797,citation,http://www.cse.msu.edu/~rossarun/pubs/ChenCosmeticsGenderAge_VISAPP2014.pdf,Impact of facial cosmetics on automatic gender and age estimation algorithms,2014 +245,MORPH Commercial,morph,39.65404635,-79.96475355,West Virginia University,edu,7a65fc9e78eff3ab6062707deaadde024d2fad40,citation,http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w11/papers/Zhu_A_Study_on_ICCV_2015_paper.pdf,A Study on Apparent Age Estimation,2015 +246,MORPH Commercial,morph,42.357757,-83.06286711,Wayne State University,edu,28d99dc2d673d62118658f8375b414e5192eac6f,citation,http://www.cs.wayne.edu/~mdong/cvpr17.pdf,Using Ranking-CNN for Age Estimation,2017 +247,MORPH Commercial,morph,37.4102193,-122.05965487,Carnegie Mellon University,edu,ec05078be14a11157ac0e1c6b430ac886124589b,citation,http://pdfs.semanticscholar.org/ec05/078be14a11157ac0e1c6b430ac886124589b.pdf,Longitudinal Face Aging in the Wild - Recent Deep Learning Approaches,2018 +248,MORPH Commercial,morph,45.57022705,-122.63709346,Concordia University,edu,ec05078be14a11157ac0e1c6b430ac886124589b,citation,http://pdfs.semanticscholar.org/ec05/078be14a11157ac0e1c6b430ac886124589b.pdf,Longitudinal Face Aging in the Wild - Recent Deep Learning Approaches,2018 +249,MORPH Commercial,morph,46.5190557,6.5667576,"Swiss Federal Institute of Technology Lausanne, Switzerland",edu,d7a84db2a1bf7b97657b0250f354f249394dd700,citation,https://doi.org/10.1109/ICIP.2010.5653518,Global and local feature based multi-classifier A-stack model for aging face identification,2010 +250,MORPH Commercial,morph,39.65404635,-79.96475355,West Virginia University,edu,d3c004125c71942846a9b32ae565c5216c068d1e,citation,http://pdfs.semanticscholar.org/d3c0/04125c71942846a9b32ae565c5216c068d1e.pdf,Recognizing Age-Separated Face Images: Humans and Machines,2014 +251,MORPH Commercial,morph,52.3553655,4.9501644,University of Amsterdam,edu,999289b0ef76c4c6daa16a4f42df056bf3d68377,citation,http://pdfs.semanticscholar.org/9992/89b0ef76c4c6daa16a4f42df056bf3d68377.pdf,The Role of Color and Contrast in Facial Age Estimation,2014 +252,MORPH Commercial,morph,51.99882735,4.37396037,Delft University of Technology,edu,999289b0ef76c4c6daa16a4f42df056bf3d68377,citation,http://pdfs.semanticscholar.org/9992/89b0ef76c4c6daa16a4f42df056bf3d68377.pdf,The Role of Color and Contrast in Facial Age Estimation,2014 +253,MORPH Commercial,morph,28.5456282,77.2731505,"IIIT Delhi, India",edu,f726738954e7055bb3615fa7e8f59f136d3e0bdc,citation,https://arxiv.org/pdf/1803.07385.pdf,Are you eligible? Predicting adulthood from face images via class specific mean autoencoder,2018 +254,MORPH Commercial,morph,1.2962018,103.77689944,National University of Singapore,edu,b9d68dbeb8e5fdc5984b49a317ea6798b378e5ae,citation,http://doi.acm.org/10.1145/2733373.2807962,What Shall I Look Like after N Years?,2015 +255,MORPH Commercial,morph,32.0565957,118.77408833,Nanjing University,edu,b9d68dbeb8e5fdc5984b49a317ea6798b378e5ae,citation,http://doi.acm.org/10.1145/2733373.2807962,What Shall I Look Like after N Years?,2015 +256,MORPH Commercial,morph,45.42580475,-75.68740118,University of Ottawa,edu,16820ccfb626dcdc893cc7735784aed9f63cbb70,citation,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W12/papers/Azarmehr_Real-Time_Embedded_Age_2015_CVPR_paper.pdf,Real-time embedded age and gender classification in unconstrained video,2015 +257,MORPH Commercial,morph,35.0274996,135.78154513,University of Caen,edu,0ad8149318912b5449085187eb3521786a37bc78,citation,http://arxiv.org/abs/1604.02975,CP-mtML: Coupled Projection Multi-Task Metric Learning for Large Scale Face Retrieval,2016 +258,MORPH Commercial,morph,51.44415765,7.26096541,Ruhr-University Bochum,edu,7e1ea2679a110241ed0dd38ff45cd4dfeb7a8e83,citation,http://pdfs.semanticscholar.org/7e1e/a2679a110241ed0dd38ff45cd4dfeb7a8e83.pdf,Extensions of Hierarchical Slow Feature Analysis for Efficient Classification and Regression on High-Dimensional Data,2017 +259,MORPH Commercial,morph,30.5097537,114.4062881,Huazhong University of Science and Technology,edu,2e27667421a7eeab278e0b761db4d2c725683c3f,citation,https://doi.org/10.1007/s11042-013-1815-z,Effective human age estimation using a two-stage approach based on Lie Algebrized Gaussians feature,2013 +260,MORPH Commercial,morph,32.0565957,118.77408833,Nanjing University,edu,0c741fa0966ba3ee4fc326e919bf2f9456d0cd74,citation,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2013.51,Facial Age Estimation by Learning from Label Distributions,2010 +261,MORPH Commercial,morph,32.0575279,118.78682252,Southeast University,edu,0c741fa0966ba3ee4fc326e919bf2f9456d0cd74,citation,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2013.51,Facial Age Estimation by Learning from Label Distributions,2010 +262,MORPH Commercial,morph,-37.78397455,144.95867433,Monash University,edu,0c741fa0966ba3ee4fc326e919bf2f9456d0cd74,citation,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2013.51,Facial Age Estimation by Learning from Label Distributions,2010 +263,MORPH Commercial,morph,1.2962018,103.77689944,National University of Singapore,edu,fca9ebaa30d69ccec8bb577c31693c936c869e72,citation,https://arxiv.org/pdf/1809.00338.pdf,Look Across Elapse: Disentangled Representation Learning and Photorealistic Cross-Age Face Synthesis for Age-Invariant Face Recognition,2018 +264,MORPH Commercial,morph,40.0044795,116.370238,Chinese Academy of Sciences,edu,fca9ebaa30d69ccec8bb577c31693c936c869e72,citation,https://arxiv.org/pdf/1809.00338.pdf,Look Across Elapse: Disentangled Representation Learning and Photorealistic Cross-Age Face Synthesis for Age-Invariant Face Recognition,2018 +265,MORPH Commercial,morph,49.10184375,8.4331256,Karlsruhe Institute of Technology,edu,cfdc4d0f8e1b4b9ced35317d12b4229f2e3311ab,citation,https://pdfs.semanticscholar.org/cfdc/4d0f8e1b4b9ced35317d12b4229f2e3311ab.pdf,Quaero at TRECVID 2010: Semantic Indexing,2010 +266,MORPH Commercial,morph,42.718568,-84.47791571,Michigan State University,edu,02d650d8a3a9daaba523433fbe93705df0a7f4b1,citation,http://pdfs.semanticscholar.org/02d6/50d8a3a9daaba523433fbe93705df0a7f4b1.pdf,How Does Aging Affect Facial Components?,2012 +267,MORPH Commercial,morph,34.67567405,33.04577648,Cyprus University of Technology,edu,70db3a0d2ca8a797153cc68506b8650908cb0ada,citation,http://pdfs.semanticscholar.org/70db/3a0d2ca8a797153cc68506b8650908cb0ada.pdf,An Overview of Research Activities in Facial Age Estimation Using the FG-NET Aging Database,2014 +268,MORPH Commercial,morph,22.5447154,113.9357164,Tencent,company,a2d1818eb461564a5153c74028e53856cf0b40fd,citation,https://arxiv.org/pdf/1810.07599.pdf,Orthogonal Deep Features Decomposition for Age-Invariant Face Recognition,2018 +269,MORPH Commercial,morph,57.6252103,39.8845656,Yaroslavl State University,edu,05318a267226f6d855d83e9338eaa9e718b2a8dd,citation,https://fruct.org/publications/fruct16/files/Khr.pdf,Age estimation from face images: challenging problem for audience measurement systems,2014 +270,MORPH Commercial,morph,41.5381124,2.4447406,"EUP Mataró, Spain",edu,1f5725a4a2eb6cdaefccbc20dccadf893936df12,citation,https://doi.org/10.1109/CCST.2012.6393544,On the relevance of age in handwritten biometric recognition,2012 +271,MORPH Commercial,morph,34.67567405,33.04577648,Cyprus University of Technology,edu,876583a059154def7a4bc503b21542f80859affd,citation,https://doi.org/10.1109/IWBF.2016.7449697,On the analysis of factors influencing the performance of facial age progression,2016 +272,MORPH Commercial,morph,-35.0636071,147.3552234,Charles Sturt University,edu,2e231f1e7e641dd3619bec59e14d02e91360ac01,citation,https://arxiv.org/pdf/1807.10421.pdf,Fusion Network for Face-Based Age Estimation,2018 +273,MORPH Commercial,morph,51.3791442,-2.3252332,University of Bath,edu,2e231f1e7e641dd3619bec59e14d02e91360ac01,citation,https://arxiv.org/pdf/1807.10421.pdf,Fusion Network for Face-Based Age Estimation,2018 +274,MORPH Commercial,morph,40.0044795,116.370238,Chinese Academy of Sciences,edu,56359d2b4508cc267d185c1d6d310a1c4c2cc8c2,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2015.7298618,Shape driven kernel adaptation in Convolutional Neural Network for robust facial trait recognition,2015 +275,MORPH Commercial,morph,39.9041999,116.4073963,Chinese Academy of Science,edu,56359d2b4508cc267d185c1d6d310a1c4c2cc8c2,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2015.7298618,Shape driven kernel adaptation in Convolutional Neural Network for robust facial trait recognition,2015 +276,MORPH Commercial,morph,1.2962018,103.77689944,National University of Singapore,edu,56359d2b4508cc267d185c1d6d310a1c4c2cc8c2,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2015.7298618,Shape driven kernel adaptation in Convolutional Neural Network for robust facial trait recognition,2015 +277,MORPH Commercial,morph,32.0565957,118.77408833,Nanjing University,edu,a6e43b73f9f87588783988333997a81b4487e2d5,citation,http://pdfs.semanticscholar.org/a6e4/3b73f9f87588783988333997a81b4487e2d5.pdf,Facial Age Estimation by Total Ordering Preserving Projection,2016 +278,MORPH Commercial,morph,1.2988926,103.7873107,"Institution for Infocomm Research, Singapore",edu,8229f2735a0db0ad41f4d7252129311f06959907,citation,https://doi.org/10.1109/TIP.2011.2106794,Active Learning for Solving the Incomplete Data Problem in Facial Age Classification by the Furthest Nearest-Neighbor Criterion,2011 +279,MORPH Commercial,morph,1.3484104,103.68297965,Nanyang Technological University,edu,8229f2735a0db0ad41f4d7252129311f06959907,citation,https://doi.org/10.1109/TIP.2011.2106794,Active Learning for Solving the Incomplete Data Problem in Facial Age Classification by the Furthest Nearest-Neighbor Criterion,2011 +280,MORPH Commercial,morph,39.2899685,-76.62196103,University of Maryland,edu,963a004e208ce4bd26fa79a570af61d31651b3c3,citation,https://doi.org/10.1016/j.jvlc.2009.01.011,Computational methods for modeling facial aging: A survey,2009 +281,MORPH Commercial,morph,40.48256135,-3.6906079,Universidad Autonoma de Madrid,edu,4b5ff8c67f3496a414f94e35cb35a601ec98e5cf,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6547306,Understanding the discrimination power of facial regions in forensic casework,2013 +282,MORPH Commercial,morph,40.4445565,-3.7122785,"Dirección General de la Guardia Civil, Madrid, Spain",edu,4b5ff8c67f3496a414f94e35cb35a601ec98e5cf,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6547306,Understanding the discrimination power of facial regions in forensic casework,2013 +283,MORPH Commercial,morph,-37.8087465,144.9638875,RMIT University,edu,c49075ead6eb07ede5ada4fe372899bd0cfb83ac,citation,https://doi.org/10.1109/ICSPCS.2015.7391782,Multi-stage classification network for automatic age estimation from facial images,2015 +284,MORPH Commercial,morph,34.2375581,-77.9270129,University of North Carolina Wilmington,edu,00301c250d667700276b1e573640ff2fd7be574d,citation,https://doi.org/10.1109/BTAS.2014.6996242,Establishing a test set and initial comparisons for quantitatively evaluating synthetic age progression for adult aging,2014 diff --git a/site/datasets/final/morph_nc.csv b/site/datasets/final/morph_nc.csv new file mode 100644 index 00000000..6ff0320b --- /dev/null +++ b/site/datasets/final/morph_nc.csv @@ -0,0 +1,286 @@ +index,dataset_name,key,lat,lng,loc,loc_type,paper_id,paper_type,paper_url,title,year +0,MORPH Non-Commercial,morph_nc,0.0,0.0,,,9055b155cbabdce3b98e16e5ac9c0edf00f9552f,main,http://doi.ieeecomputersociety.org/10.1109/FGR.2006.78,MORPH: a longitudinal image database of normal adult age-progression,2006 +1,MORPH Non-Commercial,morph_nc,34.80809035,135.45785218,Osaka University,edu,dad6b36fd515bda801f3d22a462cc62348f6aad8,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6117531,Gait-based age estimation using a whole-generation gait database,2011 +2,MORPH Non-Commercial,morph_nc,40.0044795,116.370238,Chinese Academy of Sciences,edu,ddd0f1c53f76d7fc20e11b7e33bbdc0437516d2b,citation,https://doi.org/10.1109/ICDSP.2016.7868598,Deep learning-based learning to rank with ties for image re-ranking,2016 +3,MORPH Non-Commercial,morph_nc,39.1118774,117.3497451,Civil Aviation University of China,edu,ddd0f1c53f76d7fc20e11b7e33bbdc0437516d2b,citation,https://doi.org/10.1109/ICDSP.2016.7868598,Deep learning-based learning to rank with ties for image re-ranking,2016 +4,MORPH Non-Commercial,morph_nc,25.0410728,121.6147562,Institute of Information Science,edu,4c71b0cdb6b80889b976e8eb4457942bd4dd7b66,citation,https://doi.org/10.1109/TIP.2014.2387379,A Learning Framework for Age Rank Estimation Based on Face Images With Scattering Transform,2015 +5,MORPH Non-Commercial,morph_nc,51.0267513,-1.3972576,"IBM Hursley Labs, UK",company,7123e510dea783035b02f6c35e35a1a09677c5ab,citation,https://doi.org/10.1109/ICPR.2016.7900297,Back to the future: A fully automatic method for robust age progression,2016 +6,MORPH Non-Commercial,morph_nc,35.9042272,-78.85565763,"IBM Research, North Carolina",company,7123e510dea783035b02f6c35e35a1a09677c5ab,citation,https://doi.org/10.1109/ICPR.2016.7900297,Back to the future: A fully automatic method for robust age progression,2016 +7,MORPH Non-Commercial,morph_nc,51.49887085,-0.17560797,Imperial College London,edu,7123e510dea783035b02f6c35e35a1a09677c5ab,citation,https://doi.org/10.1109/ICPR.2016.7900297,Back to the future: A fully automatic method for robust age progression,2016 +8,MORPH Non-Commercial,morph_nc,35.5167538,139.48342251,Tokyo Institute of Technology,edu,3083d2c6d4f456e01cbb72930dc2207af98a6244,citation,http://pdfs.semanticscholar.org/3083/d2c6d4f456e01cbb72930dc2207af98a6244.pdf,Perceived Age Estimation from Face Images,2011 +9,MORPH Non-Commercial,morph_nc,41.3868913,2.16352385,University of Barcelona,edu,500fbe18afd44312738cab91b4689c12b4e0eeee,citation,http://www.maia.ub.es/~sergio/linked/ijcnn_age_and_cultural_2015.pdf,ChaLearn looking at people 2015 new competitions: Age estimation and cultural event recognition,2015 +10,MORPH Non-Commercial,morph_nc,45.4312742,12.3265377,University of Venezia,edu,500fbe18afd44312738cab91b4689c12b4e0eeee,citation,http://www.maia.ub.es/~sergio/linked/ijcnn_age_and_cultural_2015.pdf,ChaLearn looking at people 2015 new competitions: Age estimation and cultural event recognition,2015 +11,MORPH Non-Commercial,morph_nc,41.10427915,29.02231159,Istanbul Technical University,edu,fd53be2e0a9f33080a9db4b5a5e416e24ae8e198,citation,https://arxiv.org/pdf/1606.02909.pdf,Apparent Age Estimation Using Ensemble of Deep Learning Models,2016 +12,MORPH Non-Commercial,morph_nc,40.6341322,-8.6599726,"University of Beira Interior, Portugal",edu,81c21f4aafab39b7f5965829ec9e0f828d6a6182,citation,https://doi.org/10.1109/BTAS.2015.7358744,Acquiring high-resolution face images in outdoor environments: A master-slave calibration algorithm,2015 +13,MORPH Non-Commercial,morph_nc,42.36782045,-71.12666653,Harvard University,edu,0ba402af3b8682e2aa89f76bd823ddffdf89fa0a,citation,http://pdfs.semanticscholar.org/c0d8/4377168c554cb8e83099bed940091fe49dec.pdf,Squared Earth Mover's Distance-based Loss for Training Deep Neural Networks,2016 +14,MORPH Non-Commercial,morph_nc,40.9153196,-73.1270626,Stony Brook University,edu,0ba402af3b8682e2aa89f76bd823ddffdf89fa0a,citation,http://pdfs.semanticscholar.org/c0d8/4377168c554cb8e83099bed940091fe49dec.pdf,Squared Earth Mover's Distance-based Loss for Training Deep Neural Networks,2016 +15,MORPH Non-Commercial,morph_nc,40.47913175,-74.43168868,Rutgers University,edu,31f1e711fcf82c855f27396f181bf5e565a2f58d,citation,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2015.54,Unconstrained Age Estimation with Deep Convolutional Neural Networks,2015 +16,MORPH Non-Commercial,morph_nc,39.2899685,-76.62196103,University of Maryland,edu,31f1e711fcf82c855f27396f181bf5e565a2f58d,citation,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2015.54,Unconstrained Age Estimation with Deep Convolutional Neural Networks,2015 +17,MORPH Non-Commercial,morph_nc,39.65404635,-79.96475355,West Virginia University,edu,af12a79892bd030c19dfea392f7a7ccb0e7ebb72,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2012.6247972,A study on human age estimation under facial expression changes,2012 +18,MORPH Non-Commercial,morph_nc,23.09461185,113.28788994,Sun Yat-Sen University,edu,2d7c2c015053fff5300515a7addcd74b523f3f66,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8323422,Age-Related Factor Guided Joint Task Modeling Convolutional Neural Network for Cross-Age Face Recognition,2018 +19,MORPH Non-Commercial,morph_nc,40.0044795,116.370238,Chinese Academy of Sciences,edu,b234d429c9ea682e54fca52f4b889b3170f65ffc,citation,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2012.22,A Concatenational Graph Evolution Aging Model,2012 +20,MORPH Non-Commercial,morph_nc,39.9922379,116.30393816,Peking University,edu,b234d429c9ea682e54fca52f4b889b3170f65ffc,citation,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2012.22,A Concatenational Graph Evolution Aging Model,2012 +21,MORPH Non-Commercial,morph_nc,40.00229045,116.32098908,Tsinghua University,edu,b234d429c9ea682e54fca52f4b889b3170f65ffc,citation,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2012.22,A Concatenational Graph Evolution Aging Model,2012 +22,MORPH Non-Commercial,morph_nc,30.19331415,120.11930822,Zhejiang University,edu,ee65cee5151928c63d3ef36fcbb582fabb2b6d2c,citation,https://doi.org/10.1109/LSP.2016.2602538,Structure-Aware Slow Feature Analysis for Age Estimation,2016 +23,MORPH Non-Commercial,morph_nc,40.0141905,-83.0309143,University of Electronic Science and Technology of China,edu,ee65cee5151928c63d3ef36fcbb582fabb2b6d2c,citation,https://doi.org/10.1109/LSP.2016.2602538,Structure-Aware Slow Feature Analysis for Age Estimation,2016 +24,MORPH Non-Commercial,morph_nc,40.0044795,116.370238,Chinese Academy of Sciences,edu,288964068cd87d97a98b8bc927d6e0d2349458a2,citation,https://pdfs.semanticscholar.org/2889/64068cd87d97a98b8bc927d6e0d2349458a2.pdf,Mean-Variance Loss for Deep Age Estimation from a Face,0 +25,MORPH Non-Commercial,morph_nc,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,288964068cd87d97a98b8bc927d6e0d2349458a2,citation,https://pdfs.semanticscholar.org/2889/64068cd87d97a98b8bc927d6e0d2349458a2.pdf,Mean-Variance Loss for Deep Age Estimation from a Face,0 +26,MORPH Non-Commercial,morph_nc,39.65404635,-79.96475355,West Virginia University,edu,cd63759842a56bd2ede3999f6e11a74ccbec318b,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5995404,Simultaneous dimensionality reduction and human age estimation via kernel partial least squares regression,2011 +27,MORPH Non-Commercial,morph_nc,28.5456282,77.2731505,"IIIT Delhi, India",edu,ffc81ced9ee8223ab0adb18817321cbee99606e6,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7791157,A multibiometrics-based CAPTCHA for improved online security,2016 +28,MORPH Non-Commercial,morph_nc,39.65404635,-79.96475355,West Virginia University,edu,ffc81ced9ee8223ab0adb18817321cbee99606e6,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7791157,A multibiometrics-based CAPTCHA for improved online security,2016 +29,MORPH Non-Commercial,morph_nc,41.25713055,-72.9896696,Yale University,edu,df7312cbabb7d75d915ba0d91dea77100ded5c56,citation,https://arxiv.org/pdf/1811.06446.pdf,Preliminary Studies on a Large Face Database,2018 +30,MORPH Non-Commercial,morph_nc,29.6328784,-82.3490133,University of Florida,edu,df7312cbabb7d75d915ba0d91dea77100ded5c56,citation,https://arxiv.org/pdf/1811.06446.pdf,Preliminary Studies on a Large Face Database,2018 +31,MORPH Non-Commercial,morph_nc,31.83907195,117.26420748,University of Science and Technology of China,edu,56c700693b63e3da3b985777da6d9256e2e0dc21,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1A_079.pdf,Global refinement of random forest,2015 +32,MORPH Non-Commercial,morph_nc,40.00229045,116.32098908,Tsinghua University,edu,1e344b99583b782e3eaf152cdfa15f217b781181,citation,http://doi.acm.org/10.1145/2499788.2499789,A new biologically inspired active appearance model for face age estimation by using local ordinal ranking,2013 +33,MORPH Non-Commercial,morph_nc,39.94976005,116.33629046,Beijing Jiaotong University,edu,4b9ec224949c79a980a5a66664d0ac6233c3d575,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7565501,Human Facial Age Estimation by Cost-Sensitive Label Ranking and Trace Norm Regularization,2017 +34,MORPH Non-Commercial,morph_nc,43.1576969,-77.58829158,University of Rochester,edu,4b9ec224949c79a980a5a66664d0ac6233c3d575,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7565501,Human Facial Age Estimation by Cost-Sensitive Label Ranking and Trace Norm Regularization,2017 +35,MORPH Non-Commercial,morph_nc,1.2962018,103.77689944,National University of Singapore,edu,4b9ec224949c79a980a5a66664d0ac6233c3d575,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7565501,Human Facial Age Estimation by Cost-Sensitive Label Ranking and Trace Norm Regularization,2017 +36,MORPH Non-Commercial,morph_nc,40.0044795,116.370238,Chinese Academy of Sciences,edu,bd8b7599acf53e3053aa27cfd522764e28474e57,citation,http://www.jdl.ac.cn/doc/2009/iccv09_Learning%20Long%20Term%20Face%20Aging%20Patterns%20from%20Partially%20Dense%20Aging%20Databases.pdf,Learning long term face aging patterns from partially dense aging databases,2009 +37,MORPH Non-Commercial,morph_nc,39.9922379,116.30393816,Peking University,edu,bd8b7599acf53e3053aa27cfd522764e28474e57,citation,http://www.jdl.ac.cn/doc/2009/iccv09_Learning%20Long%20Term%20Face%20Aging%20Patterns%20from%20Partially%20Dense%20Aging%20Databases.pdf,Learning long term face aging patterns from partially dense aging databases,2009 +38,MORPH Non-Commercial,morph_nc,43.614386,7.071125,EURECOM,edu,70569810e46f476515fce80a602a210f8d9a2b95,citation,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2016.105,Apparent Age Estimation from Face Images Combining General and Children-Specialized Deep Learning Models,2016 +39,MORPH Non-Commercial,morph_nc,39.9213097,32.7988233,"TOBB Economy and Technology University, Ankara, Turkey",edu,cc1ed45b02d7fffb42a0fd8cffe5f11792b6ea74,citation,https://doi.org/10.1109/SIU.2016.7495874,Analysis of the effect of image resolution on automatic face gender and age classification,2016 +40,MORPH Non-Commercial,morph_nc,-33.91758275,151.23124025,University of New South Wales,edu,29631ca6cff21c9199c70bcdbbcd5f812d331a96,citation,http://pdfs.semanticscholar.org/2963/1ca6cff21c9199c70bcdbbcd5f812d331a96.pdf,Error Rates in Users of Automatic Face Recognition Software,2015 +41,MORPH Non-Commercial,morph_nc,-33.88890695,151.18943366,University of Sydney,edu,29631ca6cff21c9199c70bcdbbcd5f812d331a96,citation,http://pdfs.semanticscholar.org/2963/1ca6cff21c9199c70bcdbbcd5f812d331a96.pdf,Error Rates in Users of Automatic Face Recognition Software,2015 +42,MORPH Non-Commercial,morph_nc,42.718568,-84.47791571,Michigan State University,edu,1a53ca294bbe5923c46a339955e8207907e9c8c6,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7273870,What Else Does Your Biometric Data Reveal? A Survey on Soft Biometrics,2016 +43,MORPH Non-Commercial,morph_nc,43.614386,7.071125,EURECOM,edu,1a53ca294bbe5923c46a339955e8207907e9c8c6,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7273870,What Else Does Your Biometric Data Reveal? A Survey on Soft Biometrics,2016 +44,MORPH Non-Commercial,morph_nc,40.4319722,-86.92389368,Purdue University,edu,c7c53d75f6e963b403057d8ba5952e4974a779ad,citation,https://pdfs.semanticscholar.org/c7c5/3d75f6e963b403057d8ba5952e4974a779ad.pdf,Aging effects in automated face recognition,2018 +45,MORPH Non-Commercial,morph_nc,41.02451875,28.97697953,Bahçeşehir University,edu,0c2370e156a4eb8d84a5fdb049c5a894c3431f1c,citation,https://doi.org/10.1109/CIBIM.2014.7015437,Biometric template update under facial aging,2014 +46,MORPH Non-Commercial,morph_nc,53.22853665,-0.54873472,University of Lincoln,edu,0c2370e156a4eb8d84a5fdb049c5a894c3431f1c,citation,https://doi.org/10.1109/CIBIM.2014.7015437,Biometric template update under facial aging,2014 +47,MORPH Non-Commercial,morph_nc,46.0810723,13.2119474,University of Udine,edu,0c2370e156a4eb8d84a5fdb049c5a894c3431f1c,citation,https://doi.org/10.1109/CIBIM.2014.7015437,Biometric template update under facial aging,2014 +48,MORPH Non-Commercial,morph_nc,25.0410728,121.6147562,Institute of Information Science,edu,1c17450c4d616e1e1eece248c42eba4f87de9e0d,citation,http://pdfs.semanticscholar.org/d269/39a00a8d3964de612cd3faa86764343d5622.pdf,Automatic Age Estimation from Face Images via Deep Ranking,2015 +49,MORPH Non-Commercial,morph_nc,43.47061295,-80.54724732,University of Waterloo,edu,f2902f5956d7e2dca536d9131d4334f85f52f783,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6460191,Facial age estimation using Clustered Multi-task Support Vector Regression Machine,2012 +50,MORPH Non-Commercial,morph_nc,39.65404635,-79.96475355,West Virginia University,edu,ba2bbef34f05551291410103e3de9e82fdf9dddd,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Guo_A_Study_on_2014_CVPR_paper.pdf,A Study on Cross-Population Age Estimation,2014 +51,MORPH Non-Commercial,morph_nc,31.32235655,121.38400941,Shanghai University,edu,d454ad60b061c1a1450810a0f335fafbfeceeccc,citation,https://arxiv.org/pdf/1712.07195.pdf,Deep Regression Forests for Age Estimation,2017 +52,MORPH Non-Commercial,morph_nc,42.718568,-84.47791571,Michigan State University,edu,ad2cb5c255e555d9767d526721a4c7053fa2ac58,citation,https://arxiv.org/pdf/1711.03990.pdf,Longitudinal Study of Child Face Recognition,2018 +53,MORPH Non-Commercial,morph_nc,39.95472495,-75.15346905,Temple University,edu,0cf2eecf20cfbcb7f153713479e3206670ea0e9c,citation,https://arxiv.org/pdf/1806.08906.pdf,Privacy-Protective-GAN for Face De-identification,2018 +54,MORPH Non-Commercial,morph_nc,31.32235655,121.38400941,Shanghai University,edu,c0b02be66a5a1907e8cfb8117de50f80b90a65a8,citation,http://doi.acm.org/10.1145/2808492.2808523,Manifold learning in sparse selected feature subspaces,2015 +55,MORPH Non-Commercial,morph_nc,47.6423318,-122.1369302,Microsoft,company,ff012c56b9b1de969328dacd13e26b7138ff298b,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7762921,Facial Age Estimation With Age Difference,2017 +56,MORPH Non-Commercial,morph_nc,1.2962018,103.77689944,National University of Singapore,edu,ff012c56b9b1de969328dacd13e26b7138ff298b,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7762921,Facial Age Estimation With Age Difference,2017 +57,MORPH Non-Commercial,morph_nc,31.846918,117.29053367,Hefei University of Technology,edu,ff012c56b9b1de969328dacd13e26b7138ff298b,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7762921,Facial Age Estimation With Age Difference,2017 +58,MORPH Non-Commercial,morph_nc,1.3484104,103.68297965,Nanyang Technological University,edu,ff012c56b9b1de969328dacd13e26b7138ff298b,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7762921,Facial Age Estimation With Age Difference,2017 +59,MORPH Non-Commercial,morph_nc,40.00229045,116.32098908,Tsinghua University,edu,2149d49c84a83848d6051867290d9c8bfcef0edb,citation,https://doi.org/10.1109/TIFS.2017.2746062,Label-Sensitive Deep Metric Learning for Facial Age Estimation,2018 +60,MORPH Non-Commercial,morph_nc,25.0410728,121.6147562,Institute of Information Science,edu,c44c84540db1c38ace232ef34b03bda1c81ba039,citation,http://pdfs.semanticscholar.org/c44c/84540db1c38ace232ef34b03bda1c81ba039.pdf,Cross-Age Reference Coding for Age-Invariant Face Recognition and Retrieval,2014 +61,MORPH Non-Commercial,morph_nc,25.01682835,121.53846924,National Taiwan University,edu,c44c84540db1c38ace232ef34b03bda1c81ba039,citation,http://pdfs.semanticscholar.org/c44c/84540db1c38ace232ef34b03bda1c81ba039.pdf,Cross-Age Reference Coding for Age-Invariant Face Recognition and Retrieval,2014 +62,MORPH Non-Commercial,morph_nc,33.5866784,-101.87539204,Electrical and Computer Engineering,edu,ebb3d5c70bedf2287f9b26ac0031004f8f617b97,citation,https://doi.org/10.1109/MSP.2017.2764116,"Deep Learning for Understanding Faces: Machines May Be Just as Good, or Better, than Humans",2018 +63,MORPH Non-Commercial,morph_nc,39.2899685,-76.62196103,University of Maryland,edu,ebb3d5c70bedf2287f9b26ac0031004f8f617b97,citation,https://doi.org/10.1109/MSP.2017.2764116,"Deep Learning for Understanding Faces: Machines May Be Just as Good, or Better, than Humans",2018 +64,MORPH Non-Commercial,morph_nc,42.718568,-84.47791571,Michigan State University,edu,2f2406551c693d616a840719ae1e6ea448e2f5d3,citation,http://biometrics.cse.msu.edu/Presentations/CharlesOtto_ICB13_AgeEstimationFaceImages_HumanVsMachinePerformance.pdf,Age estimation from face images: Human vs. machine performance,2013 +65,MORPH Non-Commercial,morph_nc,1.3037257,103.7737763,"Advanced Digital Sciences Center, Singapore",edu,15fbb5fc3bdd692a6b2dd737cce7f39f7c89a25c,citation,https://doi.org/10.1109/TMM.2011.2167317,Web Image and Video Mining Towards Universal and Robust Age Estimator,2011 +66,MORPH Non-Commercial,morph_nc,1.2962018,103.77689944,National University of Singapore,edu,15fbb5fc3bdd692a6b2dd737cce7f39f7c89a25c,citation,https://doi.org/10.1109/TMM.2011.2167317,Web Image and Video Mining Towards Universal and Robust Age Estimator,2011 +67,MORPH Non-Commercial,morph_nc,42.718568,-84.47791571,Michigan State University,edu,b446bcd7fb78adfe346cf7a01a38e4f43760f363,citation,http://pdfs.semanticscholar.org/b446/bcd7fb78adfe346cf7a01a38e4f43760f363.pdf,To appear in ICB 2018 Longitudinal Study of Child Face Recognition,2017 +68,MORPH Non-Commercial,morph_nc,42.718568,-84.47791571,Michigan State University,edu,c035c193eed5d72c7f187f0bc880a17d217dada0,citation,http://pdfs.semanticscholar.org/c035/c193eed5d72c7f187f0bc880a17d217dada0.pdf,"Local Gradient Gabor Pattern (LGGP) with Applications in Face Recognition, Cross-spectral Matching and Soft Biometrics",2013 +69,MORPH Non-Commercial,morph_nc,39.65404635,-79.96475355,West Virginia University,edu,c035c193eed5d72c7f187f0bc880a17d217dada0,citation,http://pdfs.semanticscholar.org/c035/c193eed5d72c7f187f0bc880a17d217dada0.pdf,"Local Gradient Gabor Pattern (LGGP) with Applications in Face Recognition, Cross-spectral Matching and Soft Biometrics",2013 +70,MORPH Non-Commercial,morph_nc,34.66869155,-82.83743476,Clemson University,edu,c907104680ad53bdc673f2648d713e4d26335825,citation,http://doi.acm.org/10.1145/3077286.3077304,Dataset and Metrics for Adult Age-Progression Evaluation,2017 +71,MORPH Non-Commercial,morph_nc,34.2375581,-77.9270129,University of North Carolina Wilmington,edu,c907104680ad53bdc673f2648d713e4d26335825,citation,http://doi.acm.org/10.1145/3077286.3077304,Dataset and Metrics for Adult Age-Progression Evaluation,2017 +72,MORPH Non-Commercial,morph_nc,37.5600406,126.9369248,Yonsei University,edu,fde41dc4ec6ac6474194b99e05b43dd6a6c4f06f,citation,https://arxiv.org/pdf/1809.01990.pdf,Multi-Expert Gender Classification on Age Group by Integrating Deep Neural Networks,2018 +73,MORPH Non-Commercial,morph_nc,34.2375581,-77.9270129,University of North Carolina Wilmington,edu,31a36014354ee7c89aa6d94e656db77922b180a5,citation,http://doi.acm.org/10.1145/2304496.2304509,An interactive tool for extremely dense landmarking of faces,2012 +74,MORPH Non-Commercial,morph_nc,37.5901411,127.0362318,Korea University,edu,4b519e2e88ccd45718b0fc65bfd82ebe103902f7,citation,http://biometrics.cse.msu.edu/Publications/Face/LiParkJain_DiscriminativeModelAgeInvariantFR_TIFS11.pdf,A Discriminative Model for Age Invariant Face Recognition,2011 +75,MORPH Non-Commercial,morph_nc,42.718568,-84.47791571,Michigan State University,edu,4b519e2e88ccd45718b0fc65bfd82ebe103902f7,citation,http://biometrics.cse.msu.edu/Publications/Face/LiParkJain_DiscriminativeModelAgeInvariantFR_TIFS11.pdf,A Discriminative Model for Age Invariant Face Recognition,2011 +76,MORPH Non-Commercial,morph_nc,22.59805605,113.98533784,Shenzhen Institutes of Advanced Technology,edu,4b519e2e88ccd45718b0fc65bfd82ebe103902f7,citation,http://biometrics.cse.msu.edu/Publications/Face/LiParkJain_DiscriminativeModelAgeInvariantFR_TIFS11.pdf,A Discriminative Model for Age Invariant Face Recognition,2011 +77,MORPH Non-Commercial,morph_nc,23.09461185,113.28788994,Sun Yat-Sen University,edu,23edcd0d2011d9c0d421193af061f2eb3e155da3,citation,http://doi.org/10.1007/s00371-015-1137-4,Facial age estimation by using stacked feature composition and selection,2015 +78,MORPH Non-Commercial,morph_nc,23.04436505,113.36668458,Guangzhou University,edu,23edcd0d2011d9c0d421193af061f2eb3e155da3,citation,http://doi.org/10.1007/s00371-015-1137-4,Facial age estimation by using stacked feature composition and selection,2015 +79,MORPH Non-Commercial,morph_nc,38.9530519,-77.3354508,"Cernium Corporation, Reston, VA, USA",company,604a281100784b4d5bc1a6db993d423abc5dc8f0,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5353681,Face Verification Across Age Progression Using Discriminative Methods,2010 +80,MORPH Non-Commercial,morph_nc,39.2899685,-76.62196103,University of Maryland,edu,604a281100784b4d5bc1a6db993d423abc5dc8f0,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5353681,Face Verification Across Age Progression Using Discriminative Methods,2010 +81,MORPH Non-Commercial,morph_nc,39.95472495,-75.15346905,Temple University,edu,604a281100784b4d5bc1a6db993d423abc5dc8f0,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5353681,Face Verification Across Age Progression Using Discriminative Methods,2010 +82,MORPH Non-Commercial,morph_nc,51.2975344,1.07296165,University of Kent,edu,6486b36c6f7fd7675257d26e896223a02a1881d9,citation,https://doi.org/10.1109/THMS.2014.2376874,Selective Review and Analysis of Aging Effects in Biometric System Implementation,2015 +83,MORPH Non-Commercial,morph_nc,22.42031295,114.20788644,Chinese University of Hong Kong,edu,16bce9f940bb01aa5ec961892cc021d4664eb9e4,citation,http://www.cise.ufl.edu/~dihong/assets/TIST-2014-10-0214.R2.pdf,Mutual Component Analysis for Heterogeneous Face Recognition,2016 +84,MORPH Non-Commercial,morph_nc,22.59805605,113.98533784,Shenzhen Institutes of Advanced Technology,edu,16bce9f940bb01aa5ec961892cc021d4664eb9e4,citation,http://www.cise.ufl.edu/~dihong/assets/TIST-2014-10-0214.R2.pdf,Mutual Component Analysis for Heterogeneous Face Recognition,2016 +85,MORPH Non-Commercial,morph_nc,34.67567405,33.04577648,Cyprus University of Technology,edu,9d3aa3b7d392fad596b067b13b9e42443bbc377c,citation,http://pdfs.semanticscholar.org/9d3a/a3b7d392fad596b067b13b9e42443bbc377c.pdf,Facial Biometric Templates and Aging: Problems and Challenges for Artificial Intelligence,2009 +86,MORPH Non-Commercial,morph_nc,22.59805605,113.98533784,Shenzhen Institutes of Advanced Technology,edu,217a21d60bb777d15cd9328970cab563d70b5d23,citation,http://www.cise.ufl.edu/~dihong/assets/iccv2013.pdf,Hidden Factor Analysis for Age Invariant Face Recognition,2013 +87,MORPH Non-Commercial,morph_nc,22.42031295,114.20788644,Chinese University of Hong Kong,edu,217a21d60bb777d15cd9328970cab563d70b5d23,citation,http://www.cise.ufl.edu/~dihong/assets/iccv2013.pdf,Hidden Factor Analysis for Age Invariant Face Recognition,2013 +88,MORPH Non-Commercial,morph_nc,32.0565957,118.77408833,Nanjing University,edu,b1bb517bd87a1212174033fc786b2237844b04e6,citation,https://doi.org/10.1016/j.neucom.2015.03.078,Cumulative attribute relation regularization learning for human age estimation,2015 +89,MORPH Non-Commercial,morph_nc,40.8419836,-73.94368971,Columbia University,edu,a0dc68c546e0fc72eb0d9ca822cf0c9ccb4b4c4f,citation,http://www.cs.columbia.edu/~neeraj/base/papers/nk_ijcb2011_fusion.pdf,Fusing with context: A Bayesian approach to combining descriptive attributes,2011 +90,MORPH Non-Commercial,morph_nc,34.2375581,-77.9270129,University of North Carolina Wilmington,edu,a0dc68c546e0fc72eb0d9ca822cf0c9ccb4b4c4f,citation,http://www.cs.columbia.edu/~neeraj/base/papers/nk_ijcb2011_fusion.pdf,Fusing with context: A Bayesian approach to combining descriptive attributes,2011 +91,MORPH Non-Commercial,morph_nc,1.3484104,103.68297965,Nanyang Technological University,edu,d119443de1d75cad384d897c2ed5a7b9c1661d98,citation,https://doi.org/10.1109/ICIP.2010.5650873,Cost-sensitive subspace learning for human age estimation,2010 +92,MORPH Non-Commercial,morph_nc,34.2249827,-77.86907744,University of North Carolina at Wilmington,edu,97c59db934ff85c60c460a4591106682b5ab9caa,citation,https://doi.org/10.1109/BTAS.2012.6374568,Extremely dense face registration: Comparing automatic landmarking algorithms for general and ethno-gender models,2012 +93,MORPH Non-Commercial,morph_nc,43.2213516,-75.4085577,"Air Force Research Lab, Rome, NY",mil,834736698f2cc5c221c22369abe95515243a9fc3,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6996249,GARP-face: Balancing privacy protection and utility preservation in face de-identification,2014 +94,MORPH Non-Commercial,morph_nc,39.95472495,-75.15346905,Temple University,edu,834736698f2cc5c221c22369abe95515243a9fc3,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6996249,GARP-face: Balancing privacy protection and utility preservation in face de-identification,2014 +95,MORPH Non-Commercial,morph_nc,32.0575279,118.78682252,Southeast University,edu,3cb488a3b71f221a8616716a1fc2b951dd0de549,citation,http://doi.ieeecomputersociety.org/10.1109/ICPR.2014.764,Facial Age Estimation by Adaptive Label Distribution Learning,2014 +96,MORPH Non-Commercial,morph_nc,22.3386304,114.2620337,Hong Kong University of Science and Technology,edu,8000c4f278e9af4d087c0d0895fff7012c5e3d78,citation,https://www.cse.ust.hk/~yuzhangcse/papers/Zhang_Yeung_CVPR10.pdf,Multi-task warped Gaussian process for personalized age estimation,2010 +97,MORPH Non-Commercial,morph_nc,31.20081505,121.42840681,Shanghai Jiao Tong University,edu,59fe66eeb06d1a7e1496a85f7ffc7b37512cd7e5,citation,http://doi.ieeecomputersociety.org/10.1109/ICME.2016.7552862,Robust feature encoding for age-invariant face recognition,2016 +98,MORPH Non-Commercial,morph_nc,23.0502042,113.39880323,South China University of Technology,edu,4bd3de97b256b96556d19a5db71dda519934fd53,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2016.529,Latent Factor Guided Convolutional Neural Networks for Age-Invariant Face Recognition,2016 +99,MORPH Non-Commercial,morph_nc,22.59805605,113.98533784,Shenzhen Institutes of Advanced Technology,edu,4bd3de97b256b96556d19a5db71dda519934fd53,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2016.529,Latent Factor Guided Convolutional Neural Networks for Age-Invariant Face Recognition,2016 +100,MORPH Non-Commercial,morph_nc,22.59805605,113.98533784,Shenzhen Institutes of Advanced Technology,edu,1d3dd9aba79a53390317ec1e0b7cd742cba43132,citation,http://www.cise.ufl.edu/~dihong/assets/Gong_A_Maximum_Entropy_2015_CVPR_paper.pdf,A maximum entropy feature descriptor for age invariant face recognition,2015 +101,MORPH Non-Commercial,morph_nc,40.0044795,116.370238,Chinese Academy of Sciences,edu,1d3dd9aba79a53390317ec1e0b7cd742cba43132,citation,http://www.cise.ufl.edu/~dihong/assets/Gong_A_Maximum_Entropy_2015_CVPR_paper.pdf,A maximum entropy feature descriptor for age invariant face recognition,2015 +102,MORPH Non-Commercial,morph_nc,22.42031295,114.20788644,Chinese University of Hong Kong,edu,1d3dd9aba79a53390317ec1e0b7cd742cba43132,citation,http://www.cise.ufl.edu/~dihong/assets/Gong_A_Maximum_Entropy_2015_CVPR_paper.pdf,A maximum entropy feature descriptor for age invariant face recognition,2015 +103,MORPH Non-Commercial,morph_nc,32.0575279,118.78682252,Southeast University,edu,1c530de1a94ac70bf9086e39af1712ea8d2d2781,citation,http://pdfs.semanticscholar.org/1c53/0de1a94ac70bf9086e39af1712ea8d2d2781.pdf,Sparsity Conditional Energy Label Distribution Learning for Age Estimation,2016 +104,MORPH Non-Commercial,morph_nc,37.4102193,-122.05965487,Carnegie Mellon University,edu,eb8519cec0d7a781923f68fdca0891713cb81163,citation,https://arxiv.org/pdf/1703.08617.pdf,Temporal Non-volume Preserving Approach to Facial Age-Progression and Age-Invariant Face Recognition,2017 +105,MORPH Non-Commercial,morph_nc,45.57022705,-122.63709346,Concordia University,edu,eb8519cec0d7a781923f68fdca0891713cb81163,citation,https://arxiv.org/pdf/1703.08617.pdf,Temporal Non-volume Preserving Approach to Facial Age-Progression and Age-Invariant Face Recognition,2017 +106,MORPH Non-Commercial,morph_nc,57.6252103,39.8845656,Yaroslavl State University,edu,cfaf61bacf61901b7e1ac25b779a1f87c1e8cf7f,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6737950,Application for video analysis based on machine learning and computer vision algorithms,2013 +107,MORPH Non-Commercial,morph_nc,51.49887085,-0.17560797,Imperial College London,edu,54bb25a213944b08298e4e2de54f2ddea890954a,citation,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Moschoglou_AgeDB_The_First_CVPR_2017_paper.pdf,"AgeDB: The First Manually Collected, In-the-Wild Age Database",2017 +108,MORPH Non-Commercial,morph_nc,51.59029705,-0.22963221,Middlesex University,edu,54bb25a213944b08298e4e2de54f2ddea890954a,citation,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Moschoglou_AgeDB_The_First_CVPR_2017_paper.pdf,"AgeDB: The First Manually Collected, In-the-Wild Age Database",2017 +109,MORPH Non-Commercial,morph_nc,37.4102193,-122.05965487,Carnegie Mellon University,edu,17670b60dcfb5cbf8fdae0b266e18cf995f6014c,citation,http://arxiv.org/abs/1606.02254,Longitudinal Face Modeling via Temporal Deep Restricted Boltzmann Machines,2016 +110,MORPH Non-Commercial,morph_nc,45.57022705,-122.63709346,Concordia University,edu,17670b60dcfb5cbf8fdae0b266e18cf995f6014c,citation,http://arxiv.org/abs/1606.02254,Longitudinal Face Modeling via Temporal Deep Restricted Boltzmann Machines,2016 +111,MORPH Non-Commercial,morph_nc,46.0658836,11.1159894,University of Trento,edu,2fd96238a7e372146cdf6c2338edc932031dd1f0,citation,https://arxiv.org/pdf/1802.00237.pdf,Face Aging with Contextual Generative Adversarial Nets,2017 +112,MORPH Non-Commercial,morph_nc,1.2962018,103.77689944,National University of Singapore,edu,2fd96238a7e372146cdf6c2338edc932031dd1f0,citation,https://arxiv.org/pdf/1802.00237.pdf,Face Aging with Contextual Generative Adversarial Nets,2017 +113,MORPH Non-Commercial,morph_nc,51.44415765,7.26096541,Ruhr-University Bochum,edu,b249f10a30907a80f2a73582f696bc35ba4db9e2,citation,http://pdfs.semanticscholar.org/f06d/6161eef9325285b32356e1c4b5527479eb9b.pdf,Improved graph-based SFA: Information preservation complements the slowness principle,2016 +114,MORPH Non-Commercial,morph_nc,39.9808333,116.34101249,Beihang University,edu,8b266e68cc71f98ee42b04dc8f3e336c47f199cb,citation,https://arxiv.org/pdf/1711.10352.pdf,Learning Face Age Progression: A Pyramid Architecture of GANs,2017 +115,MORPH Non-Commercial,morph_nc,42.718568,-84.47791571,Michigan State University,edu,8b266e68cc71f98ee42b04dc8f3e336c47f199cb,citation,https://arxiv.org/pdf/1711.10352.pdf,Learning Face Age Progression: A Pyramid Architecture of GANs,2017 +116,MORPH Non-Commercial,morph_nc,32.0565957,118.77408833,Nanjing University,edu,0e2d956790d3b8ab18cee8df6c949504ee78ad42,citation,https://doi.org/10.1109/IVCNZ.2013.6727024,Scalable face image retrieval integrating multi-feature quantization and constrained reference re-ranking,2013 +117,MORPH Non-Commercial,morph_nc,40.0044795,116.370238,Chinese Academy of Sciences,edu,2a7e6a1b2638550370a47f2f6f6e38e76fe9ac13,citation,http://doi.acm.org/10.1145/3090311,Multifeature Anisotropic Orthogonal Gaussian Process for Automatic Age Estimation,2017 +118,MORPH Non-Commercial,morph_nc,-33.88890695,151.18943366,University of Sydney,edu,2a7e6a1b2638550370a47f2f6f6e38e76fe9ac13,citation,http://doi.acm.org/10.1145/3090311,Multifeature Anisotropic Orthogonal Gaussian Process for Automatic Age Estimation,2017 +119,MORPH Non-Commercial,morph_nc,51.2975344,1.07296165,University of Kent,edu,2336de3a81dada63eb00ea82f7570c4069342fb5,citation,http://doi.acm.org/10.1145/2361407.2361428,A methodological framework for investigating age factors on the performance of biometric systems,2012 +120,MORPH Non-Commercial,morph_nc,39.2899685,-76.62196103,University of Maryland,edu,93420d9212dd15b3ef37f566e4d57e76bb2fab2f,citation,https://arxiv.org/pdf/1611.00851.pdf,An All-In-One Convolutional Neural Network for Face Analysis,2017 +121,MORPH Non-Commercial,morph_nc,39.95472495,-75.15346905,Temple University,edu,019e471667c72b5b3728b4a9ba9fe301a7426fb2,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/2A_012.pdf,Cross-age face verification by coordinating with cross-face age verification,2015 +122,MORPH Non-Commercial,morph_nc,45.57022705,-122.63709346,Concordia University,edu,c418a3441f992fea523926f837f4bfb742548c16,citation,http://pdfs.semanticscholar.org/c418/a3441f992fea523926f837f4bfb742548c16.pdf,A Computer Approach for Face Aging Problems,2010 +123,MORPH Non-Commercial,morph_nc,22.42031295,114.20788644,Chinese University of Hong Kong,edu,d80a3d1f3a438e02a6685e66ee908446766fefa9,citation,https://arxiv.org/pdf/1708.09687.pdf,Quantifying Facial Age by Posterior of Age Comparisons,2017 +124,MORPH Non-Commercial,morph_nc,34.67567405,33.04577648,Cyprus University of Technology,edu,ebbceab4e15bf641f74e335b70c6c4490a043961,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4813349,Evaluating the performance of face-aging algorithms,2008 +125,MORPH Non-Commercial,morph_nc,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,d84a48f7d242d73b32a9286f9b148f5575acf227,citation,http://pdfs.semanticscholar.org/d84a/48f7d242d73b32a9286f9b148f5575acf227.pdf,Global and Local Consistent Age Generative Adversarial Networks,2018 +126,MORPH Non-Commercial,morph_nc,12.9551259,77.5741985,Bangalore Institute of Technology,edu,8f5facdc0a2a79283864aad03edc702e2a400346,citation,http://pdfs.semanticscholar.org/8f5f/acdc0a2a79283864aad03edc702e2a400346.pdf,Estimation Framework using Bio - Inspired Features for Facial Image,0 +127,MORPH Non-Commercial,morph_nc,42.718568,-84.47791571,Michigan State University,edu,08f6ad0a3e75b715852f825d12b6f28883f5ca05,citation,http://www.cse.msu.edu/biometrics/Publications/Face/JainKlarePark_FaceRecognition_ChallengesinForensics_FG11.pdf,Face recognition: Some challenges in forensics,2011 +128,MORPH Non-Commercial,morph_nc,41.10427915,29.02231159,Istanbul Technical University,edu,2050847bc7a1a0453891f03aeeb4643e360fde7d,citation,https://cvhci.anthropomatik.kit.edu/~mtapaswi/papers/ICMR2015.pdf,Accio: A Data Set for Face Track Retrieval in Movies Across Age,2015 +129,MORPH Non-Commercial,morph_nc,49.10184375,8.4331256,Karlsruhe Institute of Technology,edu,2050847bc7a1a0453891f03aeeb4643e360fde7d,citation,https://cvhci.anthropomatik.kit.edu/~mtapaswi/papers/ICMR2015.pdf,Accio: A Data Set for Face Track Retrieval in Movies Across Age,2015 +130,MORPH Non-Commercial,morph_nc,40.62984145,22.9588935,Aristotle University of Thessaloniki,edu,3cc46bf79fb9225cf308815c7d41c8dd5625cc29,citation,http://poseidon.csd.auth.gr/papers/PUBLISHED/CONFERENCE/pdf/2016/Pantraki2016.pdf,Age interval and gender prediction using PARAFAC2 applied to speech utterances,2016 +131,MORPH Non-Commercial,morph_nc,34.67567405,33.04577648,Cyprus University of Technology,edu,3cc46bf79fb9225cf308815c7d41c8dd5625cc29,citation,http://poseidon.csd.auth.gr/papers/PUBLISHED/CONFERENCE/pdf/2016/Pantraki2016.pdf,Age interval and gender prediction using PARAFAC2 applied to speech utterances,2016 +132,MORPH Non-Commercial,morph_nc,23.09461185,113.28788994,Sun Yat-Sen University,edu,189e5a2fa51ed471c0e7227d82dffb52736070d8,citation,https://doi.org/10.1109/ICIP.2017.8296995,Cross-age face recognition using reference coding with kernel direct discriminant analysis,2017 +133,MORPH Non-Commercial,morph_nc,42.357757,-83.06286711,Wayne State University,edu,4f1249369127cc2e2894f6b2f1052d399794919a,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8239663,Deep Age Estimation: From Classification to Ranking,2018 +134,MORPH Non-Commercial,morph_nc,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,cd6aaa37fffd0b5c2320f386be322b8adaa1cc68,citation,https://arxiv.org/pdf/1804.06655.pdf,Deep Face Recognition: A Survey,2018 +135,MORPH Non-Commercial,morph_nc,52.3553655,4.9501644,University of Amsterdam,edu,14014a1bdeb5d63563b68b52593e3ac1e3ce7312,citation,http://pdfs.semanticscholar.org/1401/4a1bdeb5d63563b68b52593e3ac1e3ce7312.pdf,Expression-Invariant Age Estimation,2014 +136,MORPH Non-Commercial,morph_nc,31.83907195,117.26420748,University of Science and Technology of China,edu,659dc6aa517645a118b79f0f0273e46ab7b53cd9,citation,https://doi.org/10.1109/ACPR.2015.7486608,Age-invariant face recognition using a feature progressing model,2015 +137,MORPH Non-Commercial,morph_nc,30.0818727,31.24454841,Benha University,edu,a9fc23d612e848250d5b675e064dba98f05ad0d9,citation,http://pdfs.semanticscholar.org/a9fc/23d612e848250d5b675e064dba98f05ad0d9.pdf,Face Age Estimation Approach based on Deep Learning and Principle Component Analysis,2018 +138,MORPH Non-Commercial,morph_nc,31.51368535,34.44019341,"Islamic University of Gaza, Palestine",edu,d5fa9d98c8da54a57abf353767a927d662b7f026,citation,http://pdfs.semanticscholar.org/f15e/9712b8731e1f5fd9566aca513edda910b5b8.pdf,Age Estimation based on Neural Networks using Face Features,2010 +139,MORPH Non-Commercial,morph_nc,32.0575279,118.78682252,Southeast University,edu,8ff8c64288a2f7e4e8bf8fda865820b04ab3dbe8,citation,https://pdfs.semanticscholar.org/0056/92b9fa6728df3a7f14578c43410867bba425.pdf,Age Estimation Using Expectation of Label Distribution Learning,2018 +140,MORPH Non-Commercial,morph_nc,32.0565957,118.77408833,Nanjing University,edu,8ff8c64288a2f7e4e8bf8fda865820b04ab3dbe8,citation,https://pdfs.semanticscholar.org/0056/92b9fa6728df3a7f14578c43410867bba425.pdf,Age Estimation Using Expectation of Label Distribution Learning,2018 +141,MORPH Non-Commercial,morph_nc,34.0224149,-118.28634407,University of Southern California,edu,eb6ee56e085ebf473da990d032a4249437a3e462,citation,http://www-scf.usc.edu/~chuntinh/doc/Age_Gender_Classification_APSIPA_2017.pdf,Age/gender classification with whole-component convolutional neural networks (WC-CNN),2017 +142,MORPH Non-Commercial,morph_nc,42.718568,-84.47791571,Michigan State University,edu,e506cdb250eba5e70c5147eb477fbd069714765b,citation,https://pdfs.semanticscholar.org/e506/cdb250eba5e70c5147eb477fbd069714765b.pdf,Heterogeneous Face Recognition,2012 +143,MORPH Non-Commercial,morph_nc,35.90503535,-79.04775327,University of North Carolina,edu,f374ac9307be5f25145b44931f5a53b388a77e49,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5339060,Improvements in Active Appearance Model based synthetic age progression for adult aging,2009 +144,MORPH Non-Commercial,morph_nc,38.83133325,-77.30798839,George Mason University,edu,62750d78e819d745b9200b0c5c35fcae6fb9f404,citation,http://doi.org/10.1007/s11042-016-4085-8,Leveraging implicit demographic information for face recognition using a multi-expert system,2016 +145,MORPH Non-Commercial,morph_nc,41.9037626,12.5144384,Sapienza University of Rome,edu,62750d78e819d745b9200b0c5c35fcae6fb9f404,citation,http://doi.org/10.1007/s11042-016-4085-8,Leveraging implicit demographic information for face recognition using a multi-expert system,2016 +146,MORPH Non-Commercial,morph_nc,40.845492,14.2578058,University of Naples Federico II,edu,62750d78e819d745b9200b0c5c35fcae6fb9f404,citation,http://doi.org/10.1007/s11042-016-4085-8,Leveraging implicit demographic information for face recognition using a multi-expert system,2016 +147,MORPH Non-Commercial,morph_nc,25.01353105,121.54173736,National Taiwan University of Science and Technology,edu,e4c3587392d477b7594086c6f28a00a826abf004,citation,https://doi.org/10.1109/ICIP.2017.8296998,Face recognition by facial attribute assisted network,2017 +148,MORPH Non-Commercial,morph_nc,39.9922379,116.30393816,Peking University,edu,c4ca092972abb74ee1c20b7cae6e69c654479e2c,citation,https://doi.org/10.1109/ICIP.2016.7532960,Linear canonical correlation analysis based ranking approach for facial age estimation,2016 +149,MORPH Non-Commercial,morph_nc,40.0044795,116.370238,Chinese Academy of Sciences,edu,575141e42740564f64d9be8ab88d495192f5b3bc,citation,http://pdfs.semanticscholar.org/5751/41e42740564f64d9be8ab88d495192f5b3bc.pdf,Age Estimation Based on Multi-Region Convolutional Neural Network,2016 +150,MORPH Non-Commercial,morph_nc,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,575141e42740564f64d9be8ab88d495192f5b3bc,citation,http://pdfs.semanticscholar.org/5751/41e42740564f64d9be8ab88d495192f5b3bc.pdf,Age Estimation Based on Multi-Region Convolutional Neural Network,2016 +151,MORPH Non-Commercial,morph_nc,56.66340325,12.87929727,Halmstad University,edu,555f75077a02f33a05841f9b63a1388ec5fbcba5,citation,https://arxiv.org/pdf/1810.03360.pdf,A Survey on Periocular Biometrics Research,2016 +152,MORPH Non-Commercial,morph_nc,39.94976005,116.33629046,Beijing Jiaotong University,edu,0821028073981f9bd2dba2ad2557b25403fe7d7d,citation,http://doi.acm.org/10.1145/2733373.2806318,Facial Age Estimation Based on Structured Low-rank Representation,2015 +153,MORPH Non-Commercial,morph_nc,46.109237,7.08453549,IDIAP Research Institute,edu,939123cf21dc9189a03671484c734091b240183e,citation,http://publications.idiap.ch/downloads/papers/2015/Erdogmus_MMSP_2015.pdf,Within- and cross- database evaluations for face gender classification via befit protocols,2014 +154,MORPH Non-Commercial,morph_nc,36.689487,2.981877,"Center for Development of Advanced Technologies, Algeria",edu,4551194408383b12db19a22cca5db0f185cced5c,citation,https://doi.org/10.1109/TNNLS.2014.2341634,Nonlinear Topological Component Analysis: Application to Age-Invariant Face Recognition,2015 +155,MORPH Non-Commercial,morph_nc,56.45796755,-2.98214831,University of Dundee,edu,8b10383ef569ea0029a2c4a60cc2d8c87391b4db,citation,http://pdfs.semanticscholar.org/fe2d/20dca6dcedc7944cc2d9fea76de6cbb9d90c.pdf,Age classification using Radon transform and entropy based scaling SVM,2011 +156,MORPH Non-Commercial,morph_nc,40.0044795,116.370238,Chinese Academy of Sciences,edu,d37ca68742b2999667faf464f78d2fbf81e0cb07,citation,https://doi.org/10.1007/978-3-319-25417-3_76,DFDnet: Discriminant Face Descriptor Network for Facial Age Estimation,2015 +157,MORPH Non-Commercial,morph_nc,-35.2776999,149.118527,Australian National University,edu,a7191958e806fce2505a057196ccb01ea763b6ea,citation,http://pdfs.semanticscholar.org/a719/1958e806fce2505a057196ccb01ea763b6ea.pdf,Convolutional Neural Network based Age Estimation from Facial Image and Depth Prediction from Single Image,2016 +158,MORPH Non-Commercial,morph_nc,35.907757,127.766922,"Electronics and Telecommunications Research Institute, Korea",edu,abbc6dcbd032ff80e0535850f1bc27c4610b0d45,citation,https://doi.org/10.1109/ICIP.2015.7350983,Facial age estimation via extended curvature Gabor filter,2015 +159,MORPH Non-Commercial,morph_nc,36.3697191,127.362537,Korea Advanced Institute of Science and Technology,edu,abbc6dcbd032ff80e0535850f1bc27c4610b0d45,citation,https://doi.org/10.1109/ICIP.2015.7350983,Facial age estimation via extended curvature Gabor filter,2015 +160,MORPH Non-Commercial,morph_nc,1.2962018,103.77689944,National University of Singapore,edu,989332c5f1b22604d6bb1f78e606cb6b1f694e1a,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Wang_Recurrent_Face_Aging_CVPR_2016_paper.pdf,Recurrent Face Aging,2016 +161,MORPH Non-Commercial,morph_nc,32.0575279,118.78682252,Southeast University,edu,989332c5f1b22604d6bb1f78e606cb6b1f694e1a,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Wang_Recurrent_Face_Aging_CVPR_2016_paper.pdf,Recurrent Face Aging,2016 +162,MORPH Non-Commercial,morph_nc,46.0658836,11.1159894,University of Trento,edu,989332c5f1b22604d6bb1f78e606cb6b1f694e1a,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Wang_Recurrent_Face_Aging_CVPR_2016_paper.pdf,Recurrent Face Aging,2016 +163,MORPH Non-Commercial,morph_nc,40.62984145,22.9588935,Aristotle University of Thessaloniki,edu,1fd3dbb6e910708fa85c8a86e17ba0b6fef5617c,citation,http://pdfs.semanticscholar.org/1fd3/dbb6e910708fa85c8a86e17ba0b6fef5617c.pdf,Age interval and gender prediction using PARAFAC2 on speech recordings and face images,2016 +164,MORPH Non-Commercial,morph_nc,40.00229045,116.32098908,Tsinghua University,edu,6c6f0e806e4e286f3b18b934f42c72b67030ce17,citation,https://doi.org/10.1109/FG.2011.5771345,Combination of age and head pose for adult face verification,2011 +165,MORPH Non-Commercial,morph_nc,46.5190557,6.5667576,"Swiss Federal, Institute of Technology, Lausanne",edu,6c6f0e806e4e286f3b18b934f42c72b67030ce17,citation,https://doi.org/10.1109/FG.2011.5771345,Combination of age and head pose for adult face verification,2011 +166,MORPH Non-Commercial,morph_nc,52.6221571,1.2409136,University of East Anglia,edu,05a0d04693b2a51a8131d195c68ad9f5818b2ce1,citation,http://pdfs.semanticscholar.org/05a0/d04693b2a51a8131d195c68ad9f5818b2ce1.pdf,Dual-reference Face Retrieval: What Does He/She Look Like at Age 'X'?,2017 +167,MORPH Non-Commercial,morph_nc,40.44415295,-79.96243993,University of Pittsburgh,edu,05a0d04693b2a51a8131d195c68ad9f5818b2ce1,citation,http://pdfs.semanticscholar.org/05a0/d04693b2a51a8131d195c68ad9f5818b2ce1.pdf,Dual-reference Face Retrieval: What Does He/She Look Like at Age 'X'?,2017 +168,MORPH Non-Commercial,morph_nc,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,387b54cf6c186c12d83f95df6bd458c5eb1254ee,citation,https://doi.org/10.1109/VCIP.2017.8305123,Deep probabilities for age estimation,2017 +169,MORPH Non-Commercial,morph_nc,35.97320905,-78.89755054,North Carolina Central University,edu,1ca1b4f787712ede215030d22a0eea41534a601e,citation,https://doi.org/10.1109/CVPRW.2010.5543609,Human age estimation: What is the influence across race and gender?,2010 +170,MORPH Non-Commercial,morph_nc,39.65404635,-79.96475355,West Virginia University,edu,1ca1b4f787712ede215030d22a0eea41534a601e,citation,https://doi.org/10.1109/CVPRW.2010.5543609,Human age estimation: What is the influence across race and gender?,2010 +171,MORPH Non-Commercial,morph_nc,1.3484104,103.68297965,Nanyang Technological University,edu,b6a23f72007cb40223d7e1e1cc47e466716de945,citation,https://doi.org/10.1109/CVPRW.2010.5544598,Ordinary preserving manifold analysis for human age estimation,2010 +172,MORPH Non-Commercial,morph_nc,60.7897318,10.6821927,"Norwegian Biometrics Lab, NTNU, Norway",edu,0647c9d56cf11215894d57d677997826b22f6a13,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8401557,Transgender face recognition with off-the-shelf pre-trained CNNs: A comprehensive study,2018 +173,MORPH Non-Commercial,morph_nc,52.3553655,4.9501644,University of Amsterdam,edu,935a7793cbb8f102924fa34fce1049727de865c2,citation,https://doi.org/10.1109/ICIP.2015.7351554,Age estimation under changes in image quality: An experimental study,2015 +174,MORPH Non-Commercial,morph_nc,40.01407945,-105.26695944,"University of Colorado, Boulder",edu,4aabd6db4594212019c9af89b3e66f39f3108aac,citation,http://pdfs.semanticscholar.org/4aab/d6db4594212019c9af89b3e66f39f3108aac.pdf,The Mere Exposure Effect and Classical Conditioning,2015 +175,MORPH Non-Commercial,morph_nc,34.2375581,-77.9270129,University of North Carolina Wilmington,edu,73d15a975b0595e0cc2e0981a9396a89c474dc7e,citation,https://arxiv.org/pdf/1811.03680.pdf,Gender Effect on Face Recognition for a Large Longitudinal Database,2018 +176,MORPH Non-Commercial,morph_nc,40.00229045,116.32098908,Tsinghua University,edu,51bb86dc8748088a198b216f7e97616634147388,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6890496,Face age estimation by using Bisection Search Tree,2013 +177,MORPH Non-Commercial,morph_nc,1.3037257,103.7737763,"Advanced Digital Sciences Center, Singapore",edu,8cffe360a05085d4bcba111a3a3cd113d96c0369,citation,http://doi.ieeecomputersociety.org/10.1109/ICCV.2011.6126248,Learning universal multi-view age estimator using video context,2011 +178,MORPH Non-Commercial,morph_nc,1.3170417,103.8321041,"Facebook, Singapore",company,8cffe360a05085d4bcba111a3a3cd113d96c0369,citation,http://doi.ieeecomputersociety.org/10.1109/ICCV.2011.6126248,Learning universal multi-view age estimator using video context,2011 +179,MORPH Non-Commercial,morph_nc,1.2962018,103.77689944,National University of Singapore,edu,8cffe360a05085d4bcba111a3a3cd113d96c0369,citation,http://doi.ieeecomputersociety.org/10.1109/ICCV.2011.6126248,Learning universal multi-view age estimator using video context,2011 +180,MORPH Non-Commercial,morph_nc,23.143197,113.34009651,South China Normal University,edu,dc6ad30c7a4bc79bb06b4725b16e202d3d7d8935,citation,http://doi.org/10.1007/s11042-017-4646-5,Age classification with deep learning face representation,2017 +181,MORPH Non-Commercial,morph_nc,23.0502042,113.39880323,South China University of Technology,edu,dc6ad30c7a4bc79bb06b4725b16e202d3d7d8935,citation,http://doi.org/10.1007/s11042-017-4646-5,Age classification with deep learning face representation,2017 +182,MORPH Non-Commercial,morph_nc,50.0764296,14.41802312,Czech Technical University,edu,023ed32ac3ea6029f09b8c582efbe3866de7d00a,citation,http://pdfs.semanticscholar.org/023e/d32ac3ea6029f09b8c582efbe3866de7d00a.pdf,Discriminative learning from partially annotated examples,2016 +183,MORPH Non-Commercial,morph_nc,35.5167538,139.48342251,Tokyo Institute of Technology,edu,435dc062d565ce87c6c20a5f49430eb9a4b573c4,citation,http://pdfs.semanticscholar.org/435d/c062d565ce87c6c20a5f49430eb9a4b573c4.pdf,Lighting Condition Adaptation for Perceived Age Estimation,2011 +184,MORPH Non-Commercial,morph_nc,42.718568,-84.47791571,Michigan State University,edu,6a5d7d20a8c4993d56bcf702c772aa3f95f99450,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4813408,Face recognition with temporal invariance: A 3D aging model,2008 +185,MORPH Non-Commercial,morph_nc,35.97320905,-78.89755054,North Carolina Central University,edu,2a6783ae51d7ee781d584ef9a3eb8ab1997d0489,citation,https://doi.org/10.1109/CVPRW.2010.5543608,A study of large-scale ethnicity estimation with gender and age variations,2010 +186,MORPH Non-Commercial,morph_nc,39.65404635,-79.96475355,West Virginia University,edu,2a6783ae51d7ee781d584ef9a3eb8ab1997d0489,citation,https://doi.org/10.1109/CVPRW.2010.5543608,A study of large-scale ethnicity estimation with gender and age variations,2010 +187,MORPH Non-Commercial,morph_nc,40.00229045,116.32098908,Tsinghua University,edu,a53d13b9110cddb2a5f38b9d7ed69d328e3c6db9,citation,https://doi.org/10.1109/TIP.2015.2481327,Cost-Sensitive Local Binary Feature Learning for Facial Age Estimation,2015 +188,MORPH Non-Commercial,morph_nc,1.3484104,103.68297965,Nanyang Technological University,edu,a53d13b9110cddb2a5f38b9d7ed69d328e3c6db9,citation,https://doi.org/10.1109/TIP.2015.2481327,Cost-Sensitive Local Binary Feature Learning for Facial Age Estimation,2015 +189,MORPH Non-Commercial,morph_nc,42.718568,-84.47791571,Michigan State University,edu,141cb9ee401f223220d3468592effa90f0c255fa,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7815403,Longitudinal Study of Automatic Face Recognition,2015 +190,MORPH Non-Commercial,morph_nc,42.718568,-84.47791571,Michigan State University,edu,e22adcd2a6a7544f017ec875ce8f89d5c59e09c8,citation,https://arxiv.org/pdf/1807.11936.pdf,Gender Privacy: An Ensemble of Semi Adversarial Networks for Confounding Arbitrary Gender Classifiers,2018 +191,MORPH Non-Commercial,morph_nc,25.01682835,121.53846924,National Taiwan University,edu,6ab33fa51467595f18a7a22f1d356323876f8262,citation,http://www.iis.sinica.edu.tw/~kuangyu/OHRank_files/0523.pdf,Ordinal hyperplanes ranker with cost sensitivities for age estimation,2011 +192,MORPH Non-Commercial,morph_nc,25.0410728,121.6147562,Institute of Information Science,edu,6ab33fa51467595f18a7a22f1d356323876f8262,citation,http://www.iis.sinica.edu.tw/~kuangyu/OHRank_files/0523.pdf,Ordinal hyperplanes ranker with cost sensitivities for age estimation,2011 +193,MORPH Non-Commercial,morph_nc,25.0411727,121.6146518,"Academia Sinica, Taiwan",edu,6ab33fa51467595f18a7a22f1d356323876f8262,citation,http://www.iis.sinica.edu.tw/~kuangyu/OHRank_files/0523.pdf,Ordinal hyperplanes ranker with cost sensitivities for age estimation,2011 +194,MORPH Non-Commercial,morph_nc,1.2962018,103.77689944,National University of Singapore,edu,63488398f397b55552f484409b86d812dacde99a,citation,http://pdfs.semanticscholar.org/6348/8398f397b55552f484409b86d812dacde99a.pdf,Learning Universal Multi-view Age Estimator by Video Contexts,2011 +195,MORPH Non-Commercial,morph_nc,40.00229045,116.32098908,Tsinghua University,edu,6adecb82edbf84a0097ff623428f4f1936e31de0,citation,https://doi.org/10.1007/s11760-011-0246-4,Client-specific A-stack model for adult face verification across aging,2011 +196,MORPH Non-Commercial,morph_nc,1.3037257,103.7737763,"Advanced Digital Sciences Center, Singapore",edu,fcb97ede372c5bddde7a61924ac2fd29788c82ce,citation,https://doi.org/10.1109/TSMCC.2012.2192727,Ordinary Preserving Manifold Analysis for Human Age and Head Pose Estimation,2013 +197,MORPH Non-Commercial,morph_nc,1.3484104,103.68297965,Nanyang Technological University,edu,fcb97ede372c5bddde7a61924ac2fd29788c82ce,citation,https://doi.org/10.1109/TSMCC.2012.2192727,Ordinary Preserving Manifold Analysis for Human Age and Head Pose Estimation,2013 +198,MORPH Non-Commercial,morph_nc,36.3697191,127.362537,Korea Advanced Institute of Science and Technology,edu,cb27b45329d61f5f95ed213798d4b2a615e76be2,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8329236,Deep Facial Age Estimation Using Conditional Multitask Learning With Weak Label Expansion,2018 +199,MORPH Non-Commercial,morph_nc,37.2520226,127.0555019,"Samsung SAIT, Korea",company,cb27b45329d61f5f95ed213798d4b2a615e76be2,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8329236,Deep Facial Age Estimation Using Conditional Multitask Learning With Weak Label Expansion,2018 +200,MORPH Non-Commercial,morph_nc,35.14479945,33.90492318,Eastern Mediterranean University,edu,c5421a18583f629b49ca20577022f201692c4f5d,citation,http://pdfs.semanticscholar.org/c542/1a18583f629b49ca20577022f201692c4f5d.pdf,Facial Age Classification using Subpattern-based Approaches,2011 +201,MORPH Non-Commercial,morph_nc,40.0044795,116.370238,Chinese Academy of Sciences,edu,68c4a1d438ea1c6dfba92e3aee08d48f8e7f7090,citation,http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w11/papers/Liu_AgeNet_Deeply_Learned_ICCV_2015_paper.pdf,AgeNet: Deeply Learned Regressor and Classifier for Robust Apparent Age Estimation,2015 +202,MORPH Non-Commercial,morph_nc,31.32235655,121.38400941,Shanghai University,edu,5f0d4a0b5f72d8700cdf8cb179263a8fa866b59b,citation,https://pdfs.semanticscholar.org/5f0d/4a0b5f72d8700cdf8cb179263a8fa866b59b.pdf,Memo No . 85 06 / 2018 Deep Regression Forests for Age Estimation,2018 +203,MORPH Non-Commercial,morph_nc,24.96841805,121.19139696,National Central University,edu,c58ece1a3fa23608f022e424ec5a93cddda31308,citation,https://doi.org/10.1109/JSYST.2014.2325957,Extraction of Visual Facial Features for Health Management,2016 +204,MORPH Non-Commercial,morph_nc,50.0764296,14.41802312,Czech Technical University,edu,56e25358ebfaf8a8b3c7c33ed007e24f026065d0,citation,https://doi.org/10.1007/s10994-015-5541-9,V-shaped interval insensitive loss for ordinal classification,2015 +205,MORPH Non-Commercial,morph_nc,5.7648848,102.6281702,"University Sultan Zainal Abidin, Malaysia",edu,3337cfc3de2c16dee6f7cbeda5f263409a9ad81e,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8398675,Age prediction on face features via multiple classifiers,2018 +206,MORPH Non-Commercial,morph_nc,1.2962018,103.77689944,National University of Singapore,edu,2836d68c86f29bb87537ea6066d508fde838ad71,citation,http://arxiv.org/pdf/1510.06503v1.pdf,Personalized Age Progression with Aging Dictionary,2015 +207,MORPH Non-Commercial,morph_nc,32.0565957,118.77408833,Nanjing University,edu,2836d68c86f29bb87537ea6066d508fde838ad71,citation,http://arxiv.org/pdf/1510.06503v1.pdf,Personalized Age Progression with Aging Dictionary,2015 +208,MORPH Non-Commercial,morph_nc,22.42031295,114.20788644,Chinese University of Hong Kong,edu,55966926e7c28b1eee1c7eb7a0b11b10605a1af0,citation,http://pdfs.semanticscholar.org/baa8/bdeb5aa545af5b5f43efaf9dda08490da0bc.pdf,Surpassing Human-Level Face Verification Performance on LFW with GaussianFace,2015 +209,MORPH Non-Commercial,morph_nc,40.0044795,116.370238,Chinese Academy of Sciences,edu,d492dbfaa42b4f8b8a74786d7343b3be6a3e9a1d,citation,https://pdfs.semanticscholar.org/d492/dbfaa42b4f8b8a74786d7343b3be6a3e9a1d.pdf,Deep Cost-Sensitive and Order-Preserving Feature Learning for Cross-Population Age Estimation,0 +210,MORPH Non-Commercial,morph_nc,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,d492dbfaa42b4f8b8a74786d7343b3be6a3e9a1d,citation,https://pdfs.semanticscholar.org/d492/dbfaa42b4f8b8a74786d7343b3be6a3e9a1d.pdf,Deep Cost-Sensitive and Order-Preserving Feature Learning for Cross-Population Age Estimation,0 +211,MORPH Non-Commercial,morph_nc,34.67567405,33.04577648,Cyprus University of Technology,edu,fa518a033b1f6299d1826389bd1520cf52291b56,citation,https://pdfs.semanticscholar.org/fa51/8a033b1f6299d1826389bd1520cf52291b56.pdf,Facial Age Simulation using Age-specific 3D Models and Recursive PCA,2013 +212,MORPH Non-Commercial,morph_nc,38.83133325,-77.30798839,George Mason University,edu,1c147261f5ab1b8ee0a54021a3168fa191096df8,citation,http://pdfs.semanticscholar.org/1c14/7261f5ab1b8ee0a54021a3168fa191096df8.pdf,Face Recognition across Time Lapse Using Convolutional Neural Networks,2016 +213,MORPH Non-Commercial,morph_nc,32.05765485,118.7550004,HoHai University,edu,b84b7b035c574727e4c30889e973423fe15560d7,citation,http://pdfs.semanticscholar.org/b84b/7b035c574727e4c30889e973423fe15560d7.pdf,Human Age Estimation Using Ranking SVM,2012 +214,MORPH Non-Commercial,morph_nc,40.0044795,116.370238,Chinese Academy of Sciences,edu,b84b7b035c574727e4c30889e973423fe15560d7,citation,http://pdfs.semanticscholar.org/b84b/7b035c574727e4c30889e973423fe15560d7.pdf,Human Age Estimation Using Ranking SVM,2012 +215,MORPH Non-Commercial,morph_nc,39.6810328,-75.7540184,University of Delaware,edu,19da9f3532c2e525bf92668198b8afec14f9efea,citation,http://pdfs.semanticscholar.org/19da/9f3532c2e525bf92668198b8afec14f9efea.pdf,Challenge: Face verification across age progression using real-world data,2011 +216,MORPH Non-Commercial,morph_nc,39.95472495,-75.15346905,Temple University,edu,f24e379e942e134d41c4acec444ecf02b9d0d3a9,citation,http://pdfs.semanticscholar.org/f24e/379e942e134d41c4acec444ecf02b9d0d3a9.pdf,Analysis of Facial Images across Age Progression by Humans,2011 +217,MORPH Non-Commercial,morph_nc,39.65404635,-79.96475355,West Virginia University,edu,f24e379e942e134d41c4acec444ecf02b9d0d3a9,citation,http://pdfs.semanticscholar.org/f24e/379e942e134d41c4acec444ecf02b9d0d3a9.pdf,Analysis of Facial Images across Age Progression by Humans,2011 +218,MORPH Non-Commercial,morph_nc,40.00229045,116.32098908,Tsinghua University,edu,51f626540860ad75b68206025a45466a6d087aa6,citation,https://doi.org/10.1109/ICIP.2017.8296595,Cluster convolutional neural networks for facial age estimation,2017 +219,MORPH Non-Commercial,morph_nc,37.4102193,-122.05965487,Carnegie Mellon University,edu,452ea180cf4d08d7500fc4bc046fd7141fd3d112,citation,https://doi.org/10.1109/BTAS.2012.6374569,A robust approach to facial ethnicity classification on large scale face databases,2012 +220,MORPH Non-Commercial,morph_nc,47.3764534,8.54770931,ETH Zürich,edu,2facf3e85240042a02f289a0d40fee376c478d0f,citation,https://doi.org/10.1109/BTAS.2010.5634544,Aging face verification in score-age space using single reference image template,2010 +221,MORPH Non-Commercial,morph_nc,38.88140235,121.52281098,Dalian University of Technology,edu,ed70d1a9435c0b32c0c75c1a062f4f07556f7016,citation,https://doi.org/10.1109/ICIP.2015.7350774,Correlated warped Gaussian processes for gender-specific age estimation,2015 +222,MORPH Non-Commercial,morph_nc,40.0141905,-83.0309143,University of Electronic Science and Technology of China,edu,ed70d1a9435c0b32c0c75c1a062f4f07556f7016,citation,https://doi.org/10.1109/ICIP.2015.7350774,Correlated warped Gaussian processes for gender-specific age estimation,2015 +223,MORPH Non-Commercial,morph_nc,1.2962018,103.77689944,National University of Singapore,edu,0e5557a0cc58194ad53fab5dd6f4d4195d19ce4e,citation,https://doi.org/10.1109/TMM.2015.2500730,Deep Aging Face Verification With Large Gaps,2016 +224,MORPH Non-Commercial,morph_nc,51.52344665,-0.25973535,"North Acton, London",edu,0e5557a0cc58194ad53fab5dd6f4d4195d19ce4e,citation,https://doi.org/10.1109/TMM.2015.2500730,Deep Aging Face Verification With Large Gaps,2016 +225,MORPH Non-Commercial,morph_nc,31.846918,117.29053367,Hefei University of Technology,edu,0e5557a0cc58194ad53fab5dd6f4d4195d19ce4e,citation,https://doi.org/10.1109/TMM.2015.2500730,Deep Aging Face Verification With Large Gaps,2016 +226,MORPH Non-Commercial,morph_nc,29.58333105,-98.61944505,University of Texas at San Antonio,edu,f2896dd2701fbb3564492a12c64f11a5ad456a67,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5495414,Cross-database age estimation based on transfer learning,2010 +227,MORPH Non-Commercial,morph_nc,34.1235825,108.83546,Xidian University,edu,f2896dd2701fbb3564492a12c64f11a5ad456a67,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5495414,Cross-database age estimation based on transfer learning,2010 +228,MORPH Non-Commercial,morph_nc,56.66340325,12.87929727,Halmstad University,edu,9cda3e56cec21bd8f91f7acfcefc04ac10973966,citation,https://doi.org/10.1109/IWBF.2016.7449688,"Periocular biometrics: databases, algorithms and directions",2016 +229,MORPH Non-Commercial,morph_nc,34.2375581,-77.9270129,University of North Carolina Wilmington,edu,13aef395f426ca8bd93640c9c3f848398b189874,citation,https://pdfs.semanticscholar.org/13ae/f395f426ca8bd93640c9c3f848398b189874.pdf,1 Image Preprocessing and Complete 2 DPCA with Feature Extraction for Gender Recognition NSF REU 2017 : Statistical Learning and Data Mining,2017 +230,MORPH Non-Commercial,morph_nc,24.7925484,120.9951183,National Tsing Hua University,edu,cfa40560fa74b2fb5c26bdd6ea7c610ba5130e2f,citation,https://doi.org/10.1109/TIFS.2013.2286265,Subspace Learning for Facial Age Estimation Via Pairwise Age Ranking,2013 +231,MORPH Non-Commercial,morph_nc,58.38131405,26.72078081,University of Tartu,edu,1b248ed8e7c9514648cd598960fadf9ab17e7fe8,citation,https://pdfs.semanticscholar.org/1b24/8ed8e7c9514648cd598960fadf9ab17e7fe8.pdf,"From apparent to real age: gender, age, ethnic, makeup, and expression bias analysis in real age estimation",0 +232,MORPH Non-Commercial,morph_nc,41.3868913,2.16352385,University of Barcelona,edu,1b248ed8e7c9514648cd598960fadf9ab17e7fe8,citation,https://pdfs.semanticscholar.org/1b24/8ed8e7c9514648cd598960fadf9ab17e7fe8.pdf,"From apparent to real age: gender, age, ethnic, makeup, and expression bias analysis in real age estimation",0 +233,MORPH Non-Commercial,morph_nc,39.65404635,-79.96475355,West Virginia University,edu,86a8b3d0f753cb49ac3250fa14d277983e30a4b7,citation,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2013.75,Exploiting Unlabeled Ages for Aging Pattern Analysis on a Large Database,2013 +234,MORPH Non-Commercial,morph_nc,34.2239869,-77.8701325,"UNCW, USA",edu,2b5cb5466eecb131f06a8100dcaf0c7a0e30d391,citation,http://doi.acm.org/10.1145/1924559.1924608,A comparative study of active appearance model annotation schemes for the face,2010 +235,MORPH Non-Commercial,morph_nc,42.718568,-84.47791571,Michigan State University,edu,fc798314994bf94d1cde8d615ba4d5e61b6268b6,citation,http://pdfs.semanticscholar.org/fc79/8314994bf94d1cde8d615ba4d5e61b6268b6.pdf,"Face Recognition : face in video , age invariance , and facial marks",2009 +236,MORPH Non-Commercial,morph_nc,24.12084345,120.67571165,National Chung Hsing University,edu,635d2696aa597a278dd6563f079be06aa76a33c0,citation,https://doi.org/10.1109/ICIP.2016.7532429,Age estimation via fusion of multiple binary age grouping systems,2016 +237,MORPH Non-Commercial,morph_nc,25.01682835,121.53846924,National Taiwan University,edu,635d2696aa597a278dd6563f079be06aa76a33c0,citation,https://doi.org/10.1109/ICIP.2016.7532429,Age estimation via fusion of multiple binary age grouping systems,2016 +238,MORPH Non-Commercial,morph_nc,25.0411727,121.6146518,"Academia Sinica, Taiwan",edu,635d2696aa597a278dd6563f079be06aa76a33c0,citation,https://doi.org/10.1109/ICIP.2016.7532429,Age estimation via fusion of multiple binary age grouping systems,2016 +239,MORPH Non-Commercial,morph_nc,31.20081505,121.42840681,Shanghai Jiao Tong University,edu,36486944b4feeb88c0499fecd253c5a53034a23f,citation,https://doi.org/10.1109/CISP-BMEI.2017.8301986,Deep feature selection and projection for cross-age face retrieval,2017 +240,MORPH Non-Commercial,morph_nc,1.2988926,103.7873107,"Institute for Infocomm Research, Singapore",edu,85f7f03b79d03da5fae3a7f79d9aac228a635166,citation,https://doi.org/10.1109/WACV.2009.5403085,Age categorization via ECOC with fused gabor and LBP features,2009 +241,MORPH Non-Commercial,morph_nc,39.6810328,-75.7540184,University of Delaware,edu,aee3427d0814d8a398fd31f4f46941e9e5488d83,citation,http://dl.acm.org/citation.cfm?id=1924573,Face verification with aging using AdaBoost and local binary patterns,2010 +242,MORPH Non-Commercial,morph_nc,23.09461185,113.28788994,Sun Yat-Sen University,edu,d1b5b3e4b803dc4e50c5b80c1bc69c6d98751698,citation,https://doi.org/10.1109/LSP.2017.2661983,Modified Hidden Factor Analysis for Cross-Age Face Recognition,2017 +243,MORPH Non-Commercial,morph_nc,39.65404635,-79.96475355,West Virginia University,edu,55bc7abcef8266d76667896bbc652d081d00f797,citation,http://www.cse.msu.edu/~rossarun/pubs/ChenCosmeticsGenderAge_VISAPP2014.pdf,Impact of facial cosmetics on automatic gender and age estimation algorithms,2014 +244,MORPH Non-Commercial,morph_nc,42.718568,-84.47791571,Michigan State University,edu,55bc7abcef8266d76667896bbc652d081d00f797,citation,http://www.cse.msu.edu/~rossarun/pubs/ChenCosmeticsGenderAge_VISAPP2014.pdf,Impact of facial cosmetics on automatic gender and age estimation algorithms,2014 +245,MORPH Non-Commercial,morph_nc,39.65404635,-79.96475355,West Virginia University,edu,7a65fc9e78eff3ab6062707deaadde024d2fad40,citation,http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w11/papers/Zhu_A_Study_on_ICCV_2015_paper.pdf,A Study on Apparent Age Estimation,2015 +246,MORPH Non-Commercial,morph_nc,42.357757,-83.06286711,Wayne State University,edu,28d99dc2d673d62118658f8375b414e5192eac6f,citation,http://www.cs.wayne.edu/~mdong/cvpr17.pdf,Using Ranking-CNN for Age Estimation,2017 +247,MORPH Non-Commercial,morph_nc,37.4102193,-122.05965487,Carnegie Mellon University,edu,ec05078be14a11157ac0e1c6b430ac886124589b,citation,http://pdfs.semanticscholar.org/ec05/078be14a11157ac0e1c6b430ac886124589b.pdf,Longitudinal Face Aging in the Wild - Recent Deep Learning Approaches,2018 +248,MORPH Non-Commercial,morph_nc,45.57022705,-122.63709346,Concordia University,edu,ec05078be14a11157ac0e1c6b430ac886124589b,citation,http://pdfs.semanticscholar.org/ec05/078be14a11157ac0e1c6b430ac886124589b.pdf,Longitudinal Face Aging in the Wild - Recent Deep Learning Approaches,2018 +249,MORPH Non-Commercial,morph_nc,46.5190557,6.5667576,"Swiss Federal Institute of Technology Lausanne, Switzerland",edu,d7a84db2a1bf7b97657b0250f354f249394dd700,citation,https://doi.org/10.1109/ICIP.2010.5653518,Global and local feature based multi-classifier A-stack model for aging face identification,2010 +250,MORPH Non-Commercial,morph_nc,39.65404635,-79.96475355,West Virginia University,edu,d3c004125c71942846a9b32ae565c5216c068d1e,citation,http://pdfs.semanticscholar.org/d3c0/04125c71942846a9b32ae565c5216c068d1e.pdf,Recognizing Age-Separated Face Images: Humans and Machines,2014 +251,MORPH Non-Commercial,morph_nc,52.3553655,4.9501644,University of Amsterdam,edu,999289b0ef76c4c6daa16a4f42df056bf3d68377,citation,http://pdfs.semanticscholar.org/9992/89b0ef76c4c6daa16a4f42df056bf3d68377.pdf,The Role of Color and Contrast in Facial Age Estimation,2014 +252,MORPH Non-Commercial,morph_nc,51.99882735,4.37396037,Delft University of Technology,edu,999289b0ef76c4c6daa16a4f42df056bf3d68377,citation,http://pdfs.semanticscholar.org/9992/89b0ef76c4c6daa16a4f42df056bf3d68377.pdf,The Role of Color and Contrast in Facial Age Estimation,2014 +253,MORPH Non-Commercial,morph_nc,28.5456282,77.2731505,"IIIT Delhi, India",edu,f726738954e7055bb3615fa7e8f59f136d3e0bdc,citation,https://arxiv.org/pdf/1803.07385.pdf,Are you eligible? Predicting adulthood from face images via class specific mean autoencoder,2018 +254,MORPH Non-Commercial,morph_nc,1.2962018,103.77689944,National University of Singapore,edu,b9d68dbeb8e5fdc5984b49a317ea6798b378e5ae,citation,http://doi.acm.org/10.1145/2733373.2807962,What Shall I Look Like after N Years?,2015 +255,MORPH Non-Commercial,morph_nc,32.0565957,118.77408833,Nanjing University,edu,b9d68dbeb8e5fdc5984b49a317ea6798b378e5ae,citation,http://doi.acm.org/10.1145/2733373.2807962,What Shall I Look Like after N Years?,2015 +256,MORPH Non-Commercial,morph_nc,45.42580475,-75.68740118,University of Ottawa,edu,16820ccfb626dcdc893cc7735784aed9f63cbb70,citation,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W12/papers/Azarmehr_Real-Time_Embedded_Age_2015_CVPR_paper.pdf,Real-time embedded age and gender classification in unconstrained video,2015 +257,MORPH Non-Commercial,morph_nc,35.0274996,135.78154513,University of Caen,edu,0ad8149318912b5449085187eb3521786a37bc78,citation,http://arxiv.org/abs/1604.02975,CP-mtML: Coupled Projection Multi-Task Metric Learning for Large Scale Face Retrieval,2016 +258,MORPH Non-Commercial,morph_nc,51.44415765,7.26096541,Ruhr-University Bochum,edu,7e1ea2679a110241ed0dd38ff45cd4dfeb7a8e83,citation,http://pdfs.semanticscholar.org/7e1e/a2679a110241ed0dd38ff45cd4dfeb7a8e83.pdf,Extensions of Hierarchical Slow Feature Analysis for Efficient Classification and Regression on High-Dimensional Data,2017 +259,MORPH Non-Commercial,morph_nc,30.5097537,114.4062881,Huazhong University of Science and Technology,edu,2e27667421a7eeab278e0b761db4d2c725683c3f,citation,https://doi.org/10.1007/s11042-013-1815-z,Effective human age estimation using a two-stage approach based on Lie Algebrized Gaussians feature,2013 +260,MORPH Non-Commercial,morph_nc,32.0565957,118.77408833,Nanjing University,edu,0c741fa0966ba3ee4fc326e919bf2f9456d0cd74,citation,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2013.51,Facial Age Estimation by Learning from Label Distributions,2010 +261,MORPH Non-Commercial,morph_nc,32.0575279,118.78682252,Southeast University,edu,0c741fa0966ba3ee4fc326e919bf2f9456d0cd74,citation,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2013.51,Facial Age Estimation by Learning from Label Distributions,2010 +262,MORPH Non-Commercial,morph_nc,-37.78397455,144.95867433,Monash University,edu,0c741fa0966ba3ee4fc326e919bf2f9456d0cd74,citation,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2013.51,Facial Age Estimation by Learning from Label Distributions,2010 +263,MORPH Non-Commercial,morph_nc,1.2962018,103.77689944,National University of Singapore,edu,fca9ebaa30d69ccec8bb577c31693c936c869e72,citation,https://arxiv.org/pdf/1809.00338.pdf,Look Across Elapse: Disentangled Representation Learning and Photorealistic Cross-Age Face Synthesis for Age-Invariant Face Recognition,2018 +264,MORPH Non-Commercial,morph_nc,40.0044795,116.370238,Chinese Academy of Sciences,edu,fca9ebaa30d69ccec8bb577c31693c936c869e72,citation,https://arxiv.org/pdf/1809.00338.pdf,Look Across Elapse: Disentangled Representation Learning and Photorealistic Cross-Age Face Synthesis for Age-Invariant Face Recognition,2018 +265,MORPH Non-Commercial,morph_nc,49.10184375,8.4331256,Karlsruhe Institute of Technology,edu,cfdc4d0f8e1b4b9ced35317d12b4229f2e3311ab,citation,https://pdfs.semanticscholar.org/cfdc/4d0f8e1b4b9ced35317d12b4229f2e3311ab.pdf,Quaero at TRECVID 2010: Semantic Indexing,2010 +266,MORPH Non-Commercial,morph_nc,42.718568,-84.47791571,Michigan State University,edu,02d650d8a3a9daaba523433fbe93705df0a7f4b1,citation,http://pdfs.semanticscholar.org/02d6/50d8a3a9daaba523433fbe93705df0a7f4b1.pdf,How Does Aging Affect Facial Components?,2012 +267,MORPH Non-Commercial,morph_nc,34.67567405,33.04577648,Cyprus University of Technology,edu,70db3a0d2ca8a797153cc68506b8650908cb0ada,citation,http://pdfs.semanticscholar.org/70db/3a0d2ca8a797153cc68506b8650908cb0ada.pdf,An Overview of Research Activities in Facial Age Estimation Using the FG-NET Aging Database,2014 +268,MORPH Non-Commercial,morph_nc,22.5447154,113.9357164,Tencent,company,a2d1818eb461564a5153c74028e53856cf0b40fd,citation,https://arxiv.org/pdf/1810.07599.pdf,Orthogonal Deep Features Decomposition for Age-Invariant Face Recognition,2018 +269,MORPH Non-Commercial,morph_nc,57.6252103,39.8845656,Yaroslavl State University,edu,05318a267226f6d855d83e9338eaa9e718b2a8dd,citation,https://fruct.org/publications/fruct16/files/Khr.pdf,Age estimation from face images: challenging problem for audience measurement systems,2014 +270,MORPH Non-Commercial,morph_nc,41.5381124,2.4447406,"EUP Mataró, Spain",edu,1f5725a4a2eb6cdaefccbc20dccadf893936df12,citation,https://doi.org/10.1109/CCST.2012.6393544,On the relevance of age in handwritten biometric recognition,2012 +271,MORPH Non-Commercial,morph_nc,34.67567405,33.04577648,Cyprus University of Technology,edu,876583a059154def7a4bc503b21542f80859affd,citation,https://doi.org/10.1109/IWBF.2016.7449697,On the analysis of factors influencing the performance of facial age progression,2016 +272,MORPH Non-Commercial,morph_nc,-35.0636071,147.3552234,Charles Sturt University,edu,2e231f1e7e641dd3619bec59e14d02e91360ac01,citation,https://arxiv.org/pdf/1807.10421.pdf,Fusion Network for Face-Based Age Estimation,2018 +273,MORPH Non-Commercial,morph_nc,51.3791442,-2.3252332,University of Bath,edu,2e231f1e7e641dd3619bec59e14d02e91360ac01,citation,https://arxiv.org/pdf/1807.10421.pdf,Fusion Network for Face-Based Age Estimation,2018 +274,MORPH Non-Commercial,morph_nc,40.0044795,116.370238,Chinese Academy of Sciences,edu,56359d2b4508cc267d185c1d6d310a1c4c2cc8c2,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2015.7298618,Shape driven kernel adaptation in Convolutional Neural Network for robust facial trait recognition,2015 +275,MORPH Non-Commercial,morph_nc,39.9041999,116.4073963,Chinese Academy of Science,edu,56359d2b4508cc267d185c1d6d310a1c4c2cc8c2,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2015.7298618,Shape driven kernel adaptation in Convolutional Neural Network for robust facial trait recognition,2015 +276,MORPH Non-Commercial,morph_nc,1.2962018,103.77689944,National University of Singapore,edu,56359d2b4508cc267d185c1d6d310a1c4c2cc8c2,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2015.7298618,Shape driven kernel adaptation in Convolutional Neural Network for robust facial trait recognition,2015 +277,MORPH Non-Commercial,morph_nc,32.0565957,118.77408833,Nanjing University,edu,a6e43b73f9f87588783988333997a81b4487e2d5,citation,http://pdfs.semanticscholar.org/a6e4/3b73f9f87588783988333997a81b4487e2d5.pdf,Facial Age Estimation by Total Ordering Preserving Projection,2016 +278,MORPH Non-Commercial,morph_nc,1.2988926,103.7873107,"Institution for Infocomm Research, Singapore",edu,8229f2735a0db0ad41f4d7252129311f06959907,citation,https://doi.org/10.1109/TIP.2011.2106794,Active Learning for Solving the Incomplete Data Problem in Facial Age Classification by the Furthest Nearest-Neighbor Criterion,2011 +279,MORPH Non-Commercial,morph_nc,1.3484104,103.68297965,Nanyang Technological University,edu,8229f2735a0db0ad41f4d7252129311f06959907,citation,https://doi.org/10.1109/TIP.2011.2106794,Active Learning for Solving the Incomplete Data Problem in Facial Age Classification by the Furthest Nearest-Neighbor Criterion,2011 +280,MORPH Non-Commercial,morph_nc,39.2899685,-76.62196103,University of Maryland,edu,963a004e208ce4bd26fa79a570af61d31651b3c3,citation,https://doi.org/10.1016/j.jvlc.2009.01.011,Computational methods for modeling facial aging: A survey,2009 +281,MORPH Non-Commercial,morph_nc,40.48256135,-3.6906079,Universidad Autonoma de Madrid,edu,4b5ff8c67f3496a414f94e35cb35a601ec98e5cf,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6547306,Understanding the discrimination power of facial regions in forensic casework,2013 +282,MORPH Non-Commercial,morph_nc,40.4445565,-3.7122785,"Dirección General de la Guardia Civil, Madrid, Spain",edu,4b5ff8c67f3496a414f94e35cb35a601ec98e5cf,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6547306,Understanding the discrimination power of facial regions in forensic casework,2013 +283,MORPH Non-Commercial,morph_nc,-37.8087465,144.9638875,RMIT University,edu,c49075ead6eb07ede5ada4fe372899bd0cfb83ac,citation,https://doi.org/10.1109/ICSPCS.2015.7391782,Multi-stage classification network for automatic age estimation from facial images,2015 +284,MORPH Non-Commercial,morph_nc,34.2375581,-77.9270129,University of North Carolina Wilmington,edu,00301c250d667700276b1e573640ff2fd7be574d,citation,https://doi.org/10.1109/BTAS.2014.6996242,Establishing a test set and initial comparisons for quantitatively evaluating synthetic age progression for adult aging,2014 diff --git a/site/datasets/final/msceleb.csv b/site/datasets/final/msceleb.csv new file mode 100644 index 00000000..84abaea7 --- /dev/null +++ b/site/datasets/final/msceleb.csv @@ -0,0 +1,113 @@ +index,dataset_name,key,lat,lng,loc,loc_type,paper_id,paper_type,paper_url,title,year +0,MsCeleb,msceleb,0.0,0.0,,,291265db88023e92bb8c8e6390438e5da148e8f5,main,http://pdfs.semanticscholar.org/4603/cb8e05258bb0572ae912ad20903b8f99f4b1.pdf,MS-Celeb-1M: A Dataset and Benchmark for Large-Scale Face Recognition,2016 +1,MsCeleb,msceleb,32.0565957,118.77408833,Nanjing University,edu,e47e8fa44decf9adbcdb02f8a64b802fe33b29ef,citation,https://doi.org/10.1109/TIP.2017.2782366,Robust Distance Metric Learning via Bayesian Inference,2018 +2,MsCeleb,msceleb,48.8476037,2.2639934,"Université Paris-Saclay, France",edu,96e318f8ff91ba0b10348d4de4cb7c2142eb8ba9,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8364450,State-of-the-art face recognition performance using publicly available software and datasets,2018 +3,MsCeleb,msceleb,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,0a0321785c8beac1cbaaec4d8ad0cfd4a0d6d457,citation,https://pdfs.semanticscholar.org/0a03/21785c8beac1cbaaec4d8ad0cfd4a0d6d457.pdf,Learning Invariant Deep Representation for NIR-VIS Face Recognition,2017 +4,MsCeleb,msceleb,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,7a131fafa7058fb75fdca32d0529bc7cb50429bd,citation,https://arxiv.org/pdf/1704.04086.pdf,Beyond Face Rotation: Global and Local Perception GAN for Photorealistic and Identity Preserving Frontal View Synthesis,2017 +5,MsCeleb,msceleb,30.40550035,-91.18620474,Louisiana State University,edu,9f65319b8a33c8ec11da2f034731d928bf92e29d,citation,http://pdfs.semanticscholar.org/9f65/319b8a33c8ec11da2f034731d928bf92e29d.pdf,Taking Roll: a Pipeline for Face Recognition,2018 +6,MsCeleb,msceleb,51.49887085,-0.17560797,Imperial College London,edu,809ea255d144cff780300440d0f22c96e98abd53,citation,http://pdfs.semanticscholar.org/809e/a255d144cff780300440d0f22c96e98abd53.pdf,ArcFace: Additive Angular Margin Loss for Deep Face Recognition,2018 +7,MsCeleb,msceleb,31.28473925,121.49694909,Tongji University,edu,fe0cf8eaa5a5f59225197ef1bb8613e603cd96d4,citation,https://pdfs.semanticscholar.org/4e20/8cfff33327863b5aeef0bf9b327798a5610c.pdf,Improved Face Verification with Simple Weighted Feature Combination,2017 +8,MsCeleb,msceleb,45.7835966,4.7678948,École Centrale de Lyon,edu,486840f4f524e97f692a7f6b42cd19019ee71533,citation,https://arxiv.org/pdf/1703.08388v2.pdf,DeepVisage: Making Face Recognition Simple Yet With Powerful Generalization Skills,2017 +9,MsCeleb,msceleb,48.832493,2.267474,Safran Identity and Security,company,486840f4f524e97f692a7f6b42cd19019ee71533,citation,https://arxiv.org/pdf/1703.08388v2.pdf,DeepVisage: Making Face Recognition Simple Yet With Powerful Generalization Skills,2017 +10,MsCeleb,msceleb,31.83907195,117.26420748,University of Science and Technology of China,edu,e1256ff535bf4c024dd62faeb2418d48674ddfa2,citation,https://arxiv.org/pdf/1803.11182.pdf,Towards Open-Set Identity Preserving Face Synthesis,2018 +11,MsCeleb,msceleb,51.7534538,-1.25400997,University of Oxford,edu,5812d8239d691e99d4108396f8c26ec0619767a6,citation,https://arxiv.org/pdf/1810.09951.pdf,GhostVLAD for set-based face recognition,2018 +12,MsCeleb,msceleb,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,0b8b8776684009e537b9e2c0d87dbd56708ddcb4,citation,http://pdfs.semanticscholar.org/0b8b/8776684009e537b9e2c0d87dbd56708ddcb4.pdf,Adversarial Discriminative Heterogeneous Face Recognition,2017 +13,MsCeleb,msceleb,1.2962018,103.77689944,National University of Singapore,edu,fca9ebaa30d69ccec8bb577c31693c936c869e72,citation,https://arxiv.org/pdf/1809.00338.pdf,Look Across Elapse: Disentangled Representation Learning and Photorealistic Cross-Age Face Synthesis for Age-Invariant Face Recognition,2018 +14,MsCeleb,msceleb,40.0044795,116.370238,Chinese Academy of Sciences,edu,fca9ebaa30d69ccec8bb577c31693c936c869e72,citation,https://arxiv.org/pdf/1809.00338.pdf,Look Across Elapse: Disentangled Representation Learning and Photorealistic Cross-Age Face Synthesis for Age-Invariant Face Recognition,2018 +15,MsCeleb,msceleb,40.0044795,116.370238,Chinese Academy of Sciences,edu,212608e00fc1e8912ff845ee7a4a67f88ba938fc,citation,https://arxiv.org/pdf/1704.02450.pdf,Coupled Deep Learning for Heterogeneous Face Recognition,2018 +16,MsCeleb,msceleb,45.7413921,126.62552755,Harbin Institute of Technology,edu,b73795963dc623a634d218d29e4a5b74dfbc79f1,citation,https://arxiv.org/pdf/1807.08772.pdf,Identity Preserving Face Completion for Large Ocular Region Occlusion,2018 +17,MsCeleb,msceleb,38.0333742,-84.5017758,University of Kentucky,edu,b73795963dc623a634d218d29e4a5b74dfbc79f1,citation,https://arxiv.org/pdf/1807.08772.pdf,Identity Preserving Face Completion for Large Ocular Region Occlusion,2018 +18,MsCeleb,msceleb,34.0224149,-118.28634407,University of Southern California,edu,b73795963dc623a634d218d29e4a5b74dfbc79f1,citation,https://arxiv.org/pdf/1807.08772.pdf,Identity Preserving Face Completion for Large Ocular Region Occlusion,2018 +19,MsCeleb,msceleb,35.6924853,139.7582533,"National Institute of Informatics, Japan",edu,102280e80470ace006e14d6ec9adda082603dea1,citation,https://arxiv.org/pdf/1804.04418.pdf,Transformation on Computer-Generated Facial Image to Avoid Detection by Spoofing Detector,2018 +20,MsCeleb,msceleb,55.94951105,-3.19534913,University of Edinburgh,edu,102280e80470ace006e14d6ec9adda082603dea1,citation,https://arxiv.org/pdf/1804.04418.pdf,Transformation on Computer-Generated Facial Image to Avoid Detection by Spoofing Detector,2018 +21,MsCeleb,msceleb,42.4505507,-76.4783513,Cornell University,edu,bd379f8e08f88729a9214260e05967f4ca66cd65,citation,https://arxiv.org/pdf/1711.06148.pdf,Learning Compositional Visual Concepts with Mutual Consistency,2017 +22,MsCeleb,msceleb,22.42031295,114.20788644,Chinese University of Hong Kong,edu,58d76380d194248b3bb291b8c7c5137a0a376897,citation,https://pdfs.semanticscholar.org/58d7/6380d194248b3bb291b8c7c5137a0a376897.pdf,FaceID-GAN : Learning a Symmetry Three-Player GAN for Identity-Preserving Face Synthesis,2018 +23,MsCeleb,msceleb,22.59805605,113.98533784,Shenzhen Institutes of Advanced Technology,edu,58d76380d194248b3bb291b8c7c5137a0a376897,citation,https://pdfs.semanticscholar.org/58d7/6380d194248b3bb291b8c7c5137a0a376897.pdf,FaceID-GAN : Learning a Symmetry Three-Player GAN for Identity-Preserving Face Synthesis,2018 +24,MsCeleb,msceleb,42.3383668,-71.08793524,Northeastern University,edu,f74917fc0e55f4f5682909dcf6929abd19d33e2e,citation,http://pdfs.semanticscholar.org/f749/17fc0e55f4f5682909dcf6929abd19d33e2e.pdf,Gan Quality Index (gqi) by Gan-induced Classifier,2018 +25,MsCeleb,msceleb,40.8722825,-73.89489171,City University of New York,edu,f74917fc0e55f4f5682909dcf6929abd19d33e2e,citation,http://pdfs.semanticscholar.org/f749/17fc0e55f4f5682909dcf6929abd19d33e2e.pdf,Gan Quality Index (gqi) by Gan-induced Classifier,2018 +26,MsCeleb,msceleb,39.2899685,-76.62196103,University of Maryland,edu,def2983576001bac7d6461d78451159800938112,citation,https://arxiv.org/pdf/1705.07426.pdf,The Do’s and Don’ts for CNN-Based Face Verification,2017 +27,MsCeleb,msceleb,37.4102193,-122.05965487,Carnegie Mellon University,edu,2b869d5551b10f13bf6fcdb8d13f0aa4d1f59fc4,citation,https://arxiv.org/pdf/1803.00130.pdf,Ring loss: Convex Feature Normalization for Face Recognition,2018 +28,MsCeleb,msceleb,39.2899685,-76.62196103,University of Maryland,edu,b6f758be954d34817d4ebaa22b30c63a4b8ddb35,citation,http://arxiv.org/abs/1703.04835,A Proximity-Aware Hierarchical Clustering of Faces,2017 +29,MsCeleb,msceleb,23.09461185,113.28788994,Sun Yat-Sen University,edu,44f48a4b1ef94a9104d063e53bf88a69ff0f55f3,citation,http://pdfs.semanticscholar.org/44f4/8a4b1ef94a9104d063e53bf88a69ff0f55f3.pdf,Automatically Building Face Datasets of New Domains from Weakly Labeled Data with Pretrained Models,2016 +30,MsCeleb,msceleb,22.42031295,114.20788644,Chinese University of Hong Kong,edu,2011d4da646f794456bebb617d1500ddf71989ed,citation,https://pdfs.semanticscholar.org/2011/d4da646f794456bebb617d1500ddf71989ed.pdf,Transductive Centroid Projection for Semi-supervised Large-Scale Recognition,2018 +31,MsCeleb,msceleb,39.993008,116.329882,SenseTime,company,2011d4da646f794456bebb617d1500ddf71989ed,citation,https://pdfs.semanticscholar.org/2011/d4da646f794456bebb617d1500ddf71989ed.pdf,Transductive Centroid Projection for Semi-supervised Large-Scale Recognition,2018 +32,MsCeleb,msceleb,22.42031295,114.20788644,Chinese University of Hong Kong,edu,9e182e0cd9d70f876f1be7652c69373bcdf37fb4,citation,https://arxiv.org/pdf/1807.07860.pdf,Talking Face Generation by Adversarially Disentangled Audio-Visual Representation,2018 +33,MsCeleb,msceleb,49.2767454,-122.91777375,Simon Fraser University,edu,e8ef22b6da1dd3a4e014b96e6073a7b610fd97ea,citation,https://arxiv.org/pdf/1803.06340.pdf,Faces as Lighting Probes via Unsupervised Deep Highlight Extraction,2018 +34,MsCeleb,msceleb,28.2290209,112.99483204,"National University of Defense Technology, China",edu,e8ef22b6da1dd3a4e014b96e6073a7b610fd97ea,citation,https://arxiv.org/pdf/1803.06340.pdf,Faces as Lighting Probes via Unsupervised Deep Highlight Extraction,2018 +35,MsCeleb,msceleb,39.977217,116.337632,Microsoft Research Asia,company,e8ef22b6da1dd3a4e014b96e6073a7b610fd97ea,citation,https://arxiv.org/pdf/1803.06340.pdf,Faces as Lighting Probes via Unsupervised Deep Highlight Extraction,2018 +36,MsCeleb,msceleb,22.42031295,114.20788644,Chinese University of Hong Kong,edu,d80a3d1f3a438e02a6685e66ee908446766fefa9,citation,https://arxiv.org/pdf/1708.09687.pdf,Quantifying Facial Age by Posterior of Age Comparisons,2017 +37,MsCeleb,msceleb,40.0044795,116.370238,Chinese Academy of Sciences,edu,4cdb6144d56098b819076a8572a664a2c2d27f72,citation,https://arxiv.org/pdf/1806.01196.pdf,Face Synthesis for Eyeglass-Robust Face Recognition,2018 +38,MsCeleb,msceleb,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,4cdb6144d56098b819076a8572a664a2c2d27f72,citation,https://arxiv.org/pdf/1806.01196.pdf,Face Synthesis for Eyeglass-Robust Face Recognition,2018 +39,MsCeleb,msceleb,51.49887085,-0.17560797,Imperial College London,edu,8e0ab1b08964393e4f9f42ca037220fe98aad7ac,citation,https://arxiv.org/pdf/1712.04695.pdf,UV-GAN: Adversarial Facial UV Map Completion for Pose-invariant Face Recognition,2017 +40,MsCeleb,msceleb,41.10427915,29.02231159,Istanbul Technical University,edu,361eaef45fccfffd5b7df12fba902490a7d24a8d,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8404319,Robust deep learning features for face recognition under mismatched conditions,2018 +41,MsCeleb,msceleb,40.62984145,22.9588935,Aristotle University of Thessaloniki,edu,45b9b7fe3850ef83d39d52f6edcc0c24fcc0bc73,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7888593,Learning Neural Bag-of-Features for Large-Scale Image Retrieval,2017 +42,MsCeleb,msceleb,39.2899685,-76.62196103,University of Maryland,edu,19458454308a9f56b7de76bf7d8ff8eaa52b0173,citation,https://pdfs.semanticscholar.org/1945/8454308a9f56b7de76bf7d8ff8eaa52b0173.pdf,Deep Features for Recognizing Disguised Faces in the Wild,0 +43,MsCeleb,msceleb,1.2962018,103.77689944,National University of Singapore,edu,c71b0ed402437470f229b3fdabb88ad044c092ea,citation,https://pdfs.semanticscholar.org/c71b/0ed402437470f229b3fdabb88ad044c092ea.pdf,Dynamic Conditional Networks for Few-Shot Learning,2018 +44,MsCeleb,msceleb,28.2290209,112.99483204,"National University of Defense Technology, China",edu,c71b0ed402437470f229b3fdabb88ad044c092ea,citation,https://pdfs.semanticscholar.org/c71b/0ed402437470f229b3fdabb88ad044c092ea.pdf,Dynamic Conditional Networks for Few-Shot Learning,2018 +45,MsCeleb,msceleb,42.718568,-84.47791571,Michigan State University,edu,99daa2839213f904e279aec7cef26c1dfb768c43,citation,https://arxiv.org/pdf/1805.02283.pdf,DocFace: Matching ID Document Photos to Selfies,2018 +46,MsCeleb,msceleb,31.30104395,121.50045497,Fudan University,edu,5a259f2f5337435f841d39dada832ab24e7b3325,citation,http://doi.acm.org/10.1145/2964284.2984059,Face Recognition via Active Annotation and Learning,2016 +47,MsCeleb,msceleb,40.0044795,116.370238,Chinese Academy of Sciences,edu,5a259f2f5337435f841d39dada832ab24e7b3325,citation,http://doi.acm.org/10.1145/2964284.2984059,Face Recognition via Active Annotation and Learning,2016 +48,MsCeleb,msceleb,42.718568,-84.47791571,Michigan State University,edu,0a64f4fec592662316764283575d05913eb2135b,citation,http://pdfs.semanticscholar.org/0a64/f4fec592662316764283575d05913eb2135b.pdf,Joint Pixel and Feature-level Domain Adaptation in the Wild,2018 +49,MsCeleb,msceleb,37.4102193,-122.05965487,Carnegie Mellon University,edu,c71217b2b111a51a31cf1107c71d250348d1ff68,citation,https://arxiv.org/pdf/1703.09912.pdf,One Network to Solve Them All — Solving Linear Inverse Problems Using Deep Projection Models,2017 +50,MsCeleb,msceleb,22.42031295,114.20788644,Chinese University of Hong Kong,edu,de7f5e4ccc2f38e0c8f3f72a930ae1c43e0fdcf0,citation,https://arxiv.org/pdf/1707.03986.pdf,Merge or Not? Learning to Group Faces via Imitation Learning,2018 +51,MsCeleb,msceleb,40.47913175,-74.43168868,Rutgers University,edu,d4448f8aa320f04066cc43201d55ddd023eb712e,citation,https://pdfs.semanticscholar.org/d444/8f8aa320f04066cc43201d55ddd023eb712e.pdf,Clothing Change Aware Person Identification,0 +52,MsCeleb,msceleb,33.9928298,-81.02685168,University of South Carolina,edu,d4448f8aa320f04066cc43201d55ddd023eb712e,citation,https://pdfs.semanticscholar.org/d444/8f8aa320f04066cc43201d55ddd023eb712e.pdf,Clothing Change Aware Person Identification,0 +53,MsCeleb,msceleb,39.94976005,116.33629046,Beijing Jiaotong University,edu,d7cbedbee06293e78661335c7dd9059c70143a28,citation,https://arxiv.org/pdf/1804.07573.pdf,MobileFaceNets: Efficient CNNs for Accurate Real-time Face Verification on Mobile Devices,2018 +54,MsCeleb,msceleb,51.49887085,-0.17560797,Imperial College London,edu,40bb090a4e303f11168dce33ed992f51afe02ff7,citation,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Deng_Marginal_Loss_for_CVPR_2017_paper.pdf,Marginal Loss for Deep Face Recognition,2017 +55,MsCeleb,msceleb,29.7207902,-95.34406271,University of Houston,edu,38d8ff137ff753f04689e6b76119a44588e143f3,citation,http://pdfs.semanticscholar.org/38d8/ff137ff753f04689e6b76119a44588e143f3.pdf,When 3D-Aided 2D Face Recognition Meets Deep Learning: An extended UR2D for Pose-Invariant Face Recognition,2017 +56,MsCeleb,msceleb,42.3383668,-71.08793524,Northeastern University,edu,c9efcd8e32dced6efa2bba64789df8d0a8e4996a,citation,http://dl.acm.org/citation.cfm?id=2984060,Deep Convolutional Neural Network with Independent Softmax for Large Scale Face Recognition,2016 +57,MsCeleb,msceleb,40.0044795,116.370238,Chinese Academy of Sciences,edu,43fe03ec1acb6ea9d05d2b22eeddb2631bd30437,citation,https://doi.org/10.1109/ICIP.2017.8296394,Weakly supervised multiscale-inception learning for web-scale face recognition,2017 +58,MsCeleb,msceleb,1.3484104,103.68297965,Nanyang Technological University,edu,a322479a6851f57a3d74d017a9cb6d71395ed806,citation,https://pdfs.semanticscholar.org/a322/479a6851f57a3d74d017a9cb6d71395ed806.pdf,Towards Pose Invariant Face Recognition in the Wild,0 +59,MsCeleb,msceleb,40.0044795,116.370238,Chinese Academy of Sciences,edu,a322479a6851f57a3d74d017a9cb6d71395ed806,citation,https://pdfs.semanticscholar.org/a322/479a6851f57a3d74d017a9cb6d71395ed806.pdf,Towards Pose Invariant Face Recognition in the Wild,0 +60,MsCeleb,msceleb,28.2290209,112.99483204,"National University of Defense Technology, China",edu,a322479a6851f57a3d74d017a9cb6d71395ed806,citation,https://pdfs.semanticscholar.org/a322/479a6851f57a3d74d017a9cb6d71395ed806.pdf,Towards Pose Invariant Face Recognition in the Wild,0 +61,MsCeleb,msceleb,1.2962018,103.77689944,National University of Singapore,edu,a322479a6851f57a3d74d017a9cb6d71395ed806,citation,https://pdfs.semanticscholar.org/a322/479a6851f57a3d74d017a9cb6d71395ed806.pdf,Towards Pose Invariant Face Recognition in the Wild,0 +62,MsCeleb,msceleb,22.42031295,114.20788644,Chinese University of Hong Kong,edu,d949fadc9b6c5c8b067fa42265ad30945f9caa99,citation,https://arxiv.org/pdf/1710.00870.pdf,Rethinking Feature Discrimination and Polymerization for Large-scale Recognition,2017 +63,MsCeleb,msceleb,22.42031295,114.20788644,Chinese University of Hong Kong,edu,6fed504da4e192fe4c2d452754d23d3db4a4e5e3,citation,http://pdfs.semanticscholar.org/85ee/d639f7367c794a6d8b38619697af3efaacfe.pdf,Learning Deep Features via Congenerous Cosine Loss for Person Recognition,2017 +64,MsCeleb,msceleb,39.9586652,116.30971281,Beijing Institute of Technology,edu,0ea7b7fff090c707684fd4dc13e0a8f39b300a97,citation,http://arxiv.org/abs/1711.06055,Integrated Face Analytics Networks through Cross-Dataset Hybrid Training,2017 +65,MsCeleb,msceleb,33.5866784,-101.87539204,Electrical and Computer Engineering,edu,0ea7b7fff090c707684fd4dc13e0a8f39b300a97,citation,http://arxiv.org/abs/1711.06055,Integrated Face Analytics Networks through Cross-Dataset Hybrid Training,2017 +66,MsCeleb,msceleb,1.2962018,103.77689944,National University of Singapore,edu,0ea7b7fff090c707684fd4dc13e0a8f39b300a97,citation,http://arxiv.org/abs/1711.06055,Integrated Face Analytics Networks through Cross-Dataset Hybrid Training,2017 +67,MsCeleb,msceleb,39.65404635,-79.96475355,West Virginia University,edu,f1245d318eb3d775e101355f5f085a9bc4a0339b,citation,https://pdfs.semanticscholar.org/f124/5d318eb3d775e101355f5f085a9bc4a0339b.pdf,Face Verification with Disguise Variations via Deep Disguise,0 +68,MsCeleb,msceleb,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,3a27d164e931c422d16481916a2fa6401b74bcef,citation,https://arxiv.org/pdf/1709.03654.pdf,Anti-Makeup: Learning A Bi-Level Adversarial Network for Makeup-Invariant Face Verification,2018 +69,MsCeleb,msceleb,42.718568,-84.47791571,Michigan State University,edu,ad2cb5c255e555d9767d526721a4c7053fa2ac58,citation,https://arxiv.org/pdf/1711.03990.pdf,Longitudinal Study of Child Face Recognition,2018 +70,MsCeleb,msceleb,50.7791703,6.06728733,RWTH Aachen University,edu,f02f0f6fcd56a9b1407045de6634df15c60a85cd,citation,http://pdfs.semanticscholar.org/f02f/0f6fcd56a9b1407045de6634df15c60a85cd.pdf,Learning Low-shot facial representations via 2D warping,2017 +71,MsCeleb,msceleb,25.01682835,121.53846924,National Taiwan University,edu,17423fe480b109e1d924314c1dddb11b084e8a42,citation,https://pdfs.semanticscholar.org/1742/3fe480b109e1d924314c1dddb11b084e8a42.pdf,Deep Disguised Faces Recognition,0 +72,MsCeleb,msceleb,42.718568,-84.47791571,Michigan State University,edu,d29eec5e047560627c16803029d2eb8a4e61da75,citation,http://pdfs.semanticscholar.org/d29e/ec5e047560627c16803029d2eb8a4e61da75.pdf,Feature Transfer Learning for Deep Face Recognition with Long-Tail Data,2018 +73,MsCeleb,msceleb,51.49887085,-0.17560797,Imperial College London,edu,9b0489f2d5739213ef8c3e2e18739c4353c3a3b7,citation,http://pdfs.semanticscholar.org/9b04/89f2d5739213ef8c3e2e18739c4353c3a3b7.pdf,Visual Data Augmentation through Learning,2018 +74,MsCeleb,msceleb,51.59029705,-0.22963221,Middlesex University,edu,9b0489f2d5739213ef8c3e2e18739c4353c3a3b7,citation,http://pdfs.semanticscholar.org/9b04/89f2d5739213ef8c3e2e18739c4353c3a3b7.pdf,Visual Data Augmentation through Learning,2018 +75,MsCeleb,msceleb,51.7534538,-1.25400997,University of Oxford,edu,44e6ce12b857aeade03a6e5d1b7fb81202c39489,citation,https://arxiv.org/pdf/1806.05622.pdf,VoxCeleb2: Deep Speaker Recognition,2018 +76,MsCeleb,msceleb,23.0502042,113.39880323,South China University of Technology,edu,4f10a7697fb2a2c626d1190db2afba83c4ffe856,citation,https://pdfs.semanticscholar.org/4f10/a7697fb2a2c626d1190db2afba83c4ffe856.pdf,Cartoon-to-Photo Facial Translation with Generative Adversarial Networks,2018 +77,MsCeleb,msceleb,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,44b827df6c433ca49bcf44f9f3ebfdc0774ee952,citation,https://doi.org/10.1109/LSP.2017.2726105,Deep Correlation Feature Learning for Face Verification in the Wild,2017 +78,MsCeleb,msceleb,40.62984145,22.9588935,Aristotle University of Thessaloniki,edu,e7b2b0538731adaacb2255235e0a07d5ccf09189,citation,https://arxiv.org/pdf/1803.10837.pdf,Learning Deep Representations with Probabilistic Knowledge Transfer,2018 +79,MsCeleb,msceleb,40.11116745,-88.22587665,"University of Illinois, Urbana-Champaign",edu,46702e0127e16a4d6a1feda3ffc5f0f123957e87,citation,https://arxiv.org/pdf/1809.06131.pdf,Revisit Multinomial Logistic Regression in Deep Learning: Data Dependent Model Initialization for Image Recognition,2018 +80,MsCeleb,msceleb,51.7534538,-1.25400997,University of Oxford,edu,eb027969f9310e0ae941e2adee2d42cdf07d938c,citation,https://arxiv.org/pdf/1710.08092.pdf,VGGFace2: A Dataset for Recognising Faces across Pose and Age,2018 +81,MsCeleb,msceleb,42.3383668,-71.08793524,Northeastern University,edu,feea73095b1be0cbae1ad7af8ba2c4fb6f316d35,citation,http://dl.acm.org/citation.cfm?id=3126693,Deep Face Recognition with Center Invariant Loss,2017 +82,MsCeleb,msceleb,22.42031295,114.20788644,Chinese University of Hong Kong,edu,2296d79753118cfcd0fecefece301557f4cb66e2,citation,https://arxiv.org/pdf/1804.03487.pdf,Exploring Disentangled Feature Representation Beyond Face Identification,2018 +83,MsCeleb,msceleb,39.993008,116.329882,SenseTime,company,2296d79753118cfcd0fecefece301557f4cb66e2,citation,https://arxiv.org/pdf/1804.03487.pdf,Exploring Disentangled Feature Representation Beyond Face Identification,2018 +84,MsCeleb,msceleb,28.2290209,112.99483204,"National University of Defense Technology, China",edu,511a8cdf2127ef8aa07cbdf9660fe9e0e2dfbde7,citation,https://pdfs.semanticscholar.org/511a/8cdf2127ef8aa07cbdf9660fe9e0e2dfbde7.pdf,A Community Detection Approach to Cleaning Extremely Large Face Database,2018 +85,MsCeleb,msceleb,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,39c10888a470b92b917788c57a6fd154c97b421c,citation,https://doi.org/10.1109/VCIP.2017.8305036,Joint multi-feature fusion and attribute relationships for facial attribute prediction,2017 +86,MsCeleb,msceleb,41.70456775,-86.23822026,University of Notre Dame,edu,987a649cb33302c41412419f8eeb77048aa5513e,citation,https://arxiv.org/pdf/1803.07140.pdf,Visual Psychophysics for Making Face Recognition Algorithms More Explainable,2018 +87,MsCeleb,msceleb,42.36782045,-71.12666653,Harvard University,edu,987a649cb33302c41412419f8eeb77048aa5513e,citation,https://arxiv.org/pdf/1803.07140.pdf,Visual Psychophysics for Making Face Recognition Algorithms More Explainable,2018 +88,MsCeleb,msceleb,39.2899685,-76.62196103,University of Maryland,edu,4f7b92bd678772552b3c3edfc9a7c5c4a8c60a8e,citation,https://pdfs.semanticscholar.org/4f7b/92bd678772552b3c3edfc9a7c5c4a8c60a8e.pdf,Deep Density Clustering of Unconstrained Faces,0 +89,MsCeleb,msceleb,25.0410728,121.6147562,Institute of Information Science,edu,337dd4aaca2c5f9b5d2de8e0e2401b5a8feb9958,citation,https://arxiv.org/pdf/1810.11160.pdf,Data-specific Adaptive Threshold for Face Recognition and Authentication,2018 +90,MsCeleb,msceleb,51.7534538,-1.25400997,University of Oxford,edu,f61d5f2a082c65d5330f21b6f36312cc4fab8a3b,citation,https://arxiv.org/pdf/1705.08841.pdf,Multi-Level Variational Autoencoder: Learning Disentangled Representations From Grouped Observations,2018 +91,MsCeleb,msceleb,42.4505507,-76.4783513,Cornell University,edu,dec0c26855da90876c405e9fd42830c3051c2f5f,citation,https://pdfs.semanticscholar.org/dec0/c26855da90876c405e9fd42830c3051c2f5f.pdf,Supplementary Material : Learning Compositional Visual Concepts with Mutual Consistency,2018 +92,MsCeleb,msceleb,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,01dfd60c0851c4e5a99176e99aa369e1b5f606b7,citation,https://arxiv.org/pdf/1809.01936.pdf,Disentangled Variational Representation for Heterogeneous Face Recognition,2018 +93,MsCeleb,msceleb,39.329053,-76.619425,Johns Hopkins University,edu,01dfd60c0851c4e5a99176e99aa369e1b5f606b7,citation,https://arxiv.org/pdf/1809.01936.pdf,Disentangled Variational Representation for Heterogeneous Face Recognition,2018 +94,MsCeleb,msceleb,32.0575279,118.78682252,Southeast University,edu,8ff8c64288a2f7e4e8bf8fda865820b04ab3dbe8,citation,https://pdfs.semanticscholar.org/0056/92b9fa6728df3a7f14578c43410867bba425.pdf,Age Estimation Using Expectation of Label Distribution Learning,2018 +95,MsCeleb,msceleb,32.0565957,118.77408833,Nanjing University,edu,8ff8c64288a2f7e4e8bf8fda865820b04ab3dbe8,citation,https://pdfs.semanticscholar.org/0056/92b9fa6728df3a7f14578c43410867bba425.pdf,Age Estimation Using Expectation of Label Distribution Learning,2018 +96,MsCeleb,msceleb,1.3484104,103.68297965,Nanyang Technological University,edu,47190d213caef85e8b9dd0d271dbadc29ed0a953,citation,https://arxiv.org/pdf/1807.11649.pdf,The Devil of Face Recognition is in the Noise,2018 +97,MsCeleb,msceleb,32.87935255,-117.23110049,"University of California, San Diego",edu,47190d213caef85e8b9dd0d271dbadc29ed0a953,citation,https://arxiv.org/pdf/1807.11649.pdf,The Devil of Face Recognition is in the Noise,2018 +98,MsCeleb,msceleb,39.2899685,-76.62196103,University of Maryland,edu,872dfdeccf99bbbed7c8f1ea08afb2d713ebe085,citation,https://arxiv.org/pdf/1703.09507.pdf,L2-constrained Softmax Loss for Discriminative Face Verification,2017 +99,MsCeleb,msceleb,33.5866784,-101.87539204,Electrical and Computer Engineering,edu,ebb3d5c70bedf2287f9b26ac0031004f8f617b97,citation,https://doi.org/10.1109/MSP.2017.2764116,"Deep Learning for Understanding Faces: Machines May Be Just as Good, or Better, than Humans",2018 +100,MsCeleb,msceleb,39.2899685,-76.62196103,University of Maryland,edu,ebb3d5c70bedf2287f9b26ac0031004f8f617b97,citation,https://doi.org/10.1109/MSP.2017.2764116,"Deep Learning for Understanding Faces: Machines May Be Just as Good, or Better, than Humans",2018 +101,MsCeleb,msceleb,37.4102193,-122.05965487,Carnegie Mellon University,edu,d35534f3f59631951011539da2fe83f2844ca245,citation,https://arxiv.org/pdf/1705.07904.pdf,Semantically Decomposing the Latent Spaces of Generative Adversarial Networks,2017 +102,MsCeleb,msceleb,37.43131385,-122.16936535,Stanford University,edu,d35534f3f59631951011539da2fe83f2844ca245,citation,https://arxiv.org/pdf/1705.07904.pdf,Semantically Decomposing the Latent Spaces of Generative Adversarial Networks,2017 +103,MsCeleb,msceleb,32.87935255,-117.23110049,"University of California, San Diego",edu,d35534f3f59631951011539da2fe83f2844ca245,citation,https://arxiv.org/pdf/1705.07904.pdf,Semantically Decomposing the Latent Spaces of Generative Adversarial Networks,2017 +104,MsCeleb,msceleb,37.3936717,-122.0807262,Facebook,company,628a3f027b7646f398c68a680add48c7969ab1d9,citation,https://pdfs.semanticscholar.org/628a/3f027b7646f398c68a680add48c7969ab1d9.pdf,Plan for Final Year Project : HKU-Face : A Large Scale Dataset for Deep Face Recognition,2017 +105,MsCeleb,msceleb,51.7534538,-1.25400997,University of Oxford,edu,313d5eba97fe064bdc1f00b7587a4b3543ef712a,citation,https://pdfs.semanticscholar.org/cb7f/93467b0ec1afd43d995e511f5d7bf052a5af.pdf,Compact Deep Aggregation for Set Retrieval,2018 +106,MsCeleb,msceleb,42.718568,-84.47791571,Michigan State University,edu,b446bcd7fb78adfe346cf7a01a38e4f43760f363,citation,http://pdfs.semanticscholar.org/b446/bcd7fb78adfe346cf7a01a38e4f43760f363.pdf,To appear in ICB 2018 Longitudinal Study of Child Face Recognition,2017 +107,MsCeleb,msceleb,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,cd6aaa37fffd0b5c2320f386be322b8adaa1cc68,citation,https://arxiv.org/pdf/1804.06655.pdf,Deep Face Recognition: A Survey,2018 +108,MsCeleb,msceleb,22.42031295,114.20788644,Chinese University of Hong Kong,edu,831b4d8b0c0173b0bac0e328e844a0fbafae6639,citation,https://arxiv.org/pdf/1809.01407.pdf,Consensus-Driven Propagation in Massive Unlabeled Data for Face Recognition,2018 +109,MsCeleb,msceleb,1.3484104,103.68297965,Nanyang Technological University,edu,831b4d8b0c0173b0bac0e328e844a0fbafae6639,citation,https://arxiv.org/pdf/1809.01407.pdf,Consensus-Driven Propagation in Massive Unlabeled Data for Face Recognition,2018 +110,MsCeleb,msceleb,29.7207902,-95.34406271,University of Houston,edu,3cb2841302af1fb9656f144abc79d4f3d0b27380,citation,https://pdfs.semanticscholar.org/3cb2/841302af1fb9656f144abc79d4f3d0b27380.pdf,When 3 D-Aided 2 D Face Recognition Meets Deep Learning : An extended UR 2 D for Pose-Invariant Face Recognition,2017 +111,MsCeleb,msceleb,39.2899685,-76.62196103,University of Maryland,edu,23dd8d17ce09c22d367e4d62c1ccf507bcbc64da,citation,https://pdfs.semanticscholar.org/23dd/8d17ce09c22d367e4d62c1ccf507bcbc64da.pdf,Deep Density Clustering of Unconstrained Faces ( Supplementary Material ),2018 diff --git a/site/datasets/final/pipa.csv b/site/datasets/final/pipa.csv new file mode 100644 index 00000000..c68e70b6 --- /dev/null +++ b/site/datasets/final/pipa.csv @@ -0,0 +1,37 @@ +index,dataset_name,key,lat,lng,loc,loc_type,paper_id,paper_type,paper_url,title,year +0,PIPA,pipa,0.0,0.0,,,0a85bdff552615643dd74646ac881862a7c7072d,main,https://doi.org/10.1109/CVPR.2015.7299113,Beyond frontal faces: Improving Person Recognition using multiple cues,2015 +1,PIPA,pipa,49.2579566,7.04577417,Max Planck Institute for Informatics,edu,bfc04ce7752fac884cf5a78b30ededfd5a0ad109,citation,https://arxiv.org/pdf/1804.04779.pdf,A Hybrid Model for Identity Obfuscation by Face Replacement,2018 +2,PIPA,pipa,28.59899755,-81.19712501,University of Central Florida,edu,2b339ece73e3787f445c5b92078e8f82c9b1c522,citation,http://pdfs.semanticscholar.org/7a2e/e06aaa3f342937225272951c0b6dd4309a7a.pdf,"Human Re-identification in Crowd Videos Using Personal, Social and Environmental Constraints",2016 +3,PIPA,pipa,49.2579566,7.04577417,Max Planck Institute for Informatics,edu,bc27434e376db89fe0e6ef2d2fabc100d2575ec6,citation,https://arxiv.org/pdf/1607.08438.pdf,Faceless Person Recognition; Privacy Implications in Social Media,2016 +4,PIPA,pipa,49.2579566,7.04577417,Max Planck Institute for Informatics,edu,0c59071ddd33849bd431165bc2d21bbe165a81e0,citation,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Oh_Person_Recognition_in_ICCV_2015_paper.pdf,Person Recognition in Personal Photo Collections,2015 +5,PIPA,pipa,49.2579566,7.04577417,Max Planck Institute for Informatics,edu,23429ef60e7a9c0e2f4d81ed1b4e47cc2616522f,citation,https://arxiv.org/pdf/1704.06456.pdf,A Domain Based Approach to Social Relation Recognition,2017 +6,PIPA,pipa,49.2579566,7.04577417,Max Planck Institute for Informatics,edu,ba7b12c8e2ff3c5e4e0f70b58215b41b18ff8feb,citation,https://arxiv.org/pdf/1711.09001.pdf,Natural and Effective Obfuscation by Head Inpainting,2017 +7,PIPA,pipa,49.2579566,7.04577417,Max Planck Institute for Informatics,edu,808b685d09912cbef4a009e74e10476304b4cccf,citation,http://pdfs.semanticscholar.org/808b/685d09912cbef4a009e74e10476304b4cccf.pdf,From Understanding to Controlling Privacy against Automatic Person Recognition in Social Media,2017 +8,PIPA,pipa,42.4505507,-76.4783513,Cornell University,edu,0da75b0d341c8f945fae1da6c77b6ec345f47f2a,citation,https://pdfs.semanticscholar.org/0da7/5b0d341c8f945fae1da6c77b6ec345f47f2a.pdf,The Effect of Computer-Generated Descriptions on Photo-Sharing Experiences of People With Visual Impairments,2017 +9,PIPA,pipa,42.4505507,-76.4783513,Cornell University,edu,0aaf785d7f21d2b5ad582b456896495d30b0a4e2,citation,http://dl.acm.org/citation.cfm?id=3173789,A Face Recognition Application for People with Visual Impairments: Understanding Use Beyond the Lab,2018 +10,PIPA,pipa,22.42031295,114.20788644,Chinese University of Hong Kong,edu,c97a5f2241cc6cd99ef0c4527ea507a50841f60b,citation,https://arxiv.org/pdf/1807.10510.pdf,Person Search in Videos with One Portrait Through Visual and Temporal Links,2018 +11,PIPA,pipa,40.00229045,116.32098908,Tsinghua University,edu,c97a5f2241cc6cd99ef0c4527ea507a50841f60b,citation,https://arxiv.org/pdf/1807.10510.pdf,Person Search in Videos with One Portrait Through Visual and Temporal Links,2018 +12,PIPA,pipa,22.42031295,114.20788644,Chinese University of Hong Kong,edu,6fed504da4e192fe4c2d452754d23d3db4a4e5e3,citation,http://pdfs.semanticscholar.org/85ee/d639f7367c794a6d8b38619697af3efaacfe.pdf,Learning Deep Features via Congenerous Cosine Loss for Person Recognition,2017 +13,PIPA,pipa,-33.8809651,151.20107299,University of Technology Sydney,edu,0b84f07af44f964817675ad961def8a51406dd2e,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2017.357,Person Re-identification in the Wild,2017 +14,PIPA,pipa,17.4454957,78.34854698,International Institute of Information Technology,edu,eb8a3948c4be0d23eb7326d27f2271be893b3409,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7914701,A Probabilistic Approach to People-Centric Photo Selection and Sequencing,2017 +15,PIPA,pipa,1.3037257,103.7737763,University of Illinois’ Advanced Digital Sciences Center,edu,eb8a3948c4be0d23eb7326d27f2271be893b3409,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7914701,A Probabilistic Approach to People-Centric Photo Selection and Sequencing,2017 +16,PIPA,pipa,49.2579566,7.04577417,Max Planck Institute for Informatics,edu,3e0a1884448bfd7f416c6a45dfcdfc9f2e617268,citation,https://arxiv.org/pdf/1805.05838.pdf,Understanding and Controlling User Linkability in Decentralized Learning,2018 +17,PIPA,pipa,23.09461185,113.28788994,Sun Yat-Sen University,edu,725c3605c2d26d113637097358cd4c08c19ff9e1,citation,https://arxiv.org/pdf/1807.00504.pdf,Deep Reasoning with Knowledge Graph for Social Relationship Understanding,2018 +18,PIPA,pipa,51.7534538,-1.25400997,University of Oxford,edu,ff1f45bdad41d8b35435098041e009627e60d208,citation,http://pdfs.semanticscholar.org/ff1f/45bdad41d8b35435098041e009627e60d208.pdf,"NAGRANI, ZISSERMAN: FROM BENEDICT CUMBERBATCH TO SHERLOCK HOLMES 1 From Benedict Cumberbatch to Sherlock Holmes: Character Identification in TV series without a Script",2017 +19,PIPA,pipa,40.742252,-74.0270949,Stevens Institute of Technology,edu,1e1d7cbbef67e9e042a3a0a9a1bcefcc4a9adacf,citation,http://personal.stevens.edu/~hli18//data/papers/CVPR2016_CameraReady.pdf,A Multi-level Contextual Model for Person Recognition in Photo Albums,2016 +20,PIPA,pipa,42.4505507,-76.4783513,Cornell University,edu,269248eb8a44da5248cef840f7079b1294dbf237,citation,https://arxiv.org/pdf/1805.01515.pdf,The Effect of Computer-Generated Descriptions on Photo-Sharing Experiences of People with Visual Impairments,2017 +21,PIPA,pipa,40.47913175,-74.43168868,Rutgers University,edu,d4448f8aa320f04066cc43201d55ddd023eb712e,citation,https://pdfs.semanticscholar.org/d444/8f8aa320f04066cc43201d55ddd023eb712e.pdf,Clothing Change Aware Person Identification,0 +22,PIPA,pipa,33.9928298,-81.02685168,University of South Carolina,edu,d4448f8aa320f04066cc43201d55ddd023eb712e,citation,https://pdfs.semanticscholar.org/d444/8f8aa320f04066cc43201d55ddd023eb712e.pdf,Clothing Change Aware Person Identification,0 +23,PIPA,pipa,39.94976005,116.33629046,Beijing Jiaotong University,edu,b5968e7bb23f5f03213178c22fd2e47af3afa04c,citation,https://arxiv.org/pdf/1705.07206.pdf,Multiple-Human Parsing in the Wild,2017 +24,PIPA,pipa,1.2962018,103.77689944,National University of Singapore,edu,b5968e7bb23f5f03213178c22fd2e47af3afa04c,citation,https://arxiv.org/pdf/1705.07206.pdf,Multiple-Human Parsing in the Wild,2017 +25,PIPA,pipa,42.4505507,-76.4783513,Cornell University,edu,537328af75f50d49696972a6c34bca97c14bc762,citation,https://arxiv.org/pdf/1805.04049.pdf,Exploiting Unintended Feature Leakage in Collaborative Learning,2018 +26,PIPA,pipa,22.42031295,114.20788644,Chinese University of Hong Kong,edu,1c9efb6c895917174ac6ccc3bae191152f90c625,citation,https://arxiv.org/pdf/1806.03084.pdf,Unifying Identification and Context Learning for Person Recognition,2018 +27,PIPA,pipa,37.21872455,-80.42542519,Virginia Polytechnic Institute and State University,edu,6d8eef8f8d6cd8436c55018e6ca5c5907b31ac19,citation,http://pdfs.semanticscholar.org/6d8e/ef8f8d6cd8436c55018e6ca5c5907b31ac19.pdf,Understanding Representations and Reducing their Redundancy in Deep Networks,2016 +28,PIPA,pipa,17.4454957,78.34854698,International Institute of Information Technology,edu,01e27c91c7cef926389f913d12410725e7dd35ab,citation,https://doi.org/10.1007/s11760-017-1140-5,Semi-supervised annotation of faces in image collection,2018 +29,PIPA,pipa,49.2579566,7.04577417,Max Planck Institute for Informatics,edu,b68150bfdec373ed8e025f448b7a3485c16e3201,citation,https://arxiv.org/pdf/1703.09471.pdf,Adversarial Image Perturbation for Privacy Protection A Game Theory Perspective,2017 +30,PIPA,pipa,30.284151,-97.73195598,University of Texas at Austin,edu,3c57e28a4eb463d532ea2b0b1ba4b426ead8d9a0,citation,http://pdfs.semanticscholar.org/73cc/fdedbd7d72a147925727ba1932f9488cfde3.pdf,Defeating Image Obfuscation with Deep Learning,2016 +31,PIPA,pipa,28.2290209,112.99483204,"National University of Defense Technology, China",edu,5f771fed91c8e4b666489ba2384d0705bcf75030,citation,https://arxiv.org/pdf/1804.03287.pdf,Understanding Humans in Crowded Scenes: Deep Nested Adversarial Learning and A New Benchmark for Multi-Human Parsing,2018 +32,PIPA,pipa,1.2962018,103.77689944,National University of Singapore,edu,5f771fed91c8e4b666489ba2384d0705bcf75030,citation,https://arxiv.org/pdf/1804.03287.pdf,Understanding Humans in Crowded Scenes: Deep Nested Adversarial Learning and A New Benchmark for Multi-Human Parsing,2018 +33,PIPA,pipa,22.42031295,114.20788644,Chinese University of Hong Kong,edu,d949fadc9b6c5c8b067fa42265ad30945f9caa99,citation,https://arxiv.org/pdf/1710.00870.pdf,Rethinking Feature Discrimination and Polymerization for Large-scale Recognition,2017 +34,PIPA,pipa,-34.9189226,138.60423668,University of Adelaide,edu,3d24b386d003bee176a942c26336dbe8f427aadd,citation,http://arxiv.org/abs/1611.09967,Sequential Person Recognition in Photo Albums with a Recurrent Network,2017 +35,PIPA,pipa,42.4505507,-76.4783513,Cornell University,edu,8bdf6f03bde08c424c214188b35be8b2dec7cdea,citation,https://arxiv.org/pdf/1805.04049.pdf,Inference Attacks Against Collaborative Learning,2018 diff --git a/site/datasets/final/umd_faces.csv b/site/datasets/final/umd_faces.csv new file mode 100644 index 00000000..53788401 --- /dev/null +++ b/site/datasets/final/umd_faces.csv @@ -0,0 +1,34 @@ +index,dataset_name,key,lat,lng,loc,loc_type,paper_id,paper_type,paper_url,title,year +0,UMD,umd_faces,0.0,0.0,,,31b05f65405534a696a847dd19c621b7b8588263,main,http://arxiv.org/abs/1611.01484,UMDFaces: An annotated face dataset for training deep networks,2017 +1,UMD,umd_faces,39.2899685,-76.62196103,University of Maryland,edu,19458454308a9f56b7de76bf7d8ff8eaa52b0173,citation,https://pdfs.semanticscholar.org/1945/8454308a9f56b7de76bf7d8ff8eaa52b0173.pdf,Deep Features for Recognizing Disguised Faces in the Wild,0 +2,UMD,umd_faces,28.2290209,112.99483204,"National University of Defense Technology, China",edu,511a8cdf2127ef8aa07cbdf9660fe9e0e2dfbde7,citation,https://pdfs.semanticscholar.org/511a/8cdf2127ef8aa07cbdf9660fe9e0e2dfbde7.pdf,A Community Detection Approach to Cleaning Extremely Large Face Database,2018 +3,UMD,umd_faces,25.01682835,121.53846924,National Taiwan University,edu,81884e1de00e59f24bc20254584d73a1a1806933,citation,https://arxiv.org/pdf/1811.02328.pdf,Super-Identity Convolutional Neural Network for Face Hallucination,2018 +4,UMD,umd_faces,39.993008,116.329882,SenseTime,company,81884e1de00e59f24bc20254584d73a1a1806933,citation,https://arxiv.org/pdf/1811.02328.pdf,Super-Identity Convolutional Neural Network for Face Hallucination,2018 +5,UMD,umd_faces,30.284151,-97.73195598,University of Texas at Austin,edu,81884e1de00e59f24bc20254584d73a1a1806933,citation,https://arxiv.org/pdf/1811.02328.pdf,Super-Identity Convolutional Neural Network for Face Hallucination,2018 +6,UMD,umd_faces,45.7835966,4.7678948,École Centrale de Lyon,edu,486840f4f524e97f692a7f6b42cd19019ee71533,citation,https://arxiv.org/pdf/1703.08388v2.pdf,DeepVisage: Making Face Recognition Simple Yet With Powerful Generalization Skills,2017 +7,UMD,umd_faces,48.832493,2.267474,Safran Identity and Security,company,486840f4f524e97f692a7f6b42cd19019ee71533,citation,https://arxiv.org/pdf/1703.08388v2.pdf,DeepVisage: Making Face Recognition Simple Yet With Powerful Generalization Skills,2017 +8,UMD,umd_faces,41.70456775,-86.23822026,University of Notre Dame,edu,73ea06787925157df519a15ee01cc3dc1982a7e0,citation,https://arxiv.org/pdf/1811.01474.pdf,Fast Face Image Synthesis with Minimal Training,2018 +9,UMD,umd_faces,30.40550035,-91.18620474,Louisiana State University,edu,9f65319b8a33c8ec11da2f034731d928bf92e29d,citation,http://pdfs.semanticscholar.org/9f65/319b8a33c8ec11da2f034731d928bf92e29d.pdf,Taking Roll: a Pipeline for Face Recognition,2018 +10,UMD,umd_faces,51.24303255,-0.59001382,University of Surrey,edu,ed07856461da6c7afa4f1782b5b607b45eebe9f6,citation,https://pdfs.semanticscholar.org/ed07/856461da6c7afa4f1782b5b607b45eebe9f6.pdf,D Morphable Models as Spatial Transformer Networks,2017 +11,UMD,umd_faces,53.94540365,-1.03138878,University of York,edu,ed07856461da6c7afa4f1782b5b607b45eebe9f6,citation,https://pdfs.semanticscholar.org/ed07/856461da6c7afa4f1782b5b607b45eebe9f6.pdf,D Morphable Models as Spatial Transformer Networks,2017 +12,UMD,umd_faces,53.94540365,-1.03138878,University of York,edu,6a4419ce2338ea30a570cf45624741b754fa52cb,citation,https://arxiv.org/pdf/1804.02541.pdf,Statistical transformer networks: learning shape and appearance models via self supervision,2018 +13,UMD,umd_faces,51.49887085,-0.17560797,Imperial College London,edu,809ea255d144cff780300440d0f22c96e98abd53,citation,http://pdfs.semanticscholar.org/809e/a255d144cff780300440d0f22c96e98abd53.pdf,ArcFace: Additive Angular Margin Loss for Deep Face Recognition,2018 +14,UMD,umd_faces,39.2899685,-76.62196103,University of Maryland,edu,def2983576001bac7d6461d78451159800938112,citation,https://arxiv.org/pdf/1705.07426.pdf,The Do’s and Don’ts for CNN-Based Face Verification,2017 +15,UMD,umd_faces,43.7776426,11.259765,University of Florence,edu,746c0205fdf191a737df7af000eaec9409ede73f,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8423119,Investigating Nuisances in DCNN-Based Face Recognition,2018 +16,UMD,umd_faces,33.5866784,-101.87539204,Electrical and Computer Engineering,edu,ebb3d5c70bedf2287f9b26ac0031004f8f617b97,citation,https://doi.org/10.1109/MSP.2017.2764116,"Deep Learning for Understanding Faces: Machines May Be Just as Good, or Better, than Humans",2018 +17,UMD,umd_faces,39.2899685,-76.62196103,University of Maryland,edu,ebb3d5c70bedf2287f9b26ac0031004f8f617b97,citation,https://doi.org/10.1109/MSP.2017.2764116,"Deep Learning for Understanding Faces: Machines May Be Just as Good, or Better, than Humans",2018 +18,UMD,umd_faces,51.24303255,-0.59001382,University of Surrey,edu,c146aa6d56233ce700032f1cb179700778557601,citation,https://arxiv.org/pdf/1708.07199.pdf,3D Morphable Models as Spatial Transformer Networks,2017 +19,UMD,umd_faces,53.94540365,-1.03138878,University of York,edu,c146aa6d56233ce700032f1cb179700778557601,citation,https://arxiv.org/pdf/1708.07199.pdf,3D Morphable Models as Spatial Transformer Networks,2017 +20,UMD,umd_faces,25.01682835,121.53846924,National Taiwan University,edu,17423fe480b109e1d924314c1dddb11b084e8a42,citation,https://pdfs.semanticscholar.org/1742/3fe480b109e1d924314c1dddb11b084e8a42.pdf,Deep Disguised Faces Recognition,0 +21,UMD,umd_faces,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,7a131fafa7058fb75fdca32d0529bc7cb50429bd,citation,https://arxiv.org/pdf/1704.04086.pdf,Beyond Face Rotation: Global and Local Perception GAN for Photorealistic and Identity Preserving Frontal View Synthesis,2017 +22,UMD,umd_faces,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,cd6aaa37fffd0b5c2320f386be322b8adaa1cc68,citation,https://arxiv.org/pdf/1804.06655.pdf,Deep Face Recognition: A Survey,2018 +23,UMD,umd_faces,30.274084,120.15507,Alibaba,company,89497854eada7e32f06aa8f3c0ceedc0e91ecfef,citation,https://doi.org/10.1109/TIP.2017.2784571,Deep Context-Sensitive Facial Landmark Detection With Tree-Structured Modeling,2018 +24,UMD,umd_faces,30.19331415,120.11930822,Zhejiang University,edu,89497854eada7e32f06aa8f3c0ceedc0e91ecfef,citation,https://doi.org/10.1109/TIP.2017.2784571,Deep Context-Sensitive Facial Landmark Detection With Tree-Structured Modeling,2018 +25,UMD,umd_faces,38.8920756,-104.79716389,"University of Colorado, Colorado Springs",edu,d4f1eb008eb80595bcfdac368e23ae9754e1e745,citation,https://arxiv.org/pdf/1708.02337.pdf,Unconstrained Face Detection and Open-Set Face Recognition Challenge,2017 +26,UMD,umd_faces,51.7534538,-1.25400997,University of Oxford,edu,eb027969f9310e0ae941e2adee2d42cdf07d938c,citation,https://arxiv.org/pdf/1710.08092.pdf,VGGFace2: A Dataset for Recognising Faces across Pose and Age,2018 +27,UMD,umd_faces,51.49887085,-0.17560797,Imperial College London,edu,c43ed9b34cad1a3976bac7979808eb038d88af84,citation,https://arxiv.org/pdf/1804.03675.pdf,Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model,2018 +28,UMD,umd_faces,51.24303255,-0.59001382,University of Surrey,edu,c43ed9b34cad1a3976bac7979808eb038d88af84,citation,https://arxiv.org/pdf/1804.03675.pdf,Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model,2018 +29,UMD,umd_faces,41.70456775,-86.23822026,University of Notre Dame,edu,e64c166dc5bb33bc61462a8b5ac92edb24d905a1,citation,https://arxiv.org/pdf/1811.01474.pdf,Fast Face Image Synthesis with Minimal Training.,2018 +30,UMD,umd_faces,51.7534538,-1.25400997,University of Oxford,edu,70c59dc3470ae867016f6ab0e008ac8ba03774a1,citation,https://arxiv.org/pdf/1710.08092.pdf,VGGFace2: A Dataset for Recognising Faces across Pose and Age,2018 +31,UMD,umd_faces,38.99203005,-76.9461029,University of Maryland College Park,edu,3d2891950f1b76f783a9ba77b3c55b8e68b95fbe,citation,https://arxiv.org/pdf/1802.06713.pdf,Disentangling 3D Pose in a Dendritic CNN for Unconstrained 2D Face Alignment,2018 +32,UMD,umd_faces,51.49887085,-0.17560797,Imperial College London,edu,1929863fff917ee7f6dc428fc1ce732777668eca,citation,https://arxiv.org/pdf/1712.04695.pdf,UV-GAN: Adversarial Facial UV Map Completion for Pose-Invariant Face Recognition,2018 diff --git a/site/datasets/final/voc.csv b/site/datasets/final/voc.csv new file mode 100644 index 00000000..9400d7d6 --- /dev/null +++ b/site/datasets/final/voc.csv @@ -0,0 +1,401 @@ +index,dataset_name,key,lat,lng,loc,loc_type,paper_id,paper_type,paper_url,title,year +0,VOC,voc,0.0,0.0,,,abe9f3b91fd26fa1b50cd685c0d20debfb372f73,main,http://homepages.inf.ed.ac.uk/ckiw/postscript/ijcv_voc14.pdf,The Pascal Visual Object Classes Challenge: A Retrospective,2014 +1,VOC,voc,40.0044795,116.370238,Chinese Academy of Sciences,edu,ed2f711cf9bcd9d7ab039d746af109ed9573421a,citation,https://pdfs.semanticscholar.org/ed2f/711cf9bcd9d7ab039d746af109ed9573421a.pdf,Pixel-Wise Classification Method for High Resolution Remote Sensing Imagery Using Deep Neural Networks,2018 +2,VOC,voc,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,ed2f711cf9bcd9d7ab039d746af109ed9573421a,citation,https://pdfs.semanticscholar.org/ed2f/711cf9bcd9d7ab039d746af109ed9573421a.pdf,Pixel-Wise Classification Method for High Resolution Remote Sensing Imagery Using Deep Neural Networks,2018 +3,VOC,voc,13.0222347,77.56718325,Indian Institute of Science Bangalore,edu,a6ac6463b5c89ac9eb013c978f213b309cc6a5c7,citation,https://arxiv.org/pdf/1808.01134.pdf,iSPA-Net: Iterative Semantic Pose Alignment Network,2018 +4,VOC,voc,42.3583961,-71.09567788,MIT,edu,aaf4d938f2e66d158d5e635a9c1d279cdc7639c0,citation,http://pdfs.semanticscholar.org/aaf4/d938f2e66d158d5e635a9c1d279cdc7639c0.pdf,Toward visual understanding of everyday object,2015 +5,VOC,voc,42.2942142,-83.71003894,University of Michigan,edu,74dbcc09a3456ddacf5cece640b84045ebdf6be1,citation,https://arxiv.org/pdf/1810.05162.pdf,Characterizing Adversarial Examples Based on Spatial Consistency Information for Semantic Segmentation,2018 +6,VOC,voc,49.2767454,-122.91777375,Simon Fraser University,edu,74dbcc09a3456ddacf5cece640b84045ebdf6be1,citation,https://arxiv.org/pdf/1810.05162.pdf,Characterizing Adversarial Examples Based on Spatial Consistency Information for Semantic Segmentation,2018 +7,VOC,voc,46.109237,7.08453549,IDIAP Research Institute,edu,dedc7b080b8e13d72f8dc33e248e7637d191fdbf,citation,http://pdfs.semanticscholar.org/dedc/7b080b8e13d72f8dc33e248e7637d191fdbf.pdf,Beyond Dataset Bias: Multi-task Unaligned Shared Knowledge Transfer,2012 +8,VOC,voc,52.17638955,0.14308882,University of Cambridge,edu,dedc7b080b8e13d72f8dc33e248e7637d191fdbf,citation,http://pdfs.semanticscholar.org/dedc/7b080b8e13d72f8dc33e248e7637d191fdbf.pdf,Beyond Dataset Bias: Multi-task Unaligned Shared Knowledge Transfer,2012 +9,VOC,voc,39.00041165,-77.10327775,National Institutes of Health,edu,18c57ddc9c0164ee792661f43a5578f7a00d0330,citation,https://arxiv.org/pdf/1705.02315v2.pdf,ChestX-Ray8: Hospital-Scale Chest X-Ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases,2017 +10,VOC,voc,37.40253645,-122.11655107,Toyota Research Institute,edu,a825680aeb853fc34c65b5844c4c4391148f18c3,citation,https://arxiv.org/pdf/1711.10006.pdf,SSD-6D: Making RGB-Based 3D Detection and 6D Pose Estimation Great Again,2017 +11,VOC,voc,40.00229045,116.32098908,Tsinghua University,edu,f249c266321d661ae398c26ddb8c7409f6455ba1,citation,https://pdfs.semanticscholar.org/f249/c266321d661ae398c26ddb8c7409f6455ba1.pdf,Revisiting Faster R-CNN: A Deeper Look at Region Proposal Network,2017 +12,VOC,voc,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,7fa5ede4a34dbe604ce317d529eed78db6642bc0,citation,https://arxiv.org/pdf/1709.01829.pdf,Soft Proposal Networks for Weakly Supervised Object Localization,2017 +13,VOC,voc,35.9990522,-78.9290629,Duke University,edu,7fa5ede4a34dbe604ce317d529eed78db6642bc0,citation,https://arxiv.org/pdf/1709.01829.pdf,Soft Proposal Networks for Weakly Supervised Object Localization,2017 +14,VOC,voc,42.3583961,-71.09567788,MIT,edu,05fdd29536d55fe3ad00689b6f60ada8bc761e91,citation,http://people.csail.mit.edu/torralba/publications/ihog_iccv.pdf,HOGgles: Visualizing Object Detection Features,2013 +15,VOC,voc,24.7925484,120.9951183,National Tsing Hua University,edu,394bf41cd8578ec10cd34452c688c3e3de1c16a7,citation,https://pdfs.semanticscholar.org/394b/f41cd8578ec10cd34452c688c3e3de1c16a7.pdf,Multi-view to Novel View: Synthesizing Novel Views With Self-learned Confidence,2018 +16,VOC,voc,22.42031295,114.20788644,Chinese University of Hong Kong,edu,2453dd38cde21f3248b55d281405f11d58168fa9,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2016.342,Multi-scale Patch Aggregation (MPA) for Simultaneous Detection and Segmentation,2016 +17,VOC,voc,50.7791703,6.06728733,RWTH Aachen University,edu,ccb9ffa26b28dffc4f7d613821d1a9f0d60ea3f4,citation,https://arxiv.org/pdf/1706.09364.pdf,Online Adaptation of Convolutional Neural Networks for Video Object Segmentation,2017 +18,VOC,voc,39.87549675,32.78553506,Middle East Technical University,edu,d38af10096aa90dfccd7e4cec9757900bf6958bd,citation,https://arxiv.org/pdf/1807.04067.pdf,MultiPoseNet: Fast Multi-Person Pose Estimation Using Pose Residual Network,2018 +19,VOC,voc,40.0044795,116.370238,Chinese Academy of Sciences,edu,8c1e828a4826a1fb3eb47ee432f5333b974fa141,citation,http://pdfs.semanticscholar.org/8c1e/828a4826a1fb3eb47ee432f5333b974fa141.pdf,Spatial Graph for Image Classification,2012 +20,VOC,voc,38.88140235,121.52281098,Dalian University of Technology,edu,2a31b4bf2a294b6e67956a6cd5ed6d875af548e0,citation,https://arxiv.org/pdf/1710.01020.pdf,Learning Affinity via Spatial Propagation Networks,2017 +21,VOC,voc,39.2899685,-76.62196103,University of Maryland,edu,0790c400bfe6fbefe88ef7791476e1abf1952089,citation,https://arxiv.org/pdf/1511.04067v1.pdf,Deep Gaussian Conditional Random Field Network: A Model-Based Deep Network for Discriminative Denoising,2016 +22,VOC,voc,41.3868913,2.16352385,University of Barcelona,edu,442cf9b24661c9ea5c2a1dcabd4a5b8af1cd89da,citation,https://arxiv.org/pdf/1806.10805.pdf,Beyond One-hot Encoding: lower dimensional target embedding,2018 +23,VOC,voc,55.94951105,-3.19534913,University of Edinburgh,edu,04eda7eee3e0282de50e54554f50870dd17defa1,citation,https://arxiv.org/pdf/1705.08280v1.pdf,How Hard Can It Be? Estimating the Difficulty of Visual Search in an Image,2016 +24,VOC,voc,1.2962018,103.77689944,National University of Singapore,edu,90a4125974564a5ab6c2ce2ff685fc36e9cf0680,citation,https://arxiv.org/pdf/1703.08448.pdf,Object Region Mining with Adversarial Erasing: A Simple Classification to Semantic Segmentation Approach,2017 +25,VOC,voc,39.94976005,116.33629046,Beijing Jiaotong University,edu,90a4125974564a5ab6c2ce2ff685fc36e9cf0680,citation,https://arxiv.org/pdf/1703.08448.pdf,Object Region Mining with Adversarial Erasing: A Simple Classification to Semantic Segmentation Approach,2017 +26,VOC,voc,39.9922379,116.30393816,Peking University,edu,c3dd6c1ddbb9cfcc1bed6383ffaa0b1ce4d13625,citation,https://arxiv.org/pdf/1807.01544.pdf,TextSnake: A Flexible Representation for Detecting Text of Arbitrary Shapes,2018 +27,VOC,voc,37.4102193,-122.05965487,Carnegie Mellon University,edu,2976605dc3b73377696537291d45f09f1ab1fbf5,citation,http://www.ri.cmu.edu/pub_files/2016/6/multi-task.pdf,Cross-Stitch Networks for Multi-task Learning,2016 +28,VOC,voc,28.54632595,77.27325504,Indian Institute of Technology Delhi,edu,25e9a2ec45c34d4610359196dc505a72c3833336,citation,http://pdfs.semanticscholar.org/25e9/a2ec45c34d4610359196dc505a72c3833336.pdf,Benchmarking KAZE and MCM for Multiclass Classification,2015 +29,VOC,voc,39.9808333,116.34101249,Beihang University,edu,935e639bebf905af2e35e8b1e7aa0538d7122185,citation,https://arxiv.org/pdf/1808.00313.pdf,A Network Structure to Explicitly Reduce Confusion Errors in Semantic Segmentation,2018 +30,VOC,voc,39.8011499,140.0459116,Akita Prefectural University,edu,211435a4e14d00f4aaed191acfb548185ee800b9,citation,http://pdfs.semanticscholar.org/2114/35a4e14d00f4aaed191acfb548185ee800b9.pdf,Visual Saliency Based Multiple Objects Segmentation and its Parallel Implementation for Real-Time Vision Processing,2015 +31,VOC,voc,49.25839375,-123.24658161,University of British Columbia,edu,9fae24003bbedecdb617f9779215d79d06b90dd8,citation,https://arxiv.org/pdf/1807.09856.pdf,Where Are the Blobs: Counting by Localization with Point Supervision,2018 +32,VOC,voc,40.72925325,-73.99625394,New York University,edu,c45681fa9d9c36a6a196017ef283ac38904f91bb,citation,https://arxiv.org/pdf/1711.07377.pdf,Pixel-wise object tracking,2017 +33,VOC,voc,37.4102193,-122.05965487,Carnegie Mellon University,edu,45f858f9e8d7713f60f52618e54089ba68dfcd6d,citation,http://openaccess.thecvf.com/content_ICCV_2017/papers/Sigurdsson_What_Actions_Are_ICCV_2017_paper.pdf,What Actions are Needed for Understanding Human Actions in Videos?,2017 +34,VOC,voc,51.7534538,-1.25400997,University of Oxford,edu,57bd01c042a5f64659b3a9f91c048b8594f762f6,citation,http://pdfs.semanticscholar.org/57bd/01c042a5f64659b3a9f91c048b8594f762f6.pdf,Advances in fine-grained visual categorization,2015 +35,VOC,voc,31.30104395,121.50045497,Fudan University,edu,9716416a15e79a36e3481bcdad79cdc905603e6d,citation,https://arxiv.org/pdf/1808.07016.pdf,Gaussian Word Embedding with a Wasserstein Distance Loss,2017 +36,VOC,voc,32.0565957,118.77408833,Nanjing University,edu,97265d64859e06900c11ae5bb5f03f3bd265f858,citation,https://arxiv.org/pdf/1612.01082.pdf,Multilabel Image Classification With Regional Latent Semantic Dependencies,2018 +37,VOC,voc,-34.9189226,138.60423668,University of Adelaide,edu,97265d64859e06900c11ae5bb5f03f3bd265f858,citation,https://arxiv.org/pdf/1612.01082.pdf,Multilabel Image Classification With Regional Latent Semantic Dependencies,2018 +38,VOC,voc,-33.8809651,151.20107299,University of Technology Sydney,edu,97265d64859e06900c11ae5bb5f03f3bd265f858,citation,https://arxiv.org/pdf/1612.01082.pdf,Multilabel Image Classification With Regional Latent Semantic Dependencies,2018 +39,VOC,voc,42.3583961,-71.09567788,MIT,edu,a19904e76b5ded44e6aeb9af85997d160de6bb22,citation,http://pdfs.semanticscholar.org/a199/04e76b5ded44e6aeb9af85997d160de6bb22.pdf,TernausNet: U-Net with VGG11 Encoder Pre-Trained on ImageNet for Image Segmentation,2018 +40,VOC,voc,47.05821,15.46019568,Graz University of Technology,edu,96a9ca7a8366ae0efe6b58a515d15b44776faf6e,citation,https://arxiv.org/pdf/1609.00129.pdf,Grid Loss: Detecting Occluded Faces,2016 +41,VOC,voc,47.05821,15.46019568,Graz University of Technology,edu,513b8dc73a9fbc467e1ac130fe8c842b5839ca51,citation,http://pdfs.semanticscholar.org/513b/8dc73a9fbc467e1ac130fe8c842b5839ca51.pdf,Dissertation Scalable Visual Navigation for Micro Aerial Vehicles using Geometric Prior Knowledge,2013 +42,VOC,voc,37.8687126,-122.25586815,"University of California, Berkeley",edu,0ee3aa2a78f9680bb65a823bd9195c879572ec1c,citation,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Dubey_What_Makes_an_ICCV_2015_paper.pdf,What Makes an Object Memorable?,2015 +43,VOC,voc,42.3583961,-71.09567788,MIT,edu,0ee3aa2a78f9680bb65a823bd9195c879572ec1c,citation,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Dubey_What_Makes_an_ICCV_2015_paper.pdf,What Makes an Object Memorable?,2015 +44,VOC,voc,37.36566745,-120.42158888,"University of California, Merced",edu,0ee3aa2a78f9680bb65a823bd9195c879572ec1c,citation,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Dubey_What_Makes_an_ICCV_2015_paper.pdf,What Makes an Object Memorable?,2015 +45,VOC,voc,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,a776acc53591c3eb0b53501d9758d984e2e52a97,citation,https://arxiv.org/pdf/1804.00880.pdf,Weakly Supervised Instance Segmentation using Class Peak Response,2018 +46,VOC,voc,35.9990522,-78.9290629,Duke University,edu,a776acc53591c3eb0b53501d9758d984e2e52a97,citation,https://arxiv.org/pdf/1804.00880.pdf,Weakly Supervised Instance Segmentation using Class Peak Response,2018 +47,VOC,voc,1.2962018,103.77689944,National University of Singapore,edu,423b941641728a21e37f41359a691815cdd84ceb,citation,http://arxiv.org/abs/1511.04517,Reversible Recursive Instance-Level Object Segmentation,2016 +48,VOC,voc,47.6423318,-122.1369302,Microsoft,company,666939690c564641b864eed0d60a410b31e49f80,citation,http://pdfs.semanticscholar.org/6669/39690c564641b864eed0d60a410b31e49f80.pdf,What Visual Attributes Characterize an Object Class?,2014 +49,VOC,voc,43.7776426,11.259765,University of Florence,edu,51e8e8c4cac8260ef21c25f9f2a0a68aedbc6d58,citation,https://arxiv.org/pdf/1704.02518.pdf,Deep Generative Adversarial Compression Artifact Removal,2017 +50,VOC,voc,-34.9189226,138.60423668,University of Adelaide,edu,3b01a839d174dad6f2635cff7ebe7e1aaad701a4,citation,http://pdfs.semanticscholar.org/3b01/a839d174dad6f2635cff7ebe7e1aaad701a4.pdf,Image Co-localization by Mimicking a Good Detector's Confidence Score Distribution,2016 +51,VOC,voc,31.83907195,117.26420748,University of Science and Technology of China,edu,d467035d83fb4e86c4a47b2ca87894388deb8c44,citation,https://pdfs.semanticscholar.org/d467/035d83fb4e86c4a47b2ca87894388deb8c44.pdf,Relief R-CNN : Utilizing Convolutional Feature Interrelationship for Object Detection,2016 +52,VOC,voc,30.284151,-97.73195598,University of Texas at Austin,edu,264a2b946fae4af23c646cc08fc56947b5be82cf,citation,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2015.7301302,Robust object recognition in RGB-D egocentric videos based on Sparse Affine Hull Kernel,2015 +53,VOC,voc,34.0687788,-118.4450094,"University of California, Los Angeles",edu,480888bad59b314236f2d947ebf308ae146c98e4,citation,https://arxiv.org/pdf/1511.06881.pdf,Zoom Better to See Clearer: Human and Object Parsing with Hierarchical Auto-Zoom Net,2016 +54,VOC,voc,25.01682835,121.53846924,National Taiwan University,edu,a1ee55d529e04a80f4eae3b30d0961a985a64fa4,citation,http://www.cs.utexas.edu/~ycsu/publications/mm029-su.pdf,Enabling low bitrate mobile visual recognition: a performance versus bandwidth evaluation,2013 +55,VOC,voc,-34.9189226,138.60423668,University of Adelaide,edu,0cd736baf31dceea1cc39ac72e00b65587f5fb9e,citation,http://pdfs.semanticscholar.org/4ad0/b6f189718a7287c6e7b90eb05331e56db334.pdf,Learning Hash Functions Using Column Generation,2013 +56,VOC,voc,39.2899685,-76.62196103,University of Maryland,edu,6424574cb92b316928c37232869bfadcb5b4c20f,citation,https://arxiv.org/pdf/1711.05282.pdf,C-WSL: Count-Guided Weakly Supervised Localization,2018 +57,VOC,voc,47.6543238,-122.30800894,University of Washington,edu,51eba481dac6b229a7490f650dff7b17ce05df73,citation,http://grail.cs.washington.edu/wp-content/uploads/2016/09/yatskar2016srv.pdf,Situation Recognition: Visual Semantic Role Labeling for Image Understanding,2016 +58,VOC,voc,47.3764534,8.54770931,ETH Zürich,edu,961a5d5750f18e91e28a767b3cb234a77aac8305,citation,http://pdfs.semanticscholar.org/961a/5d5750f18e91e28a767b3cb234a77aac8305.pdf,Face Detection without Bells and Whistles,2014 +59,VOC,voc,40.11116745,-88.22587665,"University of Illinois, Urbana-Champaign",edu,0c05f60998628884a9ac60116453f1a91bcd9dda,citation,http://pdfs.semanticscholar.org/7b19/80d4ac1730fd0145202a8cb125bf05d96f01.pdf,Optimizing Open-Ended Crowdsourcing: The Next Frontier in Crowdsourced Data Management,2016 +60,VOC,voc,40.11116745,-88.22587665,"University of Illinois, Urbana-Champaign",edu,efa2aacb0fbee857015fad1dba72767f56be6f39,citation,https://pdfs.semanticscholar.org/efa2/aacb0fbee857015fad1dba72767f56be6f39.pdf,Aggregating Crowdsourced Image Segmentations,2018 +61,VOC,voc,37.3936717,-122.0807262,Facebook,company,efa2aacb0fbee857015fad1dba72767f56be6f39,citation,https://pdfs.semanticscholar.org/efa2/aacb0fbee857015fad1dba72767f56be6f39.pdf,Aggregating Crowdsourced Image Segmentations,2018 +62,VOC,voc,34.0687788,-118.4450094,"University of California, Los Angeles",edu,17113b0f647ce05b2e50d1d40c856370f94da7de,citation,http://pdfs.semanticscholar.org/1711/3b0f647ce05b2e50d1d40c856370f94da7de.pdf,Zoom Better to See Clearer: Human Part Segmentation with Auto Zoom Net,2015 +63,VOC,voc,40.11116745,-88.22587665,"University of Illinois, Urbana-Champaign",edu,549d55a06c5402696e063ce36b411f341a64f8a9,citation,http://arxiv.org/pdf/1511.06078v1.pdf,Learning Deep Structure-Preserving Image-Text Embeddings,2016 +64,VOC,voc,33.776033,-84.39884086,Georgia Institute of Technology,edu,549d55a06c5402696e063ce36b411f341a64f8a9,citation,http://arxiv.org/pdf/1511.06078v1.pdf,Learning Deep Structure-Preserving Image-Text Embeddings,2016 +65,VOC,voc,35.9020448,139.93622009,University of Tokyo,edu,44bfa5311f0921664e9036f63cadd71049a35f35,citation,https://pdfs.semanticscholar.org/44bf/a5311f0921664e9036f63cadd71049a35f35.pdf,Faster R-CNN-Based Glomerular Detection in Multistained Human Whole Slide Images,2018 +66,VOC,voc,49.2579566,7.04577417,Max Planck Institute for Informatics,edu,133f1f2679892d408420d8092283539010723359,citation,http://arxiv.org/pdf/1502.05082v3.pdf,What Makes for Effective Detection Proposals?,2016 +67,VOC,voc,60.18558755,24.8242733,Aalto University,edu,98d04187f091f402a90a6a9a2108393ca5f91563,citation,https://arxiv.org/pdf/1807.09828.pdf,ADVIO: An Authentic Dataset for Visual-Inertial Odometry,2018 +68,VOC,voc,61.44964205,23.85877462,Tampere University of Technology,edu,98d04187f091f402a90a6a9a2108393ca5f91563,citation,https://arxiv.org/pdf/1807.09828.pdf,ADVIO: An Authentic Dataset for Visual-Inertial Odometry,2018 +69,VOC,voc,37.4102193,-122.05965487,Carnegie Mellon University,edu,f8015e31d1421f6aee5e17fc3907070b8e0a5e59,citation,http://pdfs.semanticscholar.org/f801/5e31d1421f6aee5e17fc3907070b8e0a5e59.pdf,Towards Usable Multimedia Event Detection from Web Videos,2016 +70,VOC,voc,34.0224149,-118.28634407,University of Southern California,edu,6b9e8acef979c13fa9ecc8fe9b635b312fedbcbe,citation,https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Chang_Multiple_Structured-Instance_Learning_2014_CVPR_paper.pdf,Multiple Structured-Instance Learning for Semantic Segmentation with Uncertain Training Data,2014 +71,VOC,voc,51.4584837,-2.6097752,University of Bristol,edu,72fd97d21d6465d4bb407b6f8f3accd4419a2fb4,citation,https://pdfs.semanticscholar.org/384a/ea88ffd79295c99bcb80552f8655dbb87509.pdf,Automated Identification of Individual Great White Sharks from Unrestricted Fin Imagery,2015 +72,VOC,voc,40.0044795,116.370238,Chinese Academy of Sciences,edu,62b83bf64f200ebb9fa16dfb7108b85e390b2207,citation,https://arxiv.org/pdf/1807.11236.pdf,Semantic Labeling in Very High Resolution Images via a Self-Cascaded Convolutional Neural Network,2018 +73,VOC,voc,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,62b83bf64f200ebb9fa16dfb7108b85e390b2207,citation,https://arxiv.org/pdf/1807.11236.pdf,Semantic Labeling in Very High Resolution Images via a Self-Cascaded Convolutional Neural Network,2018 +74,VOC,voc,37.4102193,-122.05965487,Carnegie Mellon University,edu,2577211aeaaa1f2245ddc379564813bee3d46c06,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Misra_Seeing_Through_the_CVPR_2016_paper.pdf,Seeing through the Human Reporting Bias: Visual Classifiers from Noisy Human-Centric Labels,2016 +75,VOC,voc,47.6423318,-122.1369302,Microsoft,company,2577211aeaaa1f2245ddc379564813bee3d46c06,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Misra_Seeing_Through_the_CVPR_2016_paper.pdf,Seeing through the Human Reporting Bias: Visual Classifiers from Noisy Human-Centric Labels,2016 +76,VOC,voc,51.7534538,-1.25400997,University of Oxford,edu,3900fb44902396f94fb070be41199b4beecc9081,citation,https://arxiv.org/pdf/1612.02101.pdf,Bottom-Up Top-Down Cues for Weakly-Supervised Semantic Segmentation,2017 +77,VOC,voc,34.0687788,-118.4450094,"University of California, Los Angeles",edu,32c45df9e11e6751bcea1b928f398f6c134d22c6,citation,http://pdfs.semanticscholar.org/32c4/5df9e11e6751bcea1b928f398f6c134d22c6.pdf,Towards Unified Object Detection and Semantic Segmentation,2014 +78,VOC,voc,42.36782045,-71.12666653,Harvard University,edu,2bcd59835528c583bb5b310522a5ba6e99c58b15,citation,http://pdfs.semanticscholar.org/c0ef/596a212d0e40c79c6760673fe122e517b43c.pdf,Multi-class Open Set Recognition Using Probability of Inclusion,2014 +79,VOC,voc,55.94951105,-3.19534913,University of Edinburgh,edu,3920a205990abc7883c70cc96a0410a2d056c2a8,citation,http://groups.inf.ed.ac.uk/calvin/Publications/papazoglouICCV2013-camera-ready.pdf,Fast Object Segmentation in Unconstrained Video,2013 +80,VOC,voc,1.2962018,103.77689944,National University of Singapore,edu,b6810adcfd507b2e019ebc8afe4f44f953faf946,citation,https://pdfs.semanticscholar.org/b681/0adcfd507b2e019ebc8afe4f44f953faf946.pdf,ML-LocNet: Improving Object Localization with Multi-view Learning Network,2018 +81,VOC,voc,40.0141905,-83.0309143,University of Electronic Science and Technology of China,edu,b6810adcfd507b2e019ebc8afe4f44f953faf946,citation,https://pdfs.semanticscholar.org/b681/0adcfd507b2e019ebc8afe4f44f953faf946.pdf,ML-LocNet: Improving Object Localization with Multi-view Learning Network,2018 +82,VOC,voc,33.776033,-84.39884086,Georgia Institute of Technology,edu,0e08cf0b19f0600dadce0f6694420d643ea9828b,citation,http://openaccess.thecvf.com/content_iccv_2015/papers/Humayun_The_Middle_Child_ICCV_2015_paper.pdf,The Middle Child Problem: Revisiting Parametric Min-Cut and Seeds for Object Proposals,2015 +83,VOC,voc,45.5198289,-122.67797964,Oregon State University,edu,0e08cf0b19f0600dadce0f6694420d643ea9828b,citation,http://openaccess.thecvf.com/content_iccv_2015/papers/Humayun_The_Middle_Child_ICCV_2015_paper.pdf,The Middle Child Problem: Revisiting Parametric Min-Cut and Seeds for Object Proposals,2015 +84,VOC,voc,30.19331415,120.11930822,Zhejiang University,edu,81bf7a4b8b3c21d42cb82f946f762c94031e11b8,citation,https://pdfs.semanticscholar.org/81bf/7a4b8b3c21d42cb82f946f762c94031e11b8.pdf,Segmentation of Nerve on Ultrasound Images Using Deep Adversarial Network,2017 +85,VOC,voc,52.4107358,-4.05295501,Aberystwyth University,edu,30d8fbb9345cdf1096635af7d39a9b04af9b72f9,citation,https://pdfs.semanticscholar.org/30d8/fbb9345cdf1096635af7d39a9b04af9b72f9.pdf,Watching plants grow - a position paper on computer vision and Arabidopsis thaliana,2017 +86,VOC,voc,43.66333345,-79.39769975,University of Toronto,edu,87204e4e1a96b8f59cb91828199dacd192292231,citation,http://pdfs.semanticscholar.org/8720/4e4e1a96b8f59cb91828199dacd192292231.pdf,Towards Real-Time Detection and Tracking of Basketball Players using Deep Neural Networks,2017 +87,VOC,voc,40.00229045,116.32098908,Tsinghua University,edu,30a4637cbc461838c151073b265fb08e00492ff4,citation,http://faculty.ucmerced.edu/mhyang/papers/cvpr16_object_localization.pdf,Weakly Supervised Object Localization with Progressive Domain Adaptation,2016 +88,VOC,voc,50.7338124,7.1022465,University of Bonn,edu,606cfdcc43203351dbb944a3bb3719695e557e37,citation,https://pdfs.semanticscholar.org/606c/fdcc43203351dbb944a3bb3719695e557e37.pdf,Ex Paucis Plura : Learning Affordance Segmentation from Very Few Examples,2018 +89,VOC,voc,39.2899685,-76.62196103,University of Maryland,edu,47b6cd69c0746688f6e17b37d73fa12422826dbc,citation,http://pdfs.semanticscholar.org/47b6/cd69c0746688f6e17b37d73fa12422826dbc.pdf,Self corrective Perturbations for Semantic Segmentation and Classification,2017 +90,VOC,voc,38.99203005,-76.9461029,University of Maryland College Park,edu,47b6cd69c0746688f6e17b37d73fa12422826dbc,citation,http://pdfs.semanticscholar.org/47b6/cd69c0746688f6e17b37d73fa12422826dbc.pdf,Self corrective Perturbations for Semantic Segmentation and Classification,2017 +91,VOC,voc,42.8298248,-73.87719385,GE Global Research Center,edu,47b6cd69c0746688f6e17b37d73fa12422826dbc,citation,http://pdfs.semanticscholar.org/47b6/cd69c0746688f6e17b37d73fa12422826dbc.pdf,Self corrective Perturbations for Semantic Segmentation and Classification,2017 +92,VOC,voc,51.7534538,-1.25400997,University of Oxford,edu,14421119527aa5882e1552a651fbd2d73bc94637,citation,http://pdfs.semanticscholar.org/9b81/86b6bc1e05d7a473d2afebc8a12698d88691.pdf,Searching for objects driven by context,2012 +93,VOC,voc,55.94951105,-3.19534913,University of Edinburgh,edu,14421119527aa5882e1552a651fbd2d73bc94637,citation,http://pdfs.semanticscholar.org/9b81/86b6bc1e05d7a473d2afebc8a12698d88691.pdf,Searching for objects driven by context,2012 +94,VOC,voc,40.11116745,-88.22587665,"University of Illinois, Urbana-Champaign",edu,3410a1489d04ec6fcfbb3d76d39055117931ccf0,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2013.126,Learning Collections of Part Models for Object Recognition,2013 +95,VOC,voc,40.00229045,116.32098908,Tsinghua University,edu,69b647afe6526256a93033eac14ce470204e7bae,citation,http://pdfs.semanticscholar.org/d7dd/4fb9074db71ebf9155d64b439102d4c7b0c5.pdf,Training Deep Neural Networks via Direct Loss Minimization,2016 +96,VOC,voc,43.66333345,-79.39769975,University of Toronto,edu,69b647afe6526256a93033eac14ce470204e7bae,citation,http://pdfs.semanticscholar.org/d7dd/4fb9074db71ebf9155d64b439102d4c7b0c5.pdf,Training Deep Neural Networks via Direct Loss Minimization,2016 +97,VOC,voc,55.94951105,-3.19534913,University of Edinburgh,edu,81825711c2aaa1b9d3ead1a300e71c4353a41382,citation,https://arxiv.org/pdf/1607.03476.pdf,End-to-end training of object class detectors for mean average precision,2016 +98,VOC,voc,39.993008,116.329882,SenseTime,company,2ce073da76e6ed87eda2da08da0e00f4f060f1a6,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2016.78,Deep Saliency with Encoded Low Level Distance Map and High Level Features,2016 +99,VOC,voc,51.7534538,-1.25400997,University of Oxford,edu,2313c827d3cb9a291b6a00d015c29580862bbdcc,citation,https://arxiv.org/pdf/1808.03575.pdf,Weakly- and Semi-supervised Panoptic Segmentation,2018 +100,VOC,voc,37.4102193,-122.05965487,Carnegie Mellon University,edu,839a2155995acc0a053a326e283be12068b35cb8,citation,http://pdfs.semanticscholar.org/839a/2155995acc0a053a326e283be12068b35cb8.pdf,Handcrafted Local Features are Convolutional Neural Networks,2015 +101,VOC,voc,32.0565957,118.77408833,Nanjing University,edu,634e02d6107529d672cbbdf5b97990966e289829,citation,https://arxiv.org/pdf/1802.05394.pdf,Cost-Effective Training of Deep CNNs with Active Model Adaptation,2018 +102,VOC,voc,56.45796755,-2.98214831,University of Dundee,edu,d0137881f6c791997337b9cc7f1efbd61977270d,citation,http://pdfs.semanticscholar.org/d013/7881f6c791997337b9cc7f1efbd61977270d.pdf,"University of Dundee An automated pattern recognition system for classifying indirect immunofluorescence images for HEp-2 cells and specimens Manivannan,",2016 +103,VOC,voc,42.2942142,-83.71003894,University of Michigan,edu,ed173a39f4cd980eef319116b6ba39cec1b37c42,citation,https://arxiv.org/pdf/1611.05424.pdf,Associative Embedding: End-to-End Learning for Joint Detection and Grouping,2017 +104,VOC,voc,40.00229045,116.32098908,Tsinghua University,edu,ed173a39f4cd980eef319116b6ba39cec1b37c42,citation,https://arxiv.org/pdf/1611.05424.pdf,Associative Embedding: End-to-End Learning for Joint Detection and Grouping,2017 +105,VOC,voc,37.43131385,-122.16936535,Stanford University,edu,84cf838be40e2ab05732fbefbb93ccb2afb0cb48,citation,http://pdfs.semanticscholar.org/84cf/838be40e2ab05732fbefbb93ccb2afb0cb48.pdf,Recognizing Handwritten Characters,2016 +106,VOC,voc,37.26728,126.9841151,Seoul National University,edu,b082f440ee91e2751701401919584203b37e1e1a,citation,https://pdfs.semanticscholar.org/303c/28f1ba643a7cd88255cc379e79052fb7e7b1.pdf,SeedNet : Automatic Seed Generation with Deep Reinforcement Learning for Robust Interactive Segmentation,2018 +107,VOC,voc,22.2081469,114.25964115,University of Hong Kong,edu,6008213e4270e88cb414459de759c961469b92dd,citation,https://arxiv.org/pdf/1802.09129.pdf,"Multi-Evidence Filtering and Fusion for Multi-Label Classification, Object Detection and Semantic Segmentation Based on Weakly Supervised Learning",2018 +108,VOC,voc,33.776033,-84.39884086,Georgia Institute of Technology,edu,90b4470032f2796a347a0080bcd833c2db0e8bf0,citation,https://arxiv.org/pdf/1807.07760.pdf,Improving Image Clustering With Multiple Pretrained CNN Feature Extractors,2018 +109,VOC,voc,40.0044795,116.370238,Chinese Academy of Sciences,edu,beecaf2d6e9d102b6b2459ea38e15179a4b55ffd,citation,https://arxiv.org/pdf/1611.09587.pdf,Surveillance Video Parsing with Single Frame Supervision,2017 +110,VOC,voc,41.3868913,2.16352385,University of Barcelona,edu,0fb8317a8bf5feaf297af8e9b94c50c5ed0e8277,citation,http://pdfs.semanticscholar.org/0fb8/317a8bf5feaf297af8e9b94c50c5ed0e8277.pdf,Detecting Hands in Egocentric Videos: Towards Action Recognition,2017 +111,VOC,voc,51.7534538,-1.25400997,University of Oxford,edu,0e0179eb4b43016691f0f1473a08089dda21f8f0,citation,http://pdfs.semanticscholar.org/0e01/79eb4b43016691f0f1473a08089dda21f8f0.pdf,The Art of Detection,2016 +112,VOC,voc,49.2579566,7.04577417,Max Planck Institute for Informatics,edu,135c957f6a80f250507c7707479e584c288f430f,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2014.498,Image-Based Synthesis and Re-synthesis of Viewpoints Guided by 3D Models,2014 +113,VOC,voc,39.00041165,-77.10327775,National Institutes of Health,edu,c72b063e23b8b45b57a42ebc2f9714297c539a6f,citation,https://arxiv.org/pdf/1801.04334.pdf,TieNet: Text-Image Embedding Network for Common Thorax Disease Classification and Reporting in Chest X-rays,2018 +114,VOC,voc,36.05238585,140.11852361,National Institute of Advanced Industrial Science and Technology,edu,061ffd3967540424ac4e4066f4a605d8318bab90,citation,https://staff.aist.go.jp/takumi.kobayashi/publication/2014/CVPR2014.pdf,Dirichlet-Based Histogram Feature Transform for Image Classification,2014 +115,VOC,voc,42.3583961,-71.09567788,MIT,edu,1a2e9a56e5f71bf95a2f68b6e67e2aaa1c6bf91e,citation,http://pdfs.semanticscholar.org/1a2e/9a56e5f71bf95a2f68b6e67e2aaa1c6bf91e.pdf,FPM: Fine Pose Parts-Based Model with 3D CAD Models,2014 +116,VOC,voc,51.7534538,-1.25400997,University of Oxford,edu,c6f58adf4a5ee8499cbc9b9bc1e6f1c39f1f8eae,citation,https://pdfs.semanticscholar.org/c6f5/8adf4a5ee8499cbc9b9bc1e6f1c39f1f8eae.pdf,Earn to P Ay a Ttention,2018 +117,VOC,voc,32.87935255,-117.23110049,"University of California, San Diego",edu,3c8db2ca155ce4e15ec8a2c4c4b979de654fb296,citation,http://pages.ucsd.edu/~ztu/publication/iccv15_hed.pdf,Holistically-Nested Edge Detection,2015 +118,VOC,voc,59.34986645,18.07063213,"KTH Royal Institute of Technology, Stockholm",edu,8ccd6aaf1ee4b66c13fffbf560e3920f9bdf5f10,citation,http://pdfs.semanticscholar.org/8ccd/6aaf1ee4b66c13fffbf560e3920f9bdf5f10.pdf,A multitask deep learning model for real-time deployment in embedded systems,2017 +119,VOC,voc,53.5238572,-113.52282665,University of Alberta,edu,b4f5cf797a1c857f32e5740d53d9990bc925af2b,citation,https://pdfs.semanticscholar.org/b4f5/cf797a1c857f32e5740d53d9990bc925af2b.pdf,Review of Segmentation with Deep Learning and Discover Its Application in Ultrasound Images,2018 +120,VOC,voc,49.2579566,7.04577417,Max Planck Institute for Informatics,edu,3bad18554678ab46bbbf9de41d36423bc8083c83,citation,http://arxiv.org/pdf/1511.07803v1.pdf,Weakly Supervised Object Boundaries,2016 +121,VOC,voc,24.7925484,120.9951183,National Tsing Hua University,edu,07191c2047b5b643dd72a0583c1d537ba59f977a,citation,http://pdfs.semanticscholar.org/0719/1c2047b5b643dd72a0583c1d537ba59f977a.pdf,Interactive Segmentation from 1-Bit Feedback,2016 +122,VOC,voc,37.26728,126.9841151,Seoul National University,edu,ae6e8851dfd9c97e37e1cbd61b21cc54d5e2b9c7,citation,https://arxiv.org/pdf/1802.04977.pdf,Paraphrasing Complex Network: Network Compression via Factor Transfer,2018 +123,VOC,voc,37.26728,126.9841151,Seoul National University,edu,5375a3344017d9502ebb4170325435de3da1fa16,citation,https://doi.org/10.1007/978-3-642-37447-0,Computer Vision – ACCV 2012,2012 +124,VOC,voc,40.0044795,116.370238,Chinese Academy of Sciences,edu,5375a3344017d9502ebb4170325435de3da1fa16,citation,https://doi.org/10.1007/978-3-642-37447-0,Computer Vision – ACCV 2012,2012 +125,VOC,voc,33.776033,-84.39884086,Georgia Institute of Technology,edu,5375a3344017d9502ebb4170325435de3da1fa16,citation,https://doi.org/10.1007/978-3-642-37447-0,Computer Vision – ACCV 2012,2012 +126,VOC,voc,55.94951105,-3.19534913,University of Edinburgh,edu,fdfd57d4721174eba288e501c0c120ad076cdca8,citation,https://arxiv.org/pdf/1704.07129.pdf,An Analysis of Action Recognition Datasets for Language and Vision Tasks,2017 +127,VOC,voc,32.0565957,118.77408833,Nanjing University,edu,ec83c63e28ae2a658bc76a6750e078c3a54b9760,citation,https://arxiv.org/pdf/1705.02758.pdf,Deep Descriptor Transforming for Image Co-Localization,2017 +128,VOC,voc,-34.9189226,138.60423668,University of Adelaide,edu,ec83c63e28ae2a658bc76a6750e078c3a54b9760,citation,https://arxiv.org/pdf/1705.02758.pdf,Deep Descriptor Transforming for Image Co-Localization,2017 +129,VOC,voc,59.34986645,18.07063213,"KTH Royal Institute of Technology, Stockholm",edu,b1177aad0db8bd6b605ffe0d68addaf97b1f9a6b,citation,https://pdfs.semanticscholar.org/5035/733022916db7e5965c565327e169da1e2f39.pdf,Visual Representations and Models: From Latent SVM to Deep Learning,2016 +130,VOC,voc,31.83907195,117.26420748,University of Science and Technology of China,edu,a5ae7d662ed086bc5b0c9a2c1dc54fcb23635000,citation,https://pdfs.semanticscholar.org/a5ae/7d662ed086bc5b0c9a2c1dc54fcb23635000.pdf,Relief R-CNN : Utilizing Convolutional Feature Interrelationship for Fast Object Detection Deployment,2016 +131,VOC,voc,22.53521465,113.9315911,Shenzhen University,edu,a5ae7d662ed086bc5b0c9a2c1dc54fcb23635000,citation,https://pdfs.semanticscholar.org/a5ae/7d662ed086bc5b0c9a2c1dc54fcb23635000.pdf,Relief R-CNN : Utilizing Convolutional Feature Interrelationship for Fast Object Detection Deployment,2016 +132,VOC,voc,53.38522185,-6.25740874,Dublin City University,edu,9528e2e8c20517ab916f803c0371abb4f0ed488b,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Pan_Shallow_and_Deep_CVPR_2016_paper.pdf,Shallow and Deep Convolutional Networks for Saliency Prediction,2016 +133,VOC,voc,55.94951105,-3.19534913,University of Edinburgh,edu,e2272f50ffa33b8e41509e4b795ad5a4eb27bb46,citation,https://arxiv.org/pdf/1607.07671.pdf,Region-based semantic segmentation with end-to-end training,2016 +134,VOC,voc,51.7534538,-1.25400997,University of Oxford,edu,b8d61dc56a4112e0317c6a7323417ee649476148,citation,https://arxiv.org/pdf/1807.05636.pdf,Cross Pixel Optical Flow Similarity for Self-Supervised Learning,2018 +135,VOC,voc,40.0044795,116.370238,Chinese Academy of Sciences,edu,db0a4af734dab1854c2e8dfe499fe0e353226e45,citation,https://pdfs.semanticscholar.org/db0a/4af734dab1854c2e8dfe499fe0e353226e45.pdf,Hot Anchors: A Heuristic Anchors Sampling Method in RCNN-Based Object Detection,2018 +136,VOC,voc,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,db0a4af734dab1854c2e8dfe499fe0e353226e45,citation,https://pdfs.semanticscholar.org/db0a/4af734dab1854c2e8dfe499fe0e353226e45.pdf,Hot Anchors: A Heuristic Anchors Sampling Method in RCNN-Based Object Detection,2018 +137,VOC,voc,33.776033,-84.39884086,Georgia Institute of Technology,edu,ffe0f43206169deef3a2bf64cec90fe35bb1a8e5,citation,http://pdfs.semanticscholar.org/ffe0/f43206169deef3a2bf64cec90fe35bb1a8e5.pdf,"Automated Processing of Imaging Data through Multi-tiered Classification of Biological Structures Illustrated Using Caenorhabditis elegans +",2015 +138,VOC,voc,55.94951105,-3.19534913,University of Edinburgh,edu,ffe0f43206169deef3a2bf64cec90fe35bb1a8e5,citation,http://pdfs.semanticscholar.org/ffe0/f43206169deef3a2bf64cec90fe35bb1a8e5.pdf,"Automated Processing of Imaging Data through Multi-tiered Classification of Biological Structures Illustrated Using Caenorhabditis elegans +",2015 +139,VOC,voc,45.77445695,126.67684917,Harbin Engineering University,edu,479eb6579194d4d944671dfe5e90b122ca4b58fd,citation,https://pdfs.semanticscholar.org/479e/b6579194d4d944671dfe5e90b122ca4b58fd.pdf,Structural inference embedded adversarial networks for scene parsing,2018 +140,VOC,voc,34.2469152,108.91061982,Northwestern Polytechnical University,edu,479eb6579194d4d944671dfe5e90b122ca4b58fd,citation,https://pdfs.semanticscholar.org/479e/b6579194d4d944671dfe5e90b122ca4b58fd.pdf,Structural inference embedded adversarial networks for scene parsing,2018 +141,VOC,voc,1.29500195,103.84909214,Singapore Management University,edu,d289ce63055c10937e5715e940a4bb9d0af7a8c5,citation,http://dl.acm.org/citation.cfm?id=3081360,DeepMon: Mobile GPU-based Deep Learning Framework for Continuous Vision Applications,2017 +142,VOC,voc,60.18558755,24.8242733,Aalto University,edu,061bba574c7c2ef0ba9de91afc4fcab70feddd4f,citation,http://doi.ieeecomputersociety.org/10.1109/ICCV.2017.272,Paying Attention to Descriptions Generated by Image Captioning Models,2017 +143,VOC,voc,28.59899755,-81.19712501,University of Central Florida,edu,061bba574c7c2ef0ba9de91afc4fcab70feddd4f,citation,http://doi.ieeecomputersociety.org/10.1109/ICCV.2017.272,Paying Attention to Descriptions Generated by Image Captioning Models,2017 +144,VOC,voc,34.7275714,135.2371,Kobe University,edu,ee2217f9d22d6a18aaf97f05768035c38305d1fa,citation,https://doi.org/10.1109/APSIPA.2015.7415501,Detection of facial parts via deformable part model using part annotation,2015 +145,VOC,voc,50.7791703,6.06728733,RWTH Aachen University,edu,18219d85bb14f851fc4714df19cc7f38dff8ddc3,citation,http://pdfs.semanticscholar.org/1821/9d85bb14f851fc4714df19cc7f38dff8ddc3.pdf,Online Adaptation of Convolutional Neural Networks for the 2017 DAVIS Challenge on Video Object Segmentation,2017 +146,VOC,voc,31.20081505,121.42840681,Shanghai Jiao Tong University,edu,da44881db32c132eb9cdef524618e3c8ed340b47,citation,https://arxiv.org/pdf/1802.00383.pdf,Annotation-Free and One-Shot Learning for Instance Segmentation of Homogeneous Object Clusters,2018 +147,VOC,voc,50.7338124,7.1022465,University of Bonn,edu,cc94b423c298003f0f164e63e63177d443291a77,citation,https://arxiv.org/pdf/1805.03994.pdf,Multi-View Semantic Labeling of 3D Point Clouds for Automated Plant Phenotyping,2018 +148,VOC,voc,39.9922379,116.30393816,Peking University,edu,83a811fd947415df2413d15386dbc558f07595cb,citation,https://arxiv.org/pdf/1709.08295.pdf,Fine-grained Discriminative Localization via Saliency-guided Faster R-CNN,2017 +149,VOC,voc,-33.8809651,151.20107299,University of Technology Sydney,edu,3a5f5aca6138abcf22ede1af5572e01eb0f761d1,citation,https://pdfs.semanticscholar.org/3a5f/5aca6138abcf22ede1af5572e01eb0f761d1.pdf,Optimizing Multivariate Performance Measures from Multi-View Data,2016 +150,VOC,voc,34.2469152,108.91061982,Northwestern Polytechnical University,edu,ce300b006f42c1b64ca0e53d1cf28d11a98ece8f,citation,https://pdfs.semanticscholar.org/ce30/0b006f42c1b64ca0e53d1cf28d11a98ece8f.pdf,Learning Multi-Instance Enriched Image Representations via Non-Greedy Ratio Maximization of the l 1-Norm Distances,0 +151,VOC,voc,34.0224149,-118.28634407,University of Southern California,edu,71b038958df0b7855fc7b8b8e7dcde8537a7c1ad,citation,http://pdfs.semanticscholar.org/71b0/38958df0b7855fc7b8b8e7dcde8537a7c1ad.pdf,Kernel Methods for Unsupervised Domain Adaptation by Boqing Gong,2015 +152,VOC,voc,34.2469152,108.91061982,Northwestern Polytechnical University,edu,af7cab9b4a2a2a565a3efe0a226c517f47289077,citation,https://arxiv.org/pdf/1803.10910.pdf,Deep Unsupervised Saliency Detection: A Multiple Noisy Labeling Perspective,2018 +153,VOC,voc,-35.2776999,149.118527,Australian National University,edu,af7cab9b4a2a2a565a3efe0a226c517f47289077,citation,https://arxiv.org/pdf/1803.10910.pdf,Deep Unsupervised Saliency Detection: A Multiple Noisy Labeling Perspective,2018 +154,VOC,voc,-34.9189226,138.60423668,University of Adelaide,edu,3a6ebdfb6375093885e846153a48139ef1ecfae6,citation,http://arxiv.org/abs/1411.7466,The treasure beneath convolutional layers: Cross-convolutional-layer pooling for image classification,2015 +155,VOC,voc,51.24303255,-0.59001382,University of Surrey,edu,a7e9d230bc44dfbe56757f3025d5b4caa49032f3,citation,http://pdfs.semanticscholar.org/a7e9/d230bc44dfbe56757f3025d5b4caa49032f3.pdf,Unity in Diversity: Discovering Topics from Words - Information Theoretic Co-clustering for Visual Categorization,2012 +156,VOC,voc,37.5557271,127.0436642,Hanyang University,edu,50137d663802224e683951c48970496b38b02141,citation,http://pdfs.semanticscholar.org/5013/7d663802224e683951c48970496b38b02141.pdf,DETRAC: A New Benchmark and Protocol for Multi-Object Tracking,2015 +157,VOC,voc,37.4102193,-122.05965487,Carnegie Mellon University,edu,07de8371ad4901356145722aa29abaeafd0986b9,citation,http://pdfs.semanticscholar.org/07de/8371ad4901356145722aa29abaeafd0986b9.pdf,Towards Usable Multimedia Event Detection,2017 +158,VOC,voc,41.21002475,-73.80407056,IBM Thomas J. Watson Research Center,company,af386bb1b5e8c9f65b3ae836198a93aa860d6331,citation,https://arxiv.org/pdf/1805.04574.pdf,Revisiting Dilated Convolution: A Simple Approach for Weakly- and Semi- Supervised Semantic Segmentation,2018 +159,VOC,voc,17.4454957,78.34854698,International Institute of Information Technology,edu,d6b1b0e60e1764982ef95d4ade8fcaa10bfb156a,citation,http://pdfs.semanticscholar.org/d6b1/b0e60e1764982ef95d4ade8fcaa10bfb156a.pdf,A Sketch-based Approach for Multimedia Retrieval,2016 +160,VOC,voc,51.49887085,-0.17560797,Imperial College London,edu,37b3637dab65b91a5c91bb6a583e69c448823cc1,citation,https://arxiv.org/pdf/1705.05994.pdf,Learning a Hierarchical Latent-Variable Model of 3D Shapes,2018 +161,VOC,voc,39.9574,-75.19026706,Drexel University,edu,83d16fb8f53156c9e2b28d75abb6532af515440f,citation,http://pdfs.semanticscholar.org/83d1/6fb8f53156c9e2b28d75abb6532af515440f.pdf,Large-scale Document Labeling using Supervised Sequence Embedding,2012 +162,VOC,voc,45.51181205,-122.68492999,Portland State University,edu,05e45f61dc7577c50114a382abc6e952ae24cdac,citation,https://pdfs.semanticscholar.org/05e4/5f61dc7577c50114a382abc6e952ae24cdac.pdf,"Object Detection and Recognition in Natural Settings by George William Dittmar A thesis submitted in partial fulfilment of the requirements of the degree Master of Science in Computer Science Thesis Committee: Melanie Mitchell, Chair",2012 +163,VOC,voc,37.4102193,-122.05965487,Carnegie Mellon University,edu,192235f5a9e4c9d6a28ec0d333e36f294b32f764,citation,http://www.andrew.cmu.edu/user/sjayasur/iccv.pdf,Reconfiguring the Imaging Pipeline for Computer Vision,2017 +164,VOC,voc,42.4505507,-76.4783513,Cornell University,edu,192235f5a9e4c9d6a28ec0d333e36f294b32f764,citation,http://www.andrew.cmu.edu/user/sjayasur/iccv.pdf,Reconfiguring the Imaging Pipeline for Computer Vision,2017 +165,VOC,voc,50.0764296,14.41802312,Czech Technical University,edu,bd4f2e7a196c0d6033a49390ee8836f4f551b7c8,citation,http://rrc.cvc.uab.es/files/Robust-Reading-Competition-Karatzas.pdf,ICDAR 2015 competition on Robust Reading,2015 +166,VOC,voc,33.59914655,130.22359848,Kyushu University,edu,bd4f2e7a196c0d6033a49390ee8836f4f551b7c8,citation,http://rrc.cvc.uab.es/files/Robust-Reading-Competition-Karatzas.pdf,ICDAR 2015 competition on Robust Reading,2015 +167,VOC,voc,49.2579566,7.04577417,Max Planck Institute for Informatics,edu,3d5575e9ba02128d94c20330f4525fc816411ec2,citation,https://arxiv.org/pdf/1612.02646.pdf,Learning Video Object Segmentation from Static Images,2017 +168,VOC,voc,51.7534538,-1.25400997,University of Oxford,edu,78f62042bfb3bb49ba10e142d118a9bb058b2a19,citation,http://pdfs.semanticscholar.org/78f6/2042bfb3bb49ba10e142d118a9bb058b2a19.pdf,WebSeg: Learning Semantic Segmentation from Web Searches,2018 +169,VOC,voc,40.11116745,-88.22587665,"University of Illinois, Urbana-Champaign",edu,0c7aac75ccd17d696cff2e1ce95db0493f5c18a2,citation,https://arxiv.org/pdf/1809.01123.pdf,VideoMatch: Matching Based Video Object Segmentation,2018 +170,VOC,voc,3.12267405,101.65356103,University of Malaya,edu,6c78add400f749c897dc3eb93996eda1c796e91c,citation,https://arxiv.org/pdf/1410.3752.pdf,Enhanced Random Forest with Image/Patch-Level Learning for Image Understanding,2014 +171,VOC,voc,51.49887085,-0.17560797,Imperial College London,edu,6c78add400f749c897dc3eb93996eda1c796e91c,citation,https://arxiv.org/pdf/1410.3752.pdf,Enhanced Random Forest with Image/Patch-Level Learning for Image Understanding,2014 +172,VOC,voc,39.9922379,116.30393816,Peking University,edu,6c78add400f749c897dc3eb93996eda1c796e91c,citation,https://arxiv.org/pdf/1410.3752.pdf,Enhanced Random Forest with Image/Patch-Level Learning for Image Understanding,2014 +173,VOC,voc,-34.9189226,138.60423668,University of Adelaide,edu,b61c0b11b1c25958d202b4f7ca772e1d95ee1037,citation,http://pdfs.semanticscholar.org/b61c/0b11b1c25958d202b4f7ca772e1d95ee1037.pdf,Bridging Category-level and Instance-level Semantic Image Segmentation,2016 +174,VOC,voc,34.0224149,-118.28634407,University of Southern California,edu,79894ddf290d3c7a768d634eceb7888564b5cf19,citation,https://arxiv.org/pdf/1708.01676.pdf,Query-Guided Regression Network with Context Policy for Phrase Grounding,2017 +175,VOC,voc,37.43131385,-122.16936535,Stanford University,edu,fec2a5a06a3aab5efe923a78d208ec747d5e4894,citation,https://arxiv.org/pdf/1805.12018.pdf,Generalizing to Unseen Domains via Adversarial Data Augmentation,2018 +176,VOC,voc,31.30104395,121.50045497,Fudan University,edu,5ac63895a7d3371a739d066bb1631fc178d8276a,citation,http://doi.acm.org/10.1145/3123266.3123379,Learning Semantic Feature Map for Visual Content Recognition,2017 +177,VOC,voc,39.2899685,-76.62196103,University of Maryland,edu,5ac63895a7d3371a739d066bb1631fc178d8276a,citation,http://doi.acm.org/10.1145/3123266.3123379,Learning Semantic Feature Map for Visual Content Recognition,2017 +178,VOC,voc,-34.40505545,150.87834655,University of Wollongong,edu,4e559f23bcf502c752f2938ad7f0182047b8d1e4,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Wang_A_Fast_Approximate_2013_CVPR_paper.pdf,A Fast Approximate AIB Algorithm for Distributional Word Clustering,2013 +179,VOC,voc,-35.2776999,149.118527,Australian National University,edu,7536b6a9f3cb4ae810e2ef6d0219134b4e546dd0,citation,http://pdfs.semanticscholar.org/7536/b6a9f3cb4ae810e2ef6d0219134b4e546dd0.pdf,Semi-Automatic Image Labelling Using Depth Information,2015 +180,VOC,voc,42.7298459,-73.67950216,Rensselaer Polytechnic Institute,edu,11b89011298e193d9e6a1d99302221c1d8645bda,citation,http://openaccess.thecvf.com/content_iccv_2015/papers/Gao_Structured_Feature_Selection_ICCV_2015_paper.pdf,Structured Feature Selection,2015 +181,VOC,voc,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,de3245c795bc50ebdb5d929c8da664341238264a,citation,https://arxiv.org/pdf/1705.08590.pdf,Generative Model With Coordinate Metric Learning for Object Recognition Based on 3D Models,2018 +182,VOC,voc,37.43131385,-122.16936535,Stanford University,edu,cc2eaa182f33defbb33d69e9547630aab7ed9c9c,citation,http://pdfs.semanticscholar.org/ce2e/e807a63bbdffa530c80915b04d11a7f29a21.pdf,Surpassing Humans and Computers with JELLYBEAN: Crowd-Vision-Hybrid Counting Algorithms,2015 +183,VOC,voc,40.00471095,-83.02859368,Ohio State University,edu,cc2eaa182f33defbb33d69e9547630aab7ed9c9c,citation,http://pdfs.semanticscholar.org/ce2e/e807a63bbdffa530c80915b04d11a7f29a21.pdf,Surpassing Humans and Computers with JELLYBEAN: Crowd-Vision-Hybrid Counting Algorithms,2015 +184,VOC,voc,40.11116745,-88.22587665,"University of Illinois, Urbana-Champaign",edu,cc2eaa182f33defbb33d69e9547630aab7ed9c9c,citation,http://pdfs.semanticscholar.org/ce2e/e807a63bbdffa530c80915b04d11a7f29a21.pdf,Surpassing Humans and Computers with JELLYBEAN: Crowd-Vision-Hybrid Counting Algorithms,2015 +185,VOC,voc,32.0565957,118.77408833,Nanjing University,edu,9c71e6f4e27b3a6f0f872ec683b0f6dfe0966c05,citation,http://pdfs.semanticscholar.org/9c71/e6f4e27b3a6f0f872ec683b0f6dfe0966c05.pdf,"Latent Dirichlet Allocation (LDA) and Topic modeling: models, applications, a survey",2017 +186,VOC,voc,1.2962018,103.77689944,National University of Singapore,edu,b88b83d2ffd30bf3bc3be3fb7492fd88f633b2fe,citation,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR2013/data/Papers/4989a827.pdf,Subcategory-Aware Object Classification,2013 +187,VOC,voc,1.2962018,103.77689944,National University of Singapore,edu,b6a3802075d460093977f8566c451f950edf7a47,citation,https://pdfs.semanticscholar.org/0999/e5baf505eed0df8e2661c29354f3757b3399.pdf,Facilitating and Exploring Planar Homogeneous Texture for Indoor Scene Understanding,2016 +188,VOC,voc,51.7555205,-1.2261597,Oxford Brookes University,edu,cd6cab9357f333ad9966abc76f830c190a1b7911,citation,https://pdfs.semanticscholar.org/cd6c/ab9357f333ad9966abc76f830c190a1b7911.pdf,"Recognition, reorganisation, reconstruction and reinteraction for scene understanding",2014 +189,VOC,voc,47.3764534,8.54770931,ETH Zürich,edu,0fe8b5503681128da84a8454a4cc94470adc09ea,citation,http://pdfs.semanticscholar.org/b96a/0ccae1d15cffe3b479b2c56d9132b05cd846.pdf,Sparsity Potentials for Detecting Objects with the Hough Transform,2012 +190,VOC,voc,35.7036227,51.35125097,Sharif University of Technology,edu,0fe8b5503681128da84a8454a4cc94470adc09ea,citation,http://pdfs.semanticscholar.org/b96a/0ccae1d15cffe3b479b2c56d9132b05cd846.pdf,Sparsity Potentials for Detecting Objects with the Hough Transform,2012 +191,VOC,voc,47.6423318,-122.1369302,Microsoft,company,9bbc952adb3e3c6091d45d800e806d3373a52bac,citation,https://pdfs.semanticscholar.org/9bbc/952adb3e3c6091d45d800e806d3373a52bac.pdf,Learning Visual Classifiers using Human-centric Annotations,2015 +192,VOC,voc,35.6572957,139.54255868,University of Electro-Communications,edu,6e209d7d33c0be8afae863f4e4e9c3e86826711f,citation,http://img.cs.uec.ac.jp/pub/conf16/161204shimok_1_ppt.pdf,Weakly-supervised segmentation by combining CNN feature maps and object saliency maps,2016 +193,VOC,voc,40.00229045,116.32098908,Tsinghua University,edu,46d85e1dc7057bef62647bd9241601e9896a1b02,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/2A_040_ext.pdf,Improving object proposals with multi-thresholding straddling expansion,2015 +194,VOC,voc,35.2742655,137.01327841,Chubu University,edu,67e3fac91c699c085d47774990572d8ccdc36f15,citation,http://pdfs.semanticscholar.org/67e3/fac91c699c085d47774990572d8ccdc36f15.pdf,Multiple Skip Connections and Dilated Convolutions for Semantic Segmentation,2017 +195,VOC,voc,34.0224149,-118.28634407,University of Southern California,edu,a4f29217d2120ed1490aea7e1c5b78c3b76e972f,citation,https://arxiv.org/pdf/1610.06907.pdf,Enhanced object detection via fusion with prior beliefs from image classification,2017 +196,VOC,voc,33.776033,-84.39884086,Georgia Institute of Technology,edu,f2d07a77711a8d74bbfa48a0436dae18a698b05a,citation,http://pdfs.semanticscholar.org/f2d0/7a77711a8d74bbfa48a0436dae18a698b05a.pdf,Composite Statistical Learning and Inference for Semantic Segmentation,2014 +197,VOC,voc,40.2075951,-8.42566148,University of Coimbra,edu,f2d07a77711a8d74bbfa48a0436dae18a698b05a,citation,http://pdfs.semanticscholar.org/f2d0/7a77711a8d74bbfa48a0436dae18a698b05a.pdf,Composite Statistical Learning and Inference for Semantic Segmentation,2014 +198,VOC,voc,55.7039571,13.1902011,Lund University,edu,f2d07a77711a8d74bbfa48a0436dae18a698b05a,citation,http://pdfs.semanticscholar.org/f2d0/7a77711a8d74bbfa48a0436dae18a698b05a.pdf,Composite Statistical Learning and Inference for Semantic Segmentation,2014 +199,VOC,voc,61.44964205,23.85877462,Tampere University of Technology,edu,ff11cb09e409996020a2dc3a8afc3b535e6b2482,citation,https://arxiv.org/pdf/1807.03142.pdf,Faster Bounding Box Annotation for Object Detection in Indoor Scenes,2018 +200,VOC,voc,35.84658875,127.1350133,Chonbuk National University,edu,e103fa24d7fa297cd206b22b3bf670bfda6c65c4,citation,https://pdfs.semanticscholar.org/e103/fa24d7fa297cd206b22b3bf670bfda6c65c4.pdf,Object Detection in Very High-Resolution Aerial Images Using One-Stage Densely Connected Feature Pyramid Network,2018 +201,VOC,voc,41.8268682,-71.40123146,Brown University,edu,9a781a01b5a9c210dd2d27db8b73b7d62bc64837,citation,http://pdfs.semanticscholar.org/9a78/1a01b5a9c210dd2d27db8b73b7d62bc64837.pdf,An Attempt to Build Object Detection Models by Reusing Parts,2013 +202,VOC,voc,1.2962018,103.77689944,National University of Singapore,edu,ac559888f996923c06b1cf90db6b57b12e582289,citation,http://pdfs.semanticscholar.org/ac55/9888f996923c06b1cf90db6b57b12e582289.pdf,Benchmarking neuromorphic vision: lessons learnt from computer vision,2015 +203,VOC,voc,47.3764534,8.54770931,ETH Zürich,edu,ac559888f996923c06b1cf90db6b57b12e582289,citation,http://pdfs.semanticscholar.org/ac55/9888f996923c06b1cf90db6b57b12e582289.pdf,Benchmarking neuromorphic vision: lessons learnt from computer vision,2015 +204,VOC,voc,39.2899685,-76.62196103,University of Maryland,edu,ac559888f996923c06b1cf90db6b57b12e582289,citation,http://pdfs.semanticscholar.org/ac55/9888f996923c06b1cf90db6b57b12e582289.pdf,Benchmarking neuromorphic vision: lessons learnt from computer vision,2015 +205,VOC,voc,55.94951105,-3.19534913,University of Edinburgh,edu,2a4fc35acaf09517e9c63821cadd428a84832416,citation,http://www.vision.ee.ethz.ch/en/publications/papers/proceedings/eth_biwi_00905.pdf,Learning object class detectors from weakly annotated video,2012 +206,VOC,voc,22.053565,113.39913285,Jilin University,edu,cd4850de71e4e858be5f5e6ef7f48d5bf7decea6,citation,http://pdfs.semanticscholar.org/cd48/50de71e4e858be5f5e6ef7f48d5bf7decea6.pdf,Distribution Entropy Boosted VLAD for Image Retrieval,2016 +207,VOC,voc,40.4319722,-86.92389368,Purdue University,edu,34b925a111ba29f73f5c0d1b363f357958d563c1,citation,https://www.microsoft.com/en-us/research/wp-content/uploads/2015/03/Shoaib_DATE_2015.pdf,SAPPHIRE: An always-on context-aware computer vision system for portable devices,2015 +208,VOC,voc,47.6423318,-122.1369302,Microsoft,company,34b925a111ba29f73f5c0d1b363f357958d563c1,citation,https://www.microsoft.com/en-us/research/wp-content/uploads/2015/03/Shoaib_DATE_2015.pdf,SAPPHIRE: An always-on context-aware computer vision system for portable devices,2015 +209,VOC,voc,24.7925484,120.9951183,National Tsing Hua University,edu,c76b611a986a2e09df22603d93b2d9125aaff369,citation,https://arxiv.org/pdf/1810.07050.pdf,Generating Self-Guided Dense Annotations for Weakly Supervised Semantic Segmentation,2018 +210,VOC,voc,22.053565,113.39913285,Jilin University,edu,1927d01b6b9acf865401b544e25b62a7ddbac5fa,citation,https://pdfs.semanticscholar.org/1927/d01b6b9acf865401b544e25b62a7ddbac5fa.pdf,An Enhanced Region Proposal Network for object detection using deep learning method,2018 +211,VOC,voc,-33.8809651,151.20107299,University of Technology Sydney,edu,1ecd20f7fc34344e396825d27bc5a9871ab0d0c2,citation,https://arxiv.org/pdf/1810.09091.pdf,SG-One: Similarity Guidance Network for One-Shot Semantic Segmentation,2018 +212,VOC,voc,42.3583961,-71.09567788,MIT,edu,26aa0aff1ea1baf848a521363cc455044690e090,citation,http://pdfs.semanticscholar.org/26aa/0aff1ea1baf848a521363cc455044690e090.pdf,A 2D + 3D Rich Data Approach to Scene Understanding,2013 +213,VOC,voc,46.0658836,11.1159894,University of Trento,edu,3548cb9ee54bd4c8b3421f1edd393da9038da293,citation,http://www.huppelen.nl/publications/2012cvprUnseenEventCompositionality.pdf,(Unseen) event recognition via semantic compositionality,2012 +214,VOC,voc,40.00229045,116.32098908,Tsinghua University,edu,25ee08db14dca641d085584909b551042618b8bf,citation,http://pdfs.semanticscholar.org/25ee/08db14dca641d085584909b551042618b8bf.pdf,Learning to Segment Instances in Videos with Spatial Propagation Network,2017 +215,VOC,voc,37.36566745,-120.42158888,"University of California, Merced",edu,25ee08db14dca641d085584909b551042618b8bf,citation,http://pdfs.semanticscholar.org/25ee/08db14dca641d085584909b551042618b8bf.pdf,Learning to Segment Instances in Videos with Spatial Propagation Network,2017 +216,VOC,voc,48.9095338,9.1831892,University of Stuttgart,edu,d0f81c31e11af1783644704321903a3d2bd83fd6,citation,https://pdfs.semanticscholar.org/d0f8/1c31e11af1783644704321903a3d2bd83fd6.pdf,3D Façade Labeling over Complex Scenarios: A Case Study Using Convolutional Neural Network and Structure-From-Motion,2018 +217,VOC,voc,50.7369302,-3.53647672,University of Exeter,edu,d0f81c31e11af1783644704321903a3d2bd83fd6,citation,https://pdfs.semanticscholar.org/d0f8/1c31e11af1783644704321903a3d2bd83fd6.pdf,3D Façade Labeling over Complex Scenarios: A Case Study Using Convolutional Neural Network and Structure-From-Motion,2018 +218,VOC,voc,38.99203005,-76.9461029,University of Maryland College Park,edu,a996f22a2d0c685f7e4972df9f45e99efc3cbb76,citation,https://arxiv.org/pdf/1708.00079.pdf,Towards the Success Rate of One: Real-Time Unconstrained Salient Object Detection,2018 +219,VOC,voc,47.05821,15.46019568,Graz University of Technology,edu,4da5f0c1d07725a06c6b4a2646e31ea3a5f14435,citation,http://pdfs.semanticscholar.org/4da5/f0c1d07725a06c6b4a2646e31ea3a5f14435.pdf,End-to-End Training of Hybrid CNN-CRF Models for Semantic Segmentation using Structured Learning,2017 +220,VOC,voc,52.3553655,4.9501644,University of Amsterdam,edu,26c58e24687ccbe9737e41837aab74e4a499d259,citation,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Li_Codemaps_-_Segment_2013_ICCV_paper.pdf,"Codemaps - Segment, Classify and Search Objects Locally",2013 +221,VOC,voc,37.4219999,-122.0840575,Google,company,299b65d5d3914dad9aae2f936165dcebcf78db88,citation,http://doi.ieeecomputersociety.org/10.1109/ICCV.2015.203,Weakly-and Semi-Supervised Learning of a Deep Convolutional Network for Semantic Image Segmentation,2015 +222,VOC,voc,-34.9189226,138.60423668,University of Adelaide,edu,cb5dcd048b0eaa78a887a014be26a8a7b1325d36,citation,https://arxiv.org/pdf/1709.04093.pdf,Joint Learning of Set Cardinality and State Distribution,2018 +223,VOC,voc,34.2469152,108.91061982,Northwestern Polytechnical University,edu,63660c50e2669a5115c2379e622549d8ed79be00,citation,http://porikli.com/mysite/pdfs/porikli%202017%20-%20Deep%20salient%20object%20detection%20by%20integrating%20multi-level%20cues.pdf,Deep Salient Object Detection by Integrating Multi-level Cues,2017 +224,VOC,voc,-35.2776999,149.118527,Australian National University,edu,63660c50e2669a5115c2379e622549d8ed79be00,citation,http://porikli.com/mysite/pdfs/porikli%202017%20-%20Deep%20salient%20object%20detection%20by%20integrating%20multi-level%20cues.pdf,Deep Salient Object Detection by Integrating Multi-level Cues,2017 +225,VOC,voc,48.14955455,11.56775314,Technical University Munich,edu,472541ccd941b9b4c52e1f088cc1152de9b3430f,citation,https://arxiv.org/pdf/1612.00197.pdf,Learning in an Uncertain World: Representing Ambiguity Through Multiple Hypotheses,2017 +226,VOC,voc,47.3764534,8.54770931,ETH Zürich,edu,9184b0c04013bfdfd82f4f271b5f017396c2f085,citation,https://pdfs.semanticscholar.org/9184/b0c04013bfdfd82f4f271b5f017396c2f085.pdf,Semantic Segmentation for Line Drawing Vectorization Using Neural Networks,2018 +227,VOC,voc,37.4102193,-122.05965487,Carnegie Mellon University,edu,57488aa24092fa7118aa5374c90b282a32473cf9,citation,https://arxiv.org/pdf/1807.01257.pdf,A Weakly Supervised Adaptive DenseNet for Classifying Thoracic Diseases and Identifying Abnormalities,2018 +228,VOC,voc,39.9492344,-75.19198985,University of Pennsylvania,edu,57488aa24092fa7118aa5374c90b282a32473cf9,citation,https://arxiv.org/pdf/1807.01257.pdf,A Weakly Supervised Adaptive DenseNet for Classifying Thoracic Diseases and Identifying Abnormalities,2018 +229,VOC,voc,32.0565957,118.77408833,Nanjing University,edu,7771807cd05f78a4591f2d0b094ddd3e0bd5339a,citation,https://arxiv.org/pdf/1707.06399.pdf,Adaptive Feeding: Achieving Fast and Accurate Detections by Adaptively Combining Object Detectors,2017 +230,VOC,voc,50.7944026,-1.0971748,Cambridge University,edu,4558338873556d01fd290de6ddc55721c633a1ad,citation,http://pdfs.semanticscholar.org/4558/338873556d01fd290de6ddc55721c633a1ad.pdf,Training Constrained Deconvolutional Networks for Road Scene Semantic Segmentation,2016 +231,VOC,voc,42.3583961,-71.09567788,MIT,edu,85957b49896246bb416c0a182e52b355a8fa40b4,citation,https://arxiv.org/pdf/1806.03510.pdf,Feature Pyramid Network for Multi-Class Land Segmentation,2018 +232,VOC,voc,17.4454957,78.34854698,International Institute of Information Technology,edu,f5eb411217f729ad7ae84bfd4aeb3dedb850206a,citation,https://pdfs.semanticscholar.org/f5eb/411217f729ad7ae84bfd4aeb3dedb850206a.pdf,Tackling Low Resolution for Better Scene Understanding,2018 +233,VOC,voc,53.8338371,10.7035939,Institute of Systems and Robotics,edu,7fb8d9c36c23f274f2dd84945dd32ec2cc143de1,citation,http://pdfs.semanticscholar.org/8e44/ba779d7cdc23d597c2c6e4420129834e7e21.pdf,Semantic Segmentation with Second-Order Pooling,2012 +234,VOC,voc,50.7338124,7.1022465,University of Bonn,edu,7fb8d9c36c23f274f2dd84945dd32ec2cc143de1,citation,http://pdfs.semanticscholar.org/8e44/ba779d7cdc23d597c2c6e4420129834e7e21.pdf,Semantic Segmentation with Second-Order Pooling,2012 +235,VOC,voc,37.43131385,-122.16936535,Stanford University,edu,b5e3beb791cc17cdaf131d5cca6ceb796226d832,citation,http://pdfs.semanticscholar.org/b5e3/beb791cc17cdaf131d5cca6ceb796226d832.pdf,Novel Dataset for Fine-Grained Image Categorization: Stanford Dogs,2012 +236,VOC,voc,39.94976005,116.33629046,Beijing Jiaotong University,edu,b5968e7bb23f5f03213178c22fd2e47af3afa04c,citation,https://arxiv.org/pdf/1705.07206.pdf,Multiple-Human Parsing in the Wild,2017 +237,VOC,voc,1.2962018,103.77689944,National University of Singapore,edu,b5968e7bb23f5f03213178c22fd2e47af3afa04c,citation,https://arxiv.org/pdf/1705.07206.pdf,Multiple-Human Parsing in the Wild,2017 +238,VOC,voc,40.11116745,-88.22587665,"University of Illinois, Urbana-Champaign",edu,532c089b43983935e1001c5e35aa35440263beaf,citation,https://arxiv.org/pdf/1804.03166.pdf,G-Distillation: Reducing Overconfident Errors on Novel Samples,2018 +239,VOC,voc,33.776033,-84.39884086,Georgia Institute of Technology,edu,35fc0b28d0d674b28dd625d170bc641a36b17318,citation,http://pdfs.semanticscholar.org/35fc/0b28d0d674b28dd625d170bc641a36b17318.pdf,CSI: Composite Statistical Inference Techniques for Semantic Segmentation,2013 +240,VOC,voc,55.7039571,13.1902011,Lund University,edu,35fc0b28d0d674b28dd625d170bc641a36b17318,citation,http://pdfs.semanticscholar.org/35fc/0b28d0d674b28dd625d170bc641a36b17318.pdf,CSI: Composite Statistical Inference Techniques for Semantic Segmentation,2013 +241,VOC,voc,58.38131405,26.72078081,University of Tartu,edu,e4cb27d2a3e1153cb517d97d61de48ff0483c988,citation,https://pdfs.semanticscholar.org/e4cb/27d2a3e1153cb517d97d61de48ff0483c988.pdf,Viktoria Plemakova Vehicle Detection Based on Convolutional Neural Networks,2018 +242,VOC,voc,33.776033,-84.39884086,Georgia Institute of Technology,edu,3d0660e18c17db305b9764bb86b21a429241309e,citation,https://arxiv.org/pdf/1604.03505.pdf,Counting Everyday Objects in Everyday Scenes,2017 +243,VOC,voc,37.2381023,127.1903431,Myongji University,edu,a67da2dd79c01e8cc4029ecc5a05b97967403862,citation,https://pdfs.semanticscholar.org/a67d/a2dd79c01e8cc4029ecc5a05b97967403862.pdf,On Selecting Helpful Unlabeled Data for Improving Semi-Supervised Support Vector Machines,2014 +244,VOC,voc,40.00229045,116.32098908,Tsinghua University,edu,4ab69672e1116427d685bf7c1edb5b1fd0573b5e,citation,http://bigml.cs.tsinghua.edu.cn/~lingxi/PDFs/Xie_ACMMM12_EdgeGPP.pdf,Spatial pooling of heterogeneous features for image applications,2012 +245,VOC,voc,37.43131385,-122.16936535,Stanford University,edu,989c7cdafa9b90ab2ea0a9d8fa60634cc698f174,citation,http://pdfs.semanticscholar.org/989c/7cdafa9b90ab2ea0a9d8fa60634cc698f174.pdf,YoloFlow Real - time Object Tracking in Video CS 229 Course Project,2016 +246,VOC,voc,3.12267405,101.65356103,University of Malaya,edu,85af6c005df806b57b306a732dcb98e096d15bfb,citation,https://arxiv.org/pdf/1805.11227.pdf,Getting to Know Low-light Images with The Exclusively Dark Dataset,2018 +247,VOC,voc,37.43131385,-122.16936535,Stanford University,edu,cdb293381ff396d6e9c0f5e9578d411e759347fd,citation,https://pdfs.semanticscholar.org/022e/eae0edc09deb228da26d5390874f781ace0f.pdf,3 DR 2 N 2 : A Unified Approach for Single and Multiview 3 D Object Reconstruction,2016 +248,VOC,voc,51.7534538,-1.25400997,University of Oxford,edu,0e67717484684d90ae9d4e1bb9cdceb74b194910,citation,http://pdfs.semanticscholar.org/0e67/717484684d90ae9d4e1bb9cdceb74b194910.pdf,Mining Pixels: Weakly Supervised Semantic Segmentation Using Image Labels,2016 +249,VOC,voc,40.11116745,-88.22587665,"University of Illinois, Urbana-Champaign",edu,5b4b84ce3518c8a14f57f5f95a1d07fb60e58223,citation,https://pdfs.semanticscholar.org/9f92/05a60ddf1135929e0747db34363b3a8c6bc8.pdf,Diagnosing Error in Object Detectors,2012 +250,VOC,voc,42.718568,-84.47791571,Michigan State University,edu,47203943c86e4d9355ffd99cd3d75f37211fd805,citation,http://pdfs.semanticscholar.org/be18/9c7066c4d99d617d137c975139c594ad09af.pdf,Semi-Crowdsourced Clustering: Generalizing Crowd Labeling by Robust Distance Metric Learning,2012 +251,VOC,voc,42.8298248,-73.87719385,GE Global Research Center,edu,47203943c86e4d9355ffd99cd3d75f37211fd805,citation,http://pdfs.semanticscholar.org/be18/9c7066c4d99d617d137c975139c594ad09af.pdf,Semi-Crowdsourced Clustering: Generalizing Crowd Labeling by Robust Distance Metric Learning,2012 +252,VOC,voc,39.95472495,-75.15346905,Temple University,edu,45ff38add61df32a027048624f58952a67a7c5f5,citation,http://pdfs.semanticscholar.org/45ff/38add61df32a027048624f58952a67a7c5f5.pdf,Deep Context Convolutional Neural Networks for Semantic Segmentation,2017 +253,VOC,voc,43.08250655,-77.67121663,Rochester Institute of Technology,edu,0a789733ccb300d0dd9df6174faaa7e8c64e0409,citation,http://pdfs.semanticscholar.org/0a78/9733ccb300d0dd9df6174faaa7e8c64e0409.pdf,High-Resolution Multispectral Dataset for Semantic Segmentation,2017 +254,VOC,voc,47.05821,15.46019568,Graz University of Technology,edu,9d3a6e459e0cecda20a8afd69d182877ff0224cf,citation,http://pdfs.semanticscholar.org/9d3a/6e459e0cecda20a8afd69d182877ff0224cf.pdf,A Framework for Articulated Hand Pose Estimation and Evaluation,2015 +255,VOC,voc,52.3553655,4.9501644,University of Amsterdam,edu,943a1e218b917172199e524944006aa349f58968,citation,https://arxiv.org/pdf/1807.11857.pdf,Joint Learning of Intrinsic Images and Semantic Segmentation,2018 +256,VOC,voc,40.0044795,116.370238,Chinese Academy of Sciences,edu,5f68e2131d9275d56092e9fca05bcfc65abea0d8,citation,http://doi.acm.org/10.1145/2806416.2806469,Cross-Modal Similarity Learning: A Low Rank Bilinear Formulation,2015 +257,VOC,voc,40.9153196,-73.1270626,Stony Brook University,edu,f989a20fbcc2d576c0c4514a0e5085c741580778,citation,https://arxiv.org/pdf/1612.03236.pdf,Co-localization with Category-Consistent Features and Geodesic Distance Propagation,2017 +258,VOC,voc,42.36782045,-71.12666653,Harvard University,edu,f989a20fbcc2d576c0c4514a0e5085c741580778,citation,https://arxiv.org/pdf/1612.03236.pdf,Co-localization with Category-Consistent Features and Geodesic Distance Propagation,2017 +259,VOC,voc,24.7925484,120.9951183,National Tsing Hua University,edu,cf94200a476dc15d6da95db809349db4cfd8e92c,citation,https://arxiv.org/pdf/1807.11436.pdf,Leveraging Motion Priors in Videos for Improving Human Segmentation,2018 +260,VOC,voc,-34.9189226,138.60423668,University of Adelaide,edu,25dba68e4db0ce361032126b91f734f9252cae7c,citation,https://arxiv.org/pdf/1611.08998.pdf,DeepSetNet: Predicting Sets with Deep Neural Networks,2017 +261,VOC,voc,59.34986645,18.07063213,"KTH Royal Institute of Technology, Stockholm",edu,883767948f535ea2bf8a0c03047ca9064e1b078f,citation,https://pdfs.semanticscholar.org/8837/67948f535ea2bf8a0c03047ca9064e1b078f.pdf,A Combination of Object Recognition and Localisation for an Autonomous Racecar,0 +262,VOC,voc,23.09461185,113.28788994,Sun Yat-Sen University,edu,18095a530b532a70f3b615fef2f59e6fdacb2d84,citation,https://arxiv.org/pdf/1604.02271v3.pdf,Deep Structured Scene Parsing by Learning with Image Descriptions,2016 +263,VOC,voc,45.7413921,126.62552755,Harbin Institute of Technology,edu,18095a530b532a70f3b615fef2f59e6fdacb2d84,citation,https://arxiv.org/pdf/1604.02271v3.pdf,Deep Structured Scene Parsing by Learning with Image Descriptions,2016 +264,VOC,voc,-27.47715625,153.02841004,Queensland University of Technology,edu,9397e7acd062245d37350f5c05faf56e9cfae0d6,citation,http://pdfs.semanticscholar.org/9397/e7acd062245d37350f5c05faf56e9cfae0d6.pdf,DeepFruits: A Fruit Detection System Using Deep Neural Networks,2016 +265,VOC,voc,40.00229045,116.32098908,Tsinghua University,edu,03a24d15533dae78de78fd9d5f6c9050fb97f186,citation,https://doi.org/10.1109/SSCI.2016.7850112,Pedestrian detection aided by scale-discriminative network,2016 +266,VOC,voc,-33.88890695,151.18943366,University of Sydney,edu,17d4fd92352baf6f0039ec64d43ca572c8252384,citation,https://arxiv.org/pdf/1806.07049.pdf,MoE-SPNet: A mixture-of-experts scene parsing network,2018 +267,VOC,voc,47.05821,15.46019568,Graz University of Technology,edu,30a29f6c407749e97bc7c2db5674a62773af9d27,citation,http://pdfs.semanticscholar.org/30a2/9f6c407749e97bc7c2db5674a62773af9d27.pdf,Tracking and Visual Quality Inspection in Harsh Environments (print-version),2012 +268,VOC,voc,37.43131385,-122.16936535,Stanford University,edu,280d632ef3234c5ab06018c6eaccead75bc173b3,citation,http://pdfs.semanticscholar.org/6b1a/c8e438041ac02cc8fab5762ca069c386f473.pdf,Efficient Image and Video Co-localization with Frank-Wolfe Algorithm,2014 +269,VOC,voc,31.83907195,117.26420748,University of Science and Technology of China,edu,0f945f796a9343b51a3dc69941c0fa1a98c0f448,citation,http://pdfs.semanticscholar.org/a7ef/979ce52b9e4bcbd6ee5524dfd4e92baf6292.pdf,Local Hypersphere Coding Based on Edges between Visual Words,2012 +270,VOC,voc,-34.9189226,138.60423668,University of Adelaide,edu,0db6a58927a671c01089c53248b0e1c36bdc3231,citation,http://openaccess.thecvf.com/content_cvpr_2016/papers/Pham_Efficient_Point_Process_CVPR_2016_paper.pdf,Efficient Point Process Inference for Large-Scale Object Detection,2016 +271,VOC,voc,42.2942142,-83.71003894,University of Michigan,edu,14d0afea52c4e9b7a488f6398e4a92bd4f4b93c7,citation,https://arxiv.org/pdf/1804.07667.pdf,Rethinking the Faster R-CNN Architecture for Temporal Action Localization,2018 +272,VOC,voc,42.2942142,-83.71003894,University of Michigan,edu,8da1b0834688edb311a803532e33939e9ecf8292,citation,https://arxiv.org/pdf/1808.01244.pdf,CornerNet: Detecting Objects as Paired Keypoints,2018 +273,VOC,voc,39.2899685,-76.62196103,University of Maryland,edu,f42d3225afd9e463ddb7a355f64b54af8bd14227,citation,https://arxiv.org/pdf/1804.10343.pdf,Stacked U-Nets: A No-Frills Approach to Natural Image Segmentation,2018 +274,VOC,voc,31.83907195,117.26420748,University of Science and Technology of China,edu,a1dd88f44d045b360569a9a8721f728afbd951c3,citation,https://pdfs.semanticscholar.org/a1dd/88f44d045b360569a9a8721f728afbd951c3.pdf,Relief Impression Image Detection : Unsupervised Extracting Objects Directly From Feature Arrangements of Deep CNN,2016 +275,VOC,voc,34.0687788,-118.4450094,"University of California, Los Angeles",edu,fc027fccb19512a439fc17181c34ee1c3aad51b5,citation,https://arxiv.org/pdf/1708.03383.pdf,Joint Multi-person Pose Estimation and Semantic Part Segmentation,2017 +276,VOC,voc,39.329053,-76.619425,Johns Hopkins University,edu,377f2b65e6a9300448bdccf678cde59449ecd337,citation,https://arxiv.org/pdf/1804.10275.pdf,Pushing the Limits of Unconstrained Face Detection: a Challenge Dataset and Baseline Results,2018 +277,VOC,voc,40.47913175,-74.43168868,Rutgers University,edu,377f2b65e6a9300448bdccf678cde59449ecd337,citation,https://arxiv.org/pdf/1804.10275.pdf,Pushing the Limits of Unconstrained Face Detection: a Challenge Dataset and Baseline Results,2018 +278,VOC,voc,31.20081505,121.42840681,Shanghai Jiao Tong University,edu,451eed7fd8ae281d1cc76ca8cdecbaf47816e55a,citation,http://pdfs.semanticscholar.org/451e/ed7fd8ae281d1cc76ca8cdecbaf47816e55a.pdf,Close Yet Distinctive Domain Adaptation,2017 +279,VOC,voc,35.9990522,-78.9290629,Duke University,edu,992b93ab9d016640551a8cebcaf4757288154f32,citation,http://pdfs.semanticscholar.org/e38c/f96363aaf1f17c487c484ad27d3175ca4b31.pdf,Nested Pictorial Structures,2012 +280,VOC,voc,43.08250655,-77.67121663,Rochester Institute of Technology,edu,7489990ea3d6ab4c1c86c9ed9f049399961dfaef,citation,https://people.rit.edu/ndcsma/pubs/WNYISPW_Nov_2014_Chew.pdf,Normalized cutswith soft must-link constraints for image segmentation and clustering,2014 +281,VOC,voc,59.34986645,18.07063213,"KTH Royal Institute of Technology, Stockholm",edu,41199678ad9370ff8ca7e9e3c2617b62a297fac3,citation,http://pdfs.semanticscholar.org/4119/9678ad9370ff8ca7e9e3c2617b62a297fac3.pdf,Multitask Deep Learning models for real-time deployment in embedded systems,2017 +282,VOC,voc,39.7487516,30.47653071,Eskisehir Osmangazi University,edu,7fb74f5abab4830e3cdaf477230e5571d9e3ca57,citation,http://openaccess.thecvf.com/content_cvpr_2017/papers/Cevikalp_Polyhedral_Conic_Classifiers_CVPR_2017_paper.pdf,Polyhedral Conic Classifiers for Visual Object Detection and Classification,2017 +283,VOC,voc,33.776033,-84.39884086,Georgia Institute of Technology,edu,10793d1475607929fedc6d9a677911ad16843e58,citation,http://openaccess.thecvf.com/content_cvpr_2016/papers/Li_Unsupervised_Learning_of_CVPR_2016_paper.pdf,Unsupervised Learning of Edges,2016 +284,VOC,voc,31.30104395,121.50045497,Fudan University,edu,c94fd258a8f1e8f4033a7fe491f1372dcf7d3cd6,citation,https://arxiv.org/pdf/1807.04897.pdf,TS ^2 2 C: Tight Box Mining with Surrounding Segmentation Context for Weakly Supervised Object Detection,2018 +285,VOC,voc,1.2962018,103.77689944,National University of Singapore,edu,c94fd258a8f1e8f4033a7fe491f1372dcf7d3cd6,citation,https://arxiv.org/pdf/1807.04897.pdf,TS ^2 2 C: Tight Box Mining with Surrounding Segmentation Context for Weakly Supervised Object Detection,2018 +286,VOC,voc,52.5180641,13.3250425,TU Berlin,edu,2581a12189eb1a0b5b27a7fd1c2cbe44c88fcc20,citation,http://arxiv.org/pdf/1512.00172v1.pdf,Analyzing Classifiers: Fisher Vectors and Deep Neural Networks,2016 +287,VOC,voc,32.0565957,118.77408833,Nanjing University,edu,96416b1b44fb05302c6e9a8ab1b74d9204995e73,citation,http://pdfs.semanticscholar.org/9641/6b1b44fb05302c6e9a8ab1b74d9204995e73.pdf,Learning Effective Binary Visual Representations with Deep Networks,2018 +288,VOC,voc,42.3619407,-71.0904378,MIT CSAIL,edu,aa2ddae22760249729ac2c2c4e24c8b665bcd40e,citation,https://pdfs.semanticscholar.org/8c47/635ae7f1641c2bdd45026ad7dbff70c24398.pdf,Interpretable Basis Decomposition for Visual Explanation,2018 +289,VOC,voc,42.2942142,-83.71003894,University of Michigan,edu,60542b1a857024c79db8b5b03db6e79f74ec8f9f,citation,https://arxiv.org/pdf/1702.05448.pdf,Learning to Detect Human-Object Interactions,2018 +290,VOC,voc,36.3693473,120.673818,Shandong University,edu,bd8a85acaa45d4068fca584e8d9e3bd3bb4eea4d,citation,http://pdfs.semanticscholar.org/bd8a/85acaa45d4068fca584e8d9e3bd3bb4eea4d.pdf,Toward Scene Recognition by Discovering Semantic Structures and Parts,2015 +291,VOC,voc,49.2767454,-122.91777375,Simon Fraser University,edu,bd8a85acaa45d4068fca584e8d9e3bd3bb4eea4d,citation,http://pdfs.semanticscholar.org/bd8a/85acaa45d4068fca584e8d9e3bd3bb4eea4d.pdf,Toward Scene Recognition by Discovering Semantic Structures and Parts,2015 +292,VOC,voc,55.94951105,-3.19534913,University of Edinburgh,edu,456abee9c8d31f004b2f0a3b47222043e20f5042,citation,https://arxiv.org/pdf/1603.09188.pdf,Unsupervised Visual Sense Disambiguation for Verbs using Multimodal Embeddings,2016 +293,VOC,voc,31.83907195,117.26420748,University of Science and Technology of China,edu,7c2f6424b0bb2c28f282fbc0b4e98bf85d5584eb,citation,http://pdfs.semanticscholar.org/a5ae/7d662ed086bc5b0c9a2c1dc54fcb23635000.pdf,Relief R-CNN: Utilizing Convolutional Feature Interrelationship for Fast Object Detection Deployment,2016 +294,VOC,voc,22.53521465,113.9315911,Shenzhen University,edu,7c2f6424b0bb2c28f282fbc0b4e98bf85d5584eb,citation,http://pdfs.semanticscholar.org/a5ae/7d662ed086bc5b0c9a2c1dc54fcb23635000.pdf,Relief R-CNN: Utilizing Convolutional Feature Interrelationship for Fast Object Detection Deployment,2016 +295,VOC,voc,37.5557271,127.0436642,Hanyang University,edu,59e9934720baf3c5df3a0e1e988202856e1f83ce,citation,https://arxiv.org/pdf/1511.04136.pdf,UA-DETRAC: A New Benchmark and Protocol for Multi-Object Detection and Tracking,2015 +296,VOC,voc,40.0141905,-83.0309143,University of Electronic Science and Technology of China,edu,d58c44bd9b464d9ac1db1344445c31364925f75a,citation,https://pdfs.semanticscholar.org/d58c/44bd9b464d9ac1db1344445c31364925f75a.pdf,TBN: Convolutional Neural Network with Ternary Inputs and Binary Weights,2018 +297,VOC,voc,37.43131385,-122.16936535,Stanford University,edu,81ba5202424906f64b77f68afca063658139fbb2,citation,https://arxiv.org/pdf/1611.09078.pdf,Social Scene Understanding: End-to-End Multi-person Action Localization and Collective Activity Recognition,2017 +298,VOC,voc,46.109237,7.08453549,IDIAP Research Institute,edu,81ba5202424906f64b77f68afca063658139fbb2,citation,https://arxiv.org/pdf/1611.09078.pdf,Social Scene Understanding: End-to-End Multi-person Action Localization and Collective Activity Recognition,2017 +299,VOC,voc,50.7338124,7.1022465,University of Bonn,edu,0b6f64c78c44dc043e2972fa7bfe2a5753768609,citation,https://doi.org/10.1109/ICPR.2016.7900008,A future for learning semantic models of man-made environments,2016 +300,VOC,voc,30.5097537,114.4062881,Huazhong University of Science and Technology,edu,016eb7b32d1fdec0899151fb03799378bf59bbe5,citation,http://pdfs.semanticscholar.org/016e/b7b32d1fdec0899151fb03799378bf59bbe5.pdf,Point Linking Network for Object Detection,2017 +301,VOC,voc,33.9928298,-81.02685168,University of South Carolina,edu,cd9d654c6a4250e0cf8bcfddc2afab9e70ee6cae,citation,http://pdfs.semanticscholar.org/cd9d/654c6a4250e0cf8bcfddc2afab9e70ee6cae.pdf,Object Detection with Mask-based Feature Encoding,2018 +302,VOC,voc,36.20304395,117.05842113,Tianjin University,edu,cd9d654c6a4250e0cf8bcfddc2afab9e70ee6cae,citation,http://pdfs.semanticscholar.org/cd9d/654c6a4250e0cf8bcfddc2afab9e70ee6cae.pdf,Object Detection with Mask-based Feature Encoding,2018 +303,VOC,voc,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,28737575297a20d431dd2b777a79a8be2c9c2bbd,citation,http://pdfs.semanticscholar.org/2873/7575297a20d431dd2b777a79a8be2c9c2bbd.pdf,Object Ranking on Deformable Part Models with Bagged LambdaMART,2014 +304,VOC,voc,40.11116745,-88.22587665,"University of Illinois, Urbana-Champaign",edu,46702e0127e16a4d6a1feda3ffc5f0f123957e87,citation,https://arxiv.org/pdf/1809.06131.pdf,Revisit Multinomial Logistic Regression in Deep Learning: Data Dependent Model Initialization for Image Recognition,2018 +305,VOC,voc,34.0687788,-118.4450094,"University of California, Los Angeles",edu,d2b2cb1d5cc1aa30cf5be7bcb0494198934caabb,citation,http://pdfs.semanticscholar.org/d2b2/cb1d5cc1aa30cf5be7bcb0494198934caabb.pdf,A Restricted Visual Turing Test for Deep Scene and Event Understanding,2015 +306,VOC,voc,37.8687126,-122.25586815,"University of California, Berkeley",edu,446fbff6a2a7c9989b0a0465f960e236d9a5e886,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Pathak_Context_Encoders_Feature_CVPR_2016_paper.pdf,Context Encoders: Feature Learning by Inpainting,2016 +307,VOC,voc,51.49887085,-0.17560797,Imperial College London,edu,291e5377df2eec4835b5c6889896941831a11c69,citation,http://pdfs.semanticscholar.org/291e/5377df2eec4835b5c6889896941831a11c69.pdf,Recovering 6D Object Pose: Multi-modal Analyses on Challenges,2017 +308,VOC,voc,40.9153196,-73.1270626,Stony Brook University,edu,b69fbf046faf685655b5fa52fef07fb77e75eff4,citation,http://pdfs.semanticscholar.org/b69f/bf046faf685655b5fa52fef07fb77e75eff4.pdf,Modeling guidance and recognition in categorical search: bridging human and computer object detection.,2013 +309,VOC,voc,39.7487516,30.47653071,Eskisehir Osmangazi University,edu,13bda03fc8984d5943ed8d02e49a779d27c84114,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2012.6248047,Efficient object detection using cascades of nearest convex model classifiers,2012 +310,VOC,voc,50.7338124,7.1022465,University of Bonn,edu,87a66ccc68374ffb704ee6fb9fa7df369718095c,citation,http://pdfs.semanticscholar.org/ea90/16fb585ba6449d3d6f98bf85fa0bcd1f4621.pdf,Multi-person Pose Estimation with Local Joint-to-Person Associations,2016 +311,VOC,voc,39.9922379,116.30393816,Peking University,edu,4960ab1cef23e5ccd60173725ea280f462164a0e,citation,https://pdfs.semanticscholar.org/4960/ab1cef23e5ccd60173725ea280f462164a0e.pdf,Video Object Segmentation by Learning Location-Sensitive Embeddings,2018 +312,VOC,voc,39.977217,116.337632,Microsoft Research Asia,company,4960ab1cef23e5ccd60173725ea280f462164a0e,citation,https://pdfs.semanticscholar.org/4960/ab1cef23e5ccd60173725ea280f462164a0e.pdf,Video Object Segmentation by Learning Location-Sensitive Embeddings,2018 +313,VOC,voc,35.9990522,-78.9290629,Duke University,edu,8856fbf333b2aba7b9f1f746e16a2b7f083ee5b8,citation,http://pdfs.semanticscholar.org/8856/fbf333b2aba7b9f1f746e16a2b7f083ee5b8.pdf,Analyzing animal behavior via classifying each video frame using convolutional neural networks,2015 +314,VOC,voc,34.1235825,108.83546,Xidian University,edu,f9f01af981f8d25f0c96ea06d88be62dabb79256,citation,https://pdfs.semanticscholar.org/f9f0/1af981f8d25f0c96ea06d88be62dabb79256.pdf,Terahertz Image Detection with the Improved Faster Region-Based Convolutional Neural Network,2018 +315,VOC,voc,37.5600406,126.9369248,Yonsei University,edu,09066d7d0bb6273bf996c8538d7b34c38ea6a500,citation,https://arxiv.org/pdf/1809.01845.pdf,"Yes, IoU loss is submodular - as a function of the mispredictions",2018 +316,VOC,voc,49.2579566,7.04577417,Max Planck Institute for Informatics,edu,4aeebd1c9b4b936ed2e4d988d8d28e27f129e6f1,citation,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Chiu_See_the_Difference_ICCV_2015_paper.pdf,See the Difference: Direct Pre-Image Reconstruction and Pose Estimation by Differentiating HOG,2015 +317,VOC,voc,34.0687788,-118.4450094,"University of California, Los Angeles",edu,232ff2dab49cb5a1dae1012fd7ba53382909ec18,citation,http://pdfs.semanticscholar.org/232f/f2dab49cb5a1dae1012fd7ba53382909ec18.pdf,Semantic Video Segmentation from Occlusion Relations within a Convex Optimization Framework,2013 +318,VOC,voc,50.13053055,8.69234224,University of Frankfurt,edu,465c34c3334f29de28f973b7702a235509649429,citation,http://pdfs.semanticscholar.org/465c/34c3334f29de28f973b7702a235509649429.pdf,Stereopsis via deep learning,2013 +319,VOC,voc,47.6543238,-122.30800894,University of Washington,edu,caa2ded6d8d5de97c824d29b0c7a18d220c596c8,citation,https://arxiv.org/pdf/1709.02554.pdf,Learning to Segment Breast Biopsy Whole Slide Images,2018 +320,VOC,voc,44.48116865,-73.2002179,University of Vermont,edu,caa2ded6d8d5de97c824d29b0c7a18d220c596c8,citation,https://arxiv.org/pdf/1709.02554.pdf,Learning to Segment Breast Biopsy Whole Slide Images,2018 +321,VOC,voc,42.2942142,-83.71003894,University of Michigan,edu,289d833a35c2156b7e332e67d1cb099fd0683025,citation,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Chao_HICO_A_Benchmark_ICCV_2015_paper.pdf,HICO: A Benchmark for Recognizing Human-Object Interactions in Images,2015 +322,VOC,voc,37.8687126,-122.25586815,"University of California, Berkeley",edu,0fbdd4b8eb9e4c4cfbe5b76ab29ab8b0219fbdc0,citation,https://people.eecs.berkeley.edu/~pathak/papers/iccv15.pdf,Constrained Convolutional Neural Networks for Weakly Supervised Segmentation,2015 +323,VOC,voc,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,f94f79168c1cfaebb8eab5151e01d56478ab0b73,citation,http://pdfs.semanticscholar.org/f94f/79168c1cfaebb8eab5151e01d56478ab0b73.pdf,Optimizing Region Selection for Weakly Supervised Object Detection,2017 +324,VOC,voc,40.0044795,116.370238,Chinese Academy of Sciences,edu,6bb51f431f348b2b3e1db859827e80f97a576c30,citation,http://pdfs.semanticscholar.org/6bb5/1f431f348b2b3e1db859827e80f97a576c30.pdf,Irregular Convolutional Neural Networks,2017 +325,VOC,voc,22.42031295,114.20788644,Chinese University of Hong Kong,edu,b78e611c32dc0daf762cfa93044558cdb545d857,citation,http://pdfs.semanticscholar.org/b78e/611c32dc0daf762cfa93044558cdb545d857.pdf,Temporal Action Detection with Structured Segment Networks Supplementary Materials,2017 +326,VOC,voc,48.14955455,11.56775314,Technical University Munich,edu,bc12715a1ddf1a540dab06bf3ac4f3a32a26b135,citation,http://pdfs.semanticscholar.org/bc12/715a1ddf1a540dab06bf3ac4f3a32a26b135.pdf,Tracking the Trackers: An Analysis of the State of the Art in Multiple Object Tracking,2017 +327,VOC,voc,-34.9189226,138.60423668,University of Adelaide,edu,bc12715a1ddf1a540dab06bf3ac4f3a32a26b135,citation,http://pdfs.semanticscholar.org/bc12/715a1ddf1a540dab06bf3ac4f3a32a26b135.pdf,Tracking the Trackers: An Analysis of the State of the Art in Multiple Object Tracking,2017 +328,VOC,voc,31.20081505,121.42840681,Shanghai Jiao Tong University,edu,4d1757aacbc49c74a5d4e53259c92ab0e47544da,citation,https://arxiv.org/pdf/1805.04310.pdf,Weakly and Semi Supervised Human Body Part Parsing via Pose-Guided Knowledge Transfer,2018 +329,VOC,voc,36.1112058,140.1055176,University of Tsukuba,edu,d392098688a999c70589c995bd4427c212eff69d,citation,http://pdfs.semanticscholar.org/d392/098688a999c70589c995bd4427c212eff69d.pdf,Object Repositioning Based on the Perspective in a Single Image,2014 +330,VOC,voc,22.42031295,114.20788644,Chinese University of Hong Kong,edu,1c1f21bf136fe2eec412e5f70fd918c27c5ccb0a,citation,http://pdfs.semanticscholar.org/1c1f/21bf136fe2eec412e5f70fd918c27c5ccb0a.pdf,Object Detection and Viewpoint Estimation with Auto-masking Neural Network,2014 +331,VOC,voc,22.59805605,113.98533784,Shenzhen Institutes of Advanced Technology,edu,1c1f21bf136fe2eec412e5f70fd918c27c5ccb0a,citation,http://pdfs.semanticscholar.org/1c1f/21bf136fe2eec412e5f70fd918c27c5ccb0a.pdf,Object Detection and Viewpoint Estimation with Auto-masking Neural Network,2014 +332,VOC,voc,51.49887085,-0.17560797,Imperial College London,edu,72e9acdd64e71fc2084acaf177aafaa2e075bd8c,citation,http://pdfs.semanticscholar.org/72e9/acdd64e71fc2084acaf177aafaa2e075bd8c.pdf,The 2017 Hands in the Million Challenge on 3D Hand Pose Estimation,2017 +333,VOC,voc,51.49887085,-0.17560797,Imperial College London,edu,0209389b8369aaa2a08830ac3b2036d4901ba1f1,citation,https://arxiv.org/pdf/1612.01202v2.pdf,DenseReg: Fully Convolutional Dense Shape Regression In-the-Wild,2017 +334,VOC,voc,51.5231607,-0.1282037,University College London,edu,0209389b8369aaa2a08830ac3b2036d4901ba1f1,citation,https://arxiv.org/pdf/1612.01202v2.pdf,DenseReg: Fully Convolutional Dense Shape Regression In-the-Wild,2017 +335,VOC,voc,50.7338124,7.1022465,University of Bonn,edu,07b8a9a225b738c4074a50cf80ee5fe516878421,citation,https://arxiv.org/pdf/1807.09169.pdf,Convolutional Simplex Projection Network for Weakly Supervised Semantic Segmentation,2018 +336,VOC,voc,37.43131385,-122.16936535,Stanford University,edu,1bd1645a629f1b612960ab9bba276afd4cf7c666,citation,http://arxiv.org/pdf/1506.04878.pdf,End-to-End People Detection in Crowded Scenes,2016 +337,VOC,voc,49.2579566,7.04577417,Max Planck Institute for Informatics,edu,1bd1645a629f1b612960ab9bba276afd4cf7c666,citation,http://arxiv.org/pdf/1506.04878.pdf,End-to-End People Detection in Crowded Scenes,2016 +338,VOC,voc,43.7776426,11.259765,University of Florence,edu,1bbe0371ca22c2fdb6e0d098049bbf6430324bdb,citation,http://doi.acm.org/10.1145/2906152,"Socializing the Semantic Gap: A Comparative Survey on Image Tag Assignment, Refinement and Retrieval",2016 +339,VOC,voc,37.43131385,-122.16936535,Stanford University,edu,1bbe0371ca22c2fdb6e0d098049bbf6430324bdb,citation,http://doi.acm.org/10.1145/2906152,"Socializing the Semantic Gap: A Comparative Survey on Image Tag Assignment, Refinement and Retrieval",2016 +340,VOC,voc,34.7275714,135.2371,Kobe University,edu,9954f7ee5288724184f9420e39cca9165efa6822,citation,http://www.me.cs.scitec.kobe-u.ac.jp/~takigu/pdf/2015/Th5_4.pdf,Estimation of object functions using deformable part model,2015 +341,VOC,voc,48.14955455,11.56775314,Technical University Munich,edu,e212b2bc41645fe467a73d004067fcf1ca77d87f,citation,http://pdfs.semanticscholar.org/e212/b2bc41645fe467a73d004067fcf1ca77d87f.pdf,Deep Active Contours,2016 +342,VOC,voc,55.94951105,-3.19534913,University of Edinburgh,edu,51c4ecf4539f56c4b1035b890f743b3a91dd758b,citation,http://arxiv.org/abs/1504.06434,Situational object boundary detection,2015 +343,VOC,voc,37.8687126,-122.25586815,"University of California, Berkeley",edu,007e86cb55f0ba0415a7764a1e9f9566c1e8784b,citation,http://pdfs.semanticscholar.org/2677/3023b17ba560bad6a679930710a9049abca5.pdf,Adversarial Feature Learning,2016 +344,VOC,voc,40.00229045,116.32098908,Tsinghua University,edu,54d97ea9a5f92761dddd148fb0e602c2293e7c16,citation,https://pdfs.semanticscholar.org/54d9/7ea9a5f92761dddd148fb0e602c2293e7c16.pdf,Associating Inter-image Salient Instances for Weakly Supervised Semantic Segmentation,2018 +345,VOC,voc,51.4879961,-3.17969747,Cardiff University,edu,54d97ea9a5f92761dddd148fb0e602c2293e7c16,citation,https://pdfs.semanticscholar.org/54d9/7ea9a5f92761dddd148fb0e602c2293e7c16.pdf,Associating Inter-image Salient Instances for Weakly Supervised Semantic Segmentation,2018 +346,VOC,voc,51.5231607,-0.1282037,University College London,edu,0e923b74fd41f73f57e22f66397feeea67e834f0,citation,http://pdfs.semanticscholar.org/0e92/3b74fd41f73f57e22f66397feeea67e834f0.pdf,Invariant encoding schemes for visual recognition,2012 +347,VOC,voc,34.0224149,-118.28634407,University of Southern California,edu,93cba94ff0ff96f865ce24ea01e9c006369d75ff,citation,https://arxiv.org/pdf/1803.03879.pdf,Knowledge Aided Consistency for Weakly Supervised Phrase Grounding,2018 +348,VOC,voc,35.704514,51.40972058,Amirkabir University of Technology,edu,24fc311970e097efc317c0f98d2df37b828bfbad,citation,https://arxiv.org/pdf/1709.08019v2.pdf,Semi-supervised hierarchical semantic object parsing,2017 +349,VOC,voc,37.4102193,-122.05965487,Carnegie Mellon University,edu,5c4d4fd37e8c80ae95c00973531f34a6d810ea3a,citation,https://arxiv.org/pdf/1603.09439.pdf,The Open World of Micro-Videos,2016 +350,VOC,voc,37.26728,126.9841151,Seoul National University,edu,71b973c87965e4086e75fd2379dd1bd8e3f8231e,citation,https://arxiv.org/pdf/1606.02393.pdf,Progressive Attention Networks for Visual Attribute Prediction,2018 +351,VOC,voc,37.4102193,-122.05965487,Carnegie Mellon University,edu,20c02e98602f6adf1cebaba075d45cef50de089f,citation,https://arxiv.org/pdf/1808.07507.pdf,Video Jigsaw: Unsupervised Learning of Spatiotemporal Context for Video Action Recognition,2018 +352,VOC,voc,33.776033,-84.39884086,Georgia Institute of Technology,edu,20c02e98602f6adf1cebaba075d45cef50de089f,citation,https://arxiv.org/pdf/1808.07507.pdf,Video Jigsaw: Unsupervised Learning of Spatiotemporal Context for Video Action Recognition,2018 +353,VOC,voc,47.6543238,-122.30800894,University of Washington,edu,c17ed26650a67e80151f5312fa15b5c423acc797,citation,http://pdfs.semanticscholar.org/c17e/d26650a67e80151f5312fa15b5c423acc797.pdf,Multiple-Kernel Based Vehicle Tracking Using 3D Deformable Model and Camera Self-Calibration,2017 +354,VOC,voc,36.05238585,140.11852361,Institute of Industrial Science,edu,c17ed26650a67e80151f5312fa15b5c423acc797,citation,http://pdfs.semanticscholar.org/c17e/d26650a67e80151f5312fa15b5c423acc797.pdf,Multiple-Kernel Based Vehicle Tracking Using 3D Deformable Model and Camera Self-Calibration,2017 +355,VOC,voc,35.9020448,139.93622009,University of Tokyo,edu,c17ed26650a67e80151f5312fa15b5c423acc797,citation,http://pdfs.semanticscholar.org/c17e/d26650a67e80151f5312fa15b5c423acc797.pdf,Multiple-Kernel Based Vehicle Tracking Using 3D Deformable Model and Camera Self-Calibration,2017 +356,VOC,voc,47.6423318,-122.1369302,Microsoft,company,c17ed26650a67e80151f5312fa15b5c423acc797,citation,http://pdfs.semanticscholar.org/c17e/d26650a67e80151f5312fa15b5c423acc797.pdf,Multiple-Kernel Based Vehicle Tracking Using 3D Deformable Model and Camera Self-Calibration,2017 +357,VOC,voc,31.21051105,29.91314562,Alexandria University,edu,0ce08f1cc6684495d12c2da157a056c7b88ffcd9,citation,http://pdfs.semanticscholar.org/0ce0/8f1cc6684495d12c2da157a056c7b88ffcd9.pdf,Multi-Modality Feature Transform: An Interactive Image Segmentation Approach,2015 +358,VOC,voc,1.3484104,103.68297965,Nanyang Technological University,edu,567078a51ea63b70396dca5dabb50a10a736d991,citation,https://pdfs.semanticscholar.org/1b5a/3bdb174df1ff36c1c101739d6daaec07760d.pdf,Conditional Generative Adversarial Network for Structured Domain Adaptation,2018 +359,VOC,voc,43.0008093,-78.7889697,University at Buffalo,edu,567078a51ea63b70396dca5dabb50a10a736d991,citation,https://pdfs.semanticscholar.org/1b5a/3bdb174df1ff36c1c101739d6daaec07760d.pdf,Conditional Generative Adversarial Network for Structured Domain Adaptation,2018 +360,VOC,voc,40.00229045,116.32098908,Tsinghua University,edu,6e4e5ef25f657de8fb383c8dfeb8e229eea28bb9,citation,https://arxiv.org/pdf/1707.01691.pdf,RON: Reverse Connection with Objectness Prior Networks for Object Detection,2017 +361,VOC,voc,50.0764296,14.41802312,Czech Technical University,edu,cf528f9fe6588b71efa94c219979ce111fc9c1c9,citation,http://pdfs.semanticscholar.org/cf52/8f9fe6588b71efa94c219979ce111fc9c1c9.pdf,On Evaluation of 6D Object Pose Estimation,2016 +362,VOC,voc,22.2081469,114.25964115,University of Hong Kong,edu,3b67645cd512898806aaf1df1811035f2d957f6b,citation,https://arxiv.org/pdf/1705.04043.pdf,SCNet: Learning Semantic Correspondence,2017 +363,VOC,voc,26.513188,80.23651945,Indian Institute of Technology Kanpur,edu,ef2e36daf429899bb48d80ce6804731c3f99bb85,citation,http://pdfs.semanticscholar.org/f7bd/b4df0fb5b3ff9fa0ebfe7c2a9ddc34c09a5c.pdf,"Debnath, Banerjee, Namboodiri: Adapting Ransac-svm to Detect Outliers for Robust Classification",2015 +364,VOC,voc,40.0044795,116.370238,Chinese Academy of Sciences,edu,79a3a07661b8c6a36070fd767344e15c847a30ef,citation,http://pdfs.semanticscholar.org/79a3/a07661b8c6a36070fd767344e15c847a30ef.pdf,Contextual Pooling in Image Classification,2012 +365,VOC,voc,13.0222347,77.56718325,Indian Institute of Science Bangalore,edu,5aa7f33cdc00787284b609aa63f5eb5c0a3212f6,citation,http://pdfs.semanticscholar.org/5aa7/f33cdc00787284b609aa63f5eb5c0a3212f6.pdf,Multiplicative mixing of object identity and image attributes in single inferior temporal neurons,2018 +366,VOC,voc,51.5247272,-0.03931035,Queen Mary University of London,edu,38f88655debf4bf32978a7b39fbd56aea6ee5752,citation,https://arxiv.org/pdf/1712.03162.pdf,Class Rectification Hard Mining for Imbalanced Deep Learning,2017 +367,VOC,voc,36.1244756,-97.05004383,Oklahoma State University,edu,7b3b2912c1d7a70839bc71a150e33f8634d0fff3,citation,https://pdfs.semanticscholar.org/7b3b/2912c1d7a70839bc71a150e33f8634d0fff3.pdf,Convolutional Neural Network-Based Embarrassing Situation Detection under Camera for Social Robot in Smart Homes,2018 +368,VOC,voc,40.00229045,116.32098908,Tsinghua University,edu,acdc333f7b32d987e65ce15f21db64e850ca9471,citation,https://pdfs.semanticscholar.org/acdc/333f7b32d987e65ce15f21db64e850ca9471.pdf,Direct Loss Minimization for Training Deep Neural Nets,2015 +369,VOC,voc,43.66333345,-79.39769975,University of Toronto,edu,acdc333f7b32d987e65ce15f21db64e850ca9471,citation,https://pdfs.semanticscholar.org/acdc/333f7b32d987e65ce15f21db64e850ca9471.pdf,Direct Loss Minimization for Training Deep Neural Nets,2015 +370,VOC,voc,28.2290209,112.99483204,"National University of Defense Technology, China",edu,da4137396f26bf3e76d04eeed0c94e11b7824aa6,citation,https://arxiv.org/pdf/1711.06828.pdf,Transferable Semi-Supervised Semantic Segmentation,2018 +371,VOC,voc,1.2962018,103.77689944,National University of Singapore,edu,da4137396f26bf3e76d04eeed0c94e11b7824aa6,citation,https://arxiv.org/pdf/1711.06828.pdf,Transferable Semi-Supervised Semantic Segmentation,2018 +372,VOC,voc,40.11571585,-88.22750772,Beckman Institute,edu,da4137396f26bf3e76d04eeed0c94e11b7824aa6,citation,https://arxiv.org/pdf/1711.06828.pdf,Transferable Semi-Supervised Semantic Segmentation,2018 +373,VOC,voc,40.9153196,-73.1270626,Stony Brook University,edu,5240941af3b263609acaa168f96e1decdb0b3fe4,citation,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W06/papers/Ge_Action_Classification_in_2015_CVPR_paper.pdf,Action classification in still images using human eye movements,2015 +374,VOC,voc,43.66333345,-79.39769975,University of Toronto,edu,126250d6077a6a68ae06277352eb42c4fa4c8b10,citation,http://pdfs.semanticscholar.org/1262/50d6077a6a68ae06277352eb42c4fa4c8b10.pdf,Learning Patch-based Structural Element Models with Hierarchical Palettes Abstract Learning Patch-based Structural Element Models with Hierarchical Palettes,2012 +375,VOC,voc,40.11116745,-88.22587665,"University of Illinois, Urbana-Champaign",edu,0cbbbfac2fe925479c6b34712e056f840a10fa4d,citation,https://pdfs.semanticscholar.org/0cbb/bfac2fe925479c6b34712e056f840a10fa4d.pdf,Quality Evaluation Methods for Crowdsourced Image Segmentation,2018 +376,VOC,voc,37.3936717,-122.0807262,Facebook,company,0cbbbfac2fe925479c6b34712e056f840a10fa4d,citation,https://pdfs.semanticscholar.org/0cbb/bfac2fe925479c6b34712e056f840a10fa4d.pdf,Quality Evaluation Methods for Crowdsourced Image Segmentation,2018 +377,VOC,voc,42.718568,-84.47791571,Michigan State University,edu,28df3f11894ce0c48dd8aee65a6ec76d9009cbbd,citation,https://arxiv.org/pdf/1809.08318.pdf,Recurrent Flow-Guided Semantic Forecasting,2018 +378,VOC,voc,42.30791465,-83.07176915,University of Windsor,edu,535ed3850e79ccd51922601546ef0fc48c5fb468,citation,http://arxiv.org/abs/1705.04301,A feature embedding strategy for high-level CNN representations from multiple convnets,2017 +379,VOC,voc,30.19331415,120.11930822,Zhejiang University,edu,535ed3850e79ccd51922601546ef0fc48c5fb468,citation,http://arxiv.org/abs/1705.04301,A feature embedding strategy for high-level CNN representations from multiple convnets,2017 +380,VOC,voc,-34.9189226,138.60423668,University of Adelaide,edu,247ca98c5a46616044cf6ae32b0d5b4140a7a161,citation,http://pdfs.semanticscholar.org/247c/a98c5a46616044cf6ae32b0d5b4140a7a161.pdf,High-performance Semantic Segmentation Using Very Deep Fully Convolutional Networks,2016 +381,VOC,voc,28.2290209,112.99483204,"National University of Defense Technology, China",edu,5f771fed91c8e4b666489ba2384d0705bcf75030,citation,https://arxiv.org/pdf/1804.03287.pdf,Understanding Humans in Crowded Scenes: Deep Nested Adversarial Learning and A New Benchmark for Multi-Human Parsing,2018 +382,VOC,voc,1.2962018,103.77689944,National University of Singapore,edu,5f771fed91c8e4b666489ba2384d0705bcf75030,citation,https://arxiv.org/pdf/1804.03287.pdf,Understanding Humans in Crowded Scenes: Deep Nested Adversarial Learning and A New Benchmark for Multi-Human Parsing,2018 +383,VOC,voc,51.6091578,-3.97934429,Swansea University,edu,d115c4a66d765fef596b0b171febca334cea15b5,citation,http://pdfs.semanticscholar.org/d115/c4a66d765fef596b0b171febca334cea15b5.pdf,Combining Stacked Denoising Autoencoders and Random Forests for Face Detection,2016 +384,VOC,voc,39.2899685,-76.62196103,University of Maryland,edu,e20ab84ac7fa0a5d36d4cf2266b7065c60e1c804,citation,https://pdfs.semanticscholar.org/e20a/b84ac7fa0a5d36d4cf2266b7065c60e1c804.pdf,Stacked U-Nets for Ground Material Segmentation in Remote Sensing Imagery,0 +385,VOC,voc,22.3386304,114.2620337,Hong Kong University of Science and Technology,edu,a1fdf45e6649b0020eb533c70d6062b9183561ff,citation,https://arxiv.org/pdf/1802.07931.pdf,Where's YOUR focus: Personalized Attention,2017 +386,VOC,voc,36.05238585,140.11852361,National Institute of Advanced Industrial Science and Technology,edu,775c51b965e8ff37646a265aab64136b4a620526,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/2A_059_ext.pdf,Three viewpoints toward exemplar SVM,2015 +387,VOC,voc,28.59899755,-81.19712501,University of Central Florida,edu,0688c0568f3ab418719260d443cc0d86c3af2914,citation,https://arxiv.org/pdf/1707.09465.pdf,Curriculum Domain Adaptation for Semantic Segmentation of Urban Scenes,2017 +388,VOC,voc,37.4102193,-122.05965487,Carnegie Mellon University,edu,5d92531e74c4c2cdce91fdcd3c7ff090c8c29504,citation,http://pdfs.semanticscholar.org/5d92/531e74c4c2cdce91fdcd3c7ff090c8c29504.pdf,Synthesizing Scenes for Instance Detection,2017 +389,VOC,voc,58.38131405,26.72078081,University of Tartu,edu,c919a9f61656cdcd3a26076057ee006c48e8f609,citation,https://pdfs.semanticscholar.org/c919/a9f61656cdcd3a26076057ee006c48e8f609.pdf,High-Value Target Detection,2018 +390,VOC,voc,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,c6ce8eb37dafed09e1c55735fd1f1e9dc9c6bfe2,citation,https://arxiv.org/pdf/1707.07584.pdf,Joint background reconstruction and foreground segmentation via a two-stage convolutional neural network,2017 +391,VOC,voc,40.0044795,116.370238,Chinese Academy of Sciences,edu,c6ce8eb37dafed09e1c55735fd1f1e9dc9c6bfe2,citation,https://arxiv.org/pdf/1707.07584.pdf,Joint background reconstruction and foreground segmentation via a two-stage convolutional neural network,2017 +392,VOC,voc,55.7039571,13.1902011,Lund University,edu,c0006a2268d299644e9f1b455601bcbe89ddc2b5,citation,https://arxiv.org/pdf/1612.08871.pdf,Semantic Video Segmentation by Gated Recurrent Flow Propagation,2016 +393,VOC,voc,34.13710185,-118.12527487,California Institute of Technology,edu,273b9b7c63ac9196fb12734b49b74d0523ca4df4,citation,https://arxiv.org/pdf/1406.2807v2.pdf,The Secrets of Salient Object Segmentation,2014 +394,VOC,voc,34.0687788,-118.4450094,"University of California, Los Angeles",edu,273b9b7c63ac9196fb12734b49b74d0523ca4df4,citation,https://arxiv.org/pdf/1406.2807v2.pdf,The Secrets of Salient Object Segmentation,2014 +395,VOC,voc,33.59914655,130.22359848,Kyushu University,edu,e771661fa441f008c111ea786eb275153919da6e,citation,http://pdfs.semanticscholar.org/e771/661fa441f008c111ea786eb275153919da6e.pdf,Globally Optimal Object Tracking with Fully Convolutional Networks,2016 +396,VOC,voc,41.5007811,2.11143663,Universitat Autònoma de Barcelona,edu,5feacd9dd73827fb438a6bf6c8b406f4f11aa2fa,citation,http://pdfs.semanticscholar.org/5fea/cd9dd73827fb438a6bf6c8b406f4f11aa2fa.pdf,Slanted Stixels: Representing San Francisco's Steepest Streets,2017 +397,VOC,voc,47.3764534,8.54770931,ETH Zürich,edu,5feacd9dd73827fb438a6bf6c8b406f4f11aa2fa,citation,http://pdfs.semanticscholar.org/5fea/cd9dd73827fb438a6bf6c8b406f4f11aa2fa.pdf,Slanted Stixels: Representing San Francisco's Steepest Streets,2017 diff --git a/site/datasets/final/yfcc_100m.csv b/site/datasets/final/yfcc_100m.csv new file mode 100644 index 00000000..daee2cf4 --- /dev/null +++ b/site/datasets/final/yfcc_100m.csv @@ -0,0 +1,69 @@ +index,dataset_name,key,lat,lng,loc,loc_type,paper_id,paper_type,paper_url,title,year +0,YFCC100M,yfcc_100m,0.0,0.0,,,a6e695ddd07aad719001c0fc1129328452385949,main,,The New Data and New Challenges in Multimedia Research,2015 +1,YFCC100M,yfcc_100m,45.5039761,-73.5749687,McGill University,edu,7d0ff6d0621b3846e8543bc162fd0215d8adfaf0,citation,http://openaccess.thecvf.com/content_cvpr_2016/papers/Iscen_Efficient_Large-Scale_Similarity_CVPR_2016_paper.pdf,Efficient Large-Scale Similarity Search Using Matrix Factorization,2016 +2,YFCC100M,yfcc_100m,42.3583961,-71.09567788,MIT,edu,8c192cd39f90eb8ff2969f8916ef8967607c5298,citation,http://pdfs.semanticscholar.org/9677/d2f6a994f598c1d631038d49401c5f707ee0.pdf,"See, Hear, and Read: Deep Aligned Representations",2017 +3,YFCC100M,yfcc_100m,47.5612651,7.5752961,University of Basel,edu,b7c8452ac9791563d9a739bd079b05e518b20aea,citation,http://pdfs.semanticscholar.org/b7c8/452ac9791563d9a739bd079b05e518b20aea.pdf,Web Video in Numbers - An Analysis of Web-Video Metadata,2017 +4,YFCC100M,yfcc_100m,37.43131385,-122.16936535,Stanford University,edu,7060f6062ba1cbe9502eeaaf13779aa1664224bb,citation,http://cs.stanford.edu/groups/vision/pdf/hata2017cscw.pdf,A Glimpse Far into the Future: Understanding Long-term Crowd Worker Quality,2017 +5,YFCC100M,yfcc_100m,37.4102193,-122.05965487,Carnegie Mellon University,edu,258dda85eadcd2081d1e0131826aceac7f1e2415,citation,http://pdfs.semanticscholar.org/e62d/40940a2711c7adca2857110272fb34d70576.pdf,Supervision Beyond Manual Annotations for Learning Visual Representations,2016 +6,YFCC100M,yfcc_100m,37.4102193,-122.05965487,Carnegie Mellon University,edu,2577211aeaaa1f2245ddc379564813bee3d46c06,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Misra_Seeing_Through_the_CVPR_2016_paper.pdf,Seeing through the Human Reporting Bias: Visual Classifiers from Noisy Human-Centric Labels,2016 +7,YFCC100M,yfcc_100m,47.6423318,-122.1369302,Microsoft,company,2577211aeaaa1f2245ddc379564813bee3d46c06,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Misra_Seeing_Through_the_CVPR_2016_paper.pdf,Seeing through the Human Reporting Bias: Visual Classifiers from Noisy Human-Centric Labels,2016 +8,YFCC100M,yfcc_100m,47.6543238,-122.30800894,University of Washington,edu,405526dfc79de98f5bf3c97bf4aa9a287700f15d,citation,http://pdfs.semanticscholar.org/8a6c/57fcd99a77982ec754e0b97fd67519ccb60c.pdf,MegaFace: A Million Faces for Recognition at Scale,2015 +9,YFCC100M,yfcc_100m,37.4102193,-122.05965487,Carnegie Mellon University,edu,18fe63c013983bea53be7d559ef36a1f385ca6ea,citation,http://pdfs.semanticscholar.org/18fe/63c013983bea53be7d559ef36a1f385ca6ea.pdf,Supervision Beyond Human Annotations for Learning Visual Representations,2015 +10,YFCC100M,yfcc_100m,33.776033,-84.39884086,Georgia Institute of Technology,edu,629b1bdf4d96bb41f7d3fce5c7d5617515303b71,citation,http://pdfs.semanticscholar.org/629b/1bdf4d96bb41f7d3fce5c7d5617515303b71.pdf,Diving Deeper into IM2GPS,2016 +11,YFCC100M,yfcc_100m,47.6543238,-122.30800894,University of Washington,edu,96e0cfcd81cdeb8282e29ef9ec9962b125f379b0,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2016.527,The MegaFace Benchmark: 1 Million Faces for Recognition at Scale,2016 +12,YFCC100M,yfcc_100m,37.4102193,-122.05965487,Carnegie Mellon University,edu,d0ac9913a3b1784f94446db2f1fb4cf3afda151f,citation,http://pdfs.semanticscholar.org/d0ac/9913a3b1784f94446db2f1fb4cf3afda151f.pdf,Exploiting Multi-modal Curriculum in Noisy Web Data for Large-scale Concept Learning,2016 +13,YFCC100M,yfcc_100m,40.72925325,-73.99625394,New York University,edu,18078e72bddefffc24a6e882790aca8531773bed,citation,https://arxiv.org/pdf/1601.02306v1.pdf,Sublinear scaling of country attractiveness observed from Flickr dataset,2015 +14,YFCC100M,yfcc_100m,42.3583961,-71.09567788,MIT,edu,9677d2f6a994f598c1d631038d49401c5f707ee0,citation,https://arxiv.org/pdf/1706.00932.pdf,"See, Hear, and Read: Deep Aligned Representations",2017 +15,YFCC100M,yfcc_100m,42.3583961,-71.09567788,MIT,edu,1b6f3139b1e59b90ab1aaf978359229b75985b49,citation,http://pdfs.semanticscholar.org/847e/39b52a63a55fb94fff7ade1f90a7c67e508b.pdf,Learning with a Wasserstein Loss,2015 +16,YFCC100M,yfcc_100m,33.5934539,130.3557837,Information Technologies Institute,edu,ea985e35b36f05156f82ac2025ad3fe8037be0cd,citation,http://pdfs.semanticscholar.org/ea98/5e35b36f05156f82ac2025ad3fe8037be0cd.pdf,CERTH/CEA LIST at MediaEval Placing Task 2015,2015 +17,YFCC100M,yfcc_100m,37.43131385,-122.16936535,Stanford University,edu,518f3cb2c9f2481cdce7741c5a821c26378b75e9,citation,http://pdfs.semanticscholar.org/518f/3cb2c9f2481cdce7741c5a821c26378b75e9.pdf,The Unreasonable Effectiveness of Noisy Data for Fine-Grained Recognition,2016 +18,YFCC100M,yfcc_100m,37.4102193,-122.05965487,Carnegie Mellon University,edu,982ede05154c1afdcf6fc623ba45186a34f4b9f2,citation,https://doi.org/10.1109/TMM.2017.2659221,The Many Shades of Negativity,2017 +19,YFCC100M,yfcc_100m,-33.8809651,151.20107299,University of Technology Sydney,edu,982ede05154c1afdcf6fc623ba45186a34f4b9f2,citation,https://doi.org/10.1109/TMM.2017.2659221,The Many Shades of Negativity,2017 +20,YFCC100M,yfcc_100m,46.0658836,11.1159894,University of Trento,edu,982ede05154c1afdcf6fc623ba45186a34f4b9f2,citation,https://doi.org/10.1109/TMM.2017.2659221,The Many Shades of Negativity,2017 +21,YFCC100M,yfcc_100m,37.4102193,-122.05965487,Carnegie Mellon University,edu,5996001b797ab2a0f55d5355cb168f25bfe56bbd,citation,http://doi.acm.org/10.1145/2671188.2749398,Content-Based Video Search over 1 Million Videos with 1 Core in 1 Second,2015 +22,YFCC100M,yfcc_100m,37.43131385,-122.16936535,Stanford University,edu,65c978a97f54cf255f01c6846d6c51b37c61f836,citation,http://pdfs.semanticscholar.org/65c9/78a97f54cf255f01c6846d6c51b37c61f836.pdf,A Glimpse Far into the Future: Understanding Long-term Crowd Worker Accuracy,2016 +23,YFCC100M,yfcc_100m,47.6543238,-122.30800894,University of Washington,edu,301486e8dad7a41a1a99fd6fba28ce153fe1e56e,citation,http://pdfs.semanticscholar.org/3014/86e8dad7a41a1a99fd6fba28ce153fe1e56e.pdf,Are Elephants Bigger than Butterflies? Reasoning about Sizes of Objects,2016 +24,YFCC100M,yfcc_100m,37.43131385,-122.16936535,Stanford University,edu,01a903739564f575b81c87f7a9e2cb7b609f7ada,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Johnson_Image_Retrieval_Using_2015_CVPR_paper.pdf,Image retrieval using scene graphs,2015 +25,YFCC100M,yfcc_100m,31.30104395,121.50045497,Fudan University,edu,c5e37630d0672e4d44f7dee83ac2c1528be41c2e,citation,http://dl.acm.org/citation.cfm?id=3078973,Multi-task Deep Neural Network for Joint Face Recognition and Facial Attribute Prediction,2017 +26,YFCC100M,yfcc_100m,37.3936717,-122.0807262,Facebook,company,05818eddd8a35fed7f3041d591ef966f8e79bd9a,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1A_003_ext.pdf,Web scale photo hash clustering on a single machine,2015 +27,YFCC100M,yfcc_100m,37.4102193,-122.05965487,Carnegie Mellon University,edu,22954dd92a795d7f381465d1b353bcc41901430d,citation,http://pdfs.semanticscholar.org/3b04/f759e9b3c21defe2227374a008bec67751e3.pdf,Learning Visual Storylines with Skipping Recurrent Neural Networks,2016 +28,YFCC100M,yfcc_100m,47.6423318,-122.1369302,Microsoft,company,9bbc952adb3e3c6091d45d800e806d3373a52bac,citation,https://pdfs.semanticscholar.org/9bbc/952adb3e3c6091d45d800e806d3373a52bac.pdf,Learning Visual Classifiers using Human-centric Annotations,2015 +29,YFCC100M,yfcc_100m,37.4102193,-122.05965487,Carnegie Mellon University,edu,2c761495cf3dd320e229586f80f868be12360d4e,citation,http://arxiv.org/abs/1707.02968,Revisiting Unreasonable Effectiveness of Data in Deep Learning Era,2017 +30,YFCC100M,yfcc_100m,32.87935255,-117.23110049,"University of California, San Diego",edu,a9be20954e9177d8b2bc39747acdea4f5496f394,citation,http://acsweb.ucsd.edu/~yuw176/report/cvpr_2016.pdf,Event-Specific Image Importance,2016 +31,YFCC100M,yfcc_100m,52.3553655,4.9501644,University of Amsterdam,edu,256f09fe3163564958381d7f3727b5c27c19144c,citation,http://doi.acm.org/10.1145/2733373.2806335,Image2Emoji: Zero-shot Emoji Prediction for Visual Media,2015 +32,YFCC100M,yfcc_100m,37.43131385,-122.16936535,Stanford University,edu,891433740bf6d318782c468638722aebf8bef2f5,citation,http://pdfs.semanticscholar.org/8914/33740bf6d318782c468638722aebf8bef2f5.pdf,Multi-Frame Video Super-Resolution Using Convolutional Neural Networks,2016 +33,YFCC100M,yfcc_100m,47.6543238,-122.30800894,University of Washington,edu,85304f24f5a1800e66de20ad05e20c8c032b7d03,citation,http://pdfs.semanticscholar.org/8530/4f24f5a1800e66de20ad05e20c8c032b7d03.pdf,Understanding and Discovering Deliberate Self-harm Content in Social Media,2017 +34,YFCC100M,yfcc_100m,22.2081469,114.25964115,University of Hong Kong,edu,35ec869dd0637c933d35ab823202c13b9b5d9aad,citation,http://pdfs.semanticscholar.org/4498/06bcb0987db60a0f8647380f9c335078fb46.pdf,Effective Community Search for Large Attributed Graphs,2016 +35,YFCC100M,yfcc_100m,40.4319722,-86.92389368,Purdue University,edu,7c5dde400571fd357d1093e1829a8bd7917d8fcd,citation,https://arxiv.org/pdf/1704.05982.pdf,Retrospective Higher-Order Markov Processes for User Trails,2017 +36,YFCC100M,yfcc_100m,37.43131385,-122.16936535,Stanford University,edu,9ded64e83d3ba51513ea00de27c0c770a02b0cf4,citation,http://pdfs.semanticscholar.org/9ded/64e83d3ba51513ea00de27c0c770a02b0cf4.pdf,Image Classification using Transfer Learning from Siamese Networks based on Text Metadata Similarity,2016 +37,YFCC100M,yfcc_100m,1.2962018,103.77689944,National University of Singapore,edu,7d621ec871a03a01f5aa65253e9ae6c8aadaf798,citation,http://pdfs.semanticscholar.org/fa2a/0fd5c5d5d3f14bf3875d531372ba6957748d.pdf,Converting Static Image Datasets to Spiking Neuromorphic Datasets Using Saccades,2015 +38,YFCC100M,yfcc_100m,37.4585796,-122.17560525,SRI International,edu,33737f966cca541d5dbfb72906da2794c692b65b,citation,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2017.238,Spotting Audio-Visual Inconsistencies (SAVI) in Manipulated Video,2017 +39,YFCC100M,yfcc_100m,52.3553655,4.9501644,University of Amsterdam,edu,33737f966cca541d5dbfb72906da2794c692b65b,citation,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2017.238,Spotting Audio-Visual Inconsistencies (SAVI) in Manipulated Video,2017 +40,YFCC100M,yfcc_100m,42.3583961,-71.09567788,MIT,edu,988aa2583c63ada43ca260dd8b5a4a543725a483,citation,http://pdfs.semanticscholar.org/988a/a2583c63ada43ca260dd8b5a4a543725a483.pdf,Choosing the Right Home Location Definition Method for the Given Dataset,2015 +41,YFCC100M,yfcc_100m,32.9820799,-96.7566278,University of Texas at Dallas,edu,ac9516a589901f1421e8ce905dd8bc5b689317ca,citation,http://pdfs.semanticscholar.org/ac95/16a589901f1421e8ce905dd8bc5b689317ca.pdf,A Practical Framework for Executing Complex Queries over Encrypted Multimedia Data,2016 +42,YFCC100M,yfcc_100m,37.4102193,-122.05965487,Carnegie Mellon University,edu,d3008b4122e50a28f6cc1fa98ac6af28b42271ea,citation,http://dl.acm.org/citation.cfm?id=2806218,Searching Persuasively: Joint Event Detection and Evidence Recounting with Limited Supervision,2015 +43,YFCC100M,yfcc_100m,-33.8809651,151.20107299,University of Technology Sydney,edu,d3008b4122e50a28f6cc1fa98ac6af28b42271ea,citation,http://dl.acm.org/citation.cfm?id=2806218,Searching Persuasively: Joint Event Detection and Evidence Recounting with Limited Supervision,2015 +44,YFCC100M,yfcc_100m,38.0353682,-78.5035322,University of Virginia,edu,17e7a53456539dac2c9cf8631174c6388f64e24b,citation,https://arxiv.org/pdf/1612.01635.pdf,Learning to Detect Multiple Photographic Defects,2018 +45,YFCC100M,yfcc_100m,22.2081469,114.25964115,University of Hong Kong,edu,5d1ffb7ba3c53ecc5a90d40380ae235043c16344,citation,http://pdfs.semanticscholar.org/5d1f/fb7ba3c53ecc5a90d40380ae235043c16344.pdf,On Label-Aware Community Search,2016 +46,YFCC100M,yfcc_100m,35.9020448,139.93622009,University of Tokyo,edu,81f63e7344cc242416e37d791f7eb83ec2c07681,citation,https://arxiv.org/pdf/1804.06057.pdf,Multimodal Co-Training for Selecting Good Examples from Webly Labeled Video,2018 +47,YFCC100M,yfcc_100m,-37.8087465,144.9638875,RMIT University,edu,3ad6bd5c34b0866019b54f5976d644326069cb3d,citation,http://pdfs.semanticscholar.org/3ad6/bd5c34b0866019b54f5976d644326069cb3d.pdf,Towards Next Generation Touring: Personalized Group Tours,2016 +48,YFCC100M,yfcc_100m,31.20081505,121.42840681,Shanghai Jiao Tong University,edu,02b852e698dfe85df39c24e7dd39dedf484893dd,citation,http://pdfs.semanticscholar.org/02b8/52e698dfe85df39c24e7dd39dedf484893dd.pdf,Collaborative Learning for Weakly Supervised Object Detection,2018 +49,YFCC100M,yfcc_100m,37.4102193,-122.05965487,Carnegie Mellon University,edu,187480101af3fb195993da1e2c17d917df24eb23,citation,http://arxiv.org/pdf/1505.05192v2.pdf,Unsupervised Visual Representation Learning by Context Prediction,2015 +50,YFCC100M,yfcc_100m,37.8687126,-122.25586815,"University of California, Berkeley",edu,187480101af3fb195993da1e2c17d917df24eb23,citation,http://arxiv.org/pdf/1505.05192v2.pdf,Unsupervised Visual Representation Learning by Context Prediction,2015 +51,YFCC100M,yfcc_100m,31.846918,117.29053367,Hefei University of Technology,edu,beeadf57a976f23f4fd6fa8a330eac6c81d3e3cd,citation,http://pdfs.semanticscholar.org/beea/df57a976f23f4fd6fa8a330eac6c81d3e3cd.pdf,ESGM : Event Enrichment and Summarization by Graph Model,2015 +52,YFCC100M,yfcc_100m,43.614386,7.071125,EURECOM,edu,beeadf57a976f23f4fd6fa8a330eac6c81d3e3cd,citation,http://pdfs.semanticscholar.org/beea/df57a976f23f4fd6fa8a330eac6c81d3e3cd.pdf,ESGM : Event Enrichment and Summarization by Graph Model,2015 +53,YFCC100M,yfcc_100m,31.2284923,121.40211389,East China Normal University,edu,beeadf57a976f23f4fd6fa8a330eac6c81d3e3cd,citation,http://pdfs.semanticscholar.org/beea/df57a976f23f4fd6fa8a330eac6c81d3e3cd.pdf,ESGM : Event Enrichment and Summarization by Graph Model,2015 +54,YFCC100M,yfcc_100m,38.2530945,140.8736593,Tohoku University,edu,171042ba12818238e3c0994ff08d71f8c28d4134,citation,http://pdfs.semanticscholar.org/1710/42ba12818238e3c0994ff08d71f8c28d4134.pdf,Learning to Describe E-Commerce Images from Noisy Online Data,2016 +55,YFCC100M,yfcc_100m,42.4505507,-76.4783513,Cornell University,edu,8a8861ad6caedc3993e31d46e7de6c251a8cda22,citation,https://arxiv.org/pdf/1706.01869.pdf,StreetStyle: Exploring world-wide clothing styles from millions of photos,2017 +56,YFCC100M,yfcc_100m,47.6423318,-122.1369302,Microsoft,company,19d1855e021561d6da9d0200bb18e47f51cddda6,citation,https://arxiv.org/pdf/1604.03968.pdf,Visual Storytelling,2016 +57,YFCC100M,yfcc_100m,37.4102193,-122.05965487,Carnegie Mellon University,edu,19d1855e021561d6da9d0200bb18e47f51cddda6,citation,https://arxiv.org/pdf/1604.03968.pdf,Visual Storytelling,2016 +58,YFCC100M,yfcc_100m,42.3583961,-71.09567788,MIT,edu,0ae80aa149764e91544bbe45b80bb50434e7bda9,citation,http://pdfs.semanticscholar.org/714c/21c575d2c02a51f2dd5250164f1269be44ca.pdf,Ambient Sound Provides Supervision for Visual Learning,2016 +59,YFCC100M,yfcc_100m,47.6423318,-122.1369302,Microsoft,company,30193451e552286645baa00db7dcd05780d9e1da,citation,https://pdfs.semanticscholar.org/3019/3451e552286645baa00db7dcd05780d9e1da.pdf,On Available Corpora for Empirical Methods in Vision & Language,2015 +60,YFCC100M,yfcc_100m,42.3504253,-71.10056114,Boston University,edu,16815ef660ef9e4091a81044d430591348df72ee,citation,http://pdfs.semanticscholar.org/1681/5ef660ef9e4091a81044d430591348df72ee.pdf,Combining Texture and Shape Cues for Object Recognition with Minimal Supervision,2016 +61,YFCC100M,yfcc_100m,37.4102193,-122.05965487,Carnegie Mellon University,edu,2a2fd2538e19652721bc664f92056fbd08c604fd,citation,http://pdfs.semanticscholar.org/5042/096e3a80b14a6686014f338e0643f5270e65.pdf,Surveillance Video Analysis with External Knowledge and Internal Constraints,2016 +62,YFCC100M,yfcc_100m,38.0333742,-84.5017758,University of Kentucky,edu,4576b59a44f75120f6a2d17a4e9c52e894297661,citation,https://pdfs.semanticscholar.org/4576/b59a44f75120f6a2d17a4e9c52e894297661.pdf,Learning Geo-Temporal Image Features,2018 +63,YFCC100M,yfcc_100m,22.59805605,113.98533784,Shenzhen Institutes of Advanced Technology,edu,4cfd770ccecae1c0b4248bc800d7fd35c817bbbd,citation,https://pdfs.semanticscholar.org/8774/e206564df3bf9050f8c2be6b434cc2469c5b.pdf,A Discriminative Feature Learning Approach for Deep Face Recognition,2016 +64,YFCC100M,yfcc_100m,22.42031295,114.20788644,Chinese University of Hong Kong,edu,4cfd770ccecae1c0b4248bc800d7fd35c817bbbd,citation,https://pdfs.semanticscholar.org/8774/e206564df3bf9050f8c2be6b434cc2469c5b.pdf,A Discriminative Feature Learning Approach for Deep Face Recognition,2016 +65,YFCC100M,yfcc_100m,33.5934539,130.3557837,Information Technologies Institute,edu,7f05df12dff3defee495507abd4870a0a30c3590,citation,http://pdfs.semanticscholar.org/7f05/df12dff3defee495507abd4870a0a30c3590.pdf,Placing Images with Refined Language Models and Similarity Search with PCA-reduced VGG Features,2016 +66,YFCC100M,yfcc_100m,39.65404635,-79.96475355,West Virginia University,edu,b7b421be7c1dcbb8d41edb11180ba6ec87511976,citation,https://arxiv.org/pdf/1805.00324.pdf,A Deep Face Identification Network Enhanced by Facial Attributes Prediction,2018 +67,YFCC100M,yfcc_100m,49.2579566,7.04577417,Max Planck Institute for Informatics,edu,7fda1edac608bc67e55ac3d7c9dc5a542d8f8aee,citation,http://pdfs.semanticscholar.org/b742/8da870a9872ecdaa6feaaab43c0bcd136dd2.pdf,Multimodal Compact Bilinear Pooling for Visual Question Answering and Visual Grounding,2016 diff --git a/site/datasets/final/youtube_poses.csv b/site/datasets/final/youtube_poses.csv new file mode 100644 index 00000000..10205029 --- /dev/null +++ b/site/datasets/final/youtube_poses.csv @@ -0,0 +1,20 @@ +index,dataset_name,key,lat,lng,loc,loc_type,paper_id,paper_type,paper_url,title,year +0,YouTube Pose,youtube_poses,0.0,0.0,,,1c2802c2199b6d15ecefe7ba0c39bfe44363de38,main,http://arxiv.org/pdf/1511.06676v1.pdf,Personalizing Human Video Pose Estimation,2016 +1,YouTube Pose,youtube_poses,50.7338124,7.1022465,University of Bonn,edu,267bd60e442d87c44eaae3290610138e63d663ab,citation,http://openaccess.thecvf.com/content_cvpr_2017/papers/Iqbal_PoseTrack_Joint_Multi-Person_CVPR_2017_paper.pdf,PoseTrack: Joint Multi-person Pose Estimation and Tracking,2017 +2,YouTube Pose,youtube_poses,-34.9189226,138.60423668,University of Adelaide,edu,267bd60e442d87c44eaae3290610138e63d663ab,citation,http://openaccess.thecvf.com/content_cvpr_2017/papers/Iqbal_PoseTrack_Joint_Multi-Person_CVPR_2017_paper.pdf,PoseTrack: Joint Multi-person Pose Estimation and Tracking,2017 +3,YouTube Pose,youtube_poses,17.4454957,78.34854698,International Institute of Information Technology,edu,185263189a30986e31566394680d6d16b0089772,citation,https://pdfs.semanticscholar.org/1852/63189a30986e31566394680d6d16b0089772.pdf,Efficient Annotation of Objects for Video Analysis,2018 +4,YouTube Pose,youtube_poses,52.17638955,0.14308882,University of Cambridge,edu,cd87fea30b68ad1c9ebcb71a224c53cde3516adb,citation,https://pdfs.semanticscholar.org/cd87/fea30b68ad1c9ebcb71a224c53cde3516adb.pdf,EXTRACTING THE X FACTOR IN HUMAN PARSING 3 Factored module Factored task Aggregation module Input Main task Shared features Silhouette Body parts The X Factor bottleneck layers bottleneck layers bottleneck layers Initial module bottleneck layers initial block,2018 +5,YouTube Pose,youtube_poses,51.49887085,-0.17560797,Imperial College London,edu,37aa876f5202d1db6919f0a0dd5a0f76508c02fb,citation,https://arxiv.org/pdf/1711.10872.pdf,Occlusion-Aware Hand Pose Estimation Using Hierarchical Mixture Density Network,2018 +6,YouTube Pose,youtube_poses,33.5866784,-101.87539204,Electrical and Computer Engineering,edu,0ca2f48fad7f69fb415ecbb99945250cbf8f011c,citation,https://pdfs.semanticscholar.org/0ca2/f48fad7f69fb415ecbb99945250cbf8f011c.pdf,Outliers Cleaning in Dynamic Systems,2017 +7,YouTube Pose,youtube_poses,42.3383668,-71.08793524,Northeastern University,edu,0ca2f48fad7f69fb415ecbb99945250cbf8f011c,citation,https://pdfs.semanticscholar.org/0ca2/f48fad7f69fb415ecbb99945250cbf8f011c.pdf,Outliers Cleaning in Dynamic Systems,2017 +8,YouTube Pose,youtube_poses,37.43131385,-122.16936535,Stanford University,edu,815e77b8f2e8f17205e46162b3addd02b2ea8ff0,citation,http://pdfs.semanticscholar.org/815e/77b8f2e8f17205e46162b3addd02b2ea8ff0.pdf,Marker-less Pose Estimation,2017 +9,YouTube Pose,youtube_poses,39.9492344,-75.19198985,University of Pennsylvania,edu,bbd9b5e4d4761d923d21a060513e826bf5bfc620,citation,https://arxiv.org/pdf/1704.04793.pdf,Harvesting Multiple Views for Marker-Less 3D Human Pose Annotations,2017 +10,YouTube Pose,youtube_poses,43.65815275,-79.3790801,Ryerson University,edu,bbd9b5e4d4761d923d21a060513e826bf5bfc620,citation,https://arxiv.org/pdf/1704.04793.pdf,Harvesting Multiple Views for Marker-Less 3D Human Pose Annotations,2017 +11,YouTube Pose,youtube_poses,31.20081505,121.42840681,Shanghai Jiao Tong University,edu,10d255fb0bb651b6e9cc69855a970c44f121f2c9,citation,https://arxiv.org/pdf/1710.06513.pdf,Learning Pose Grammar to Encode Human Body Configuration for 3D Pose Estimation,2018 +12,YouTube Pose,youtube_poses,49.2579566,7.04577417,Max Planck Institute for Informatics,edu,3e682d368422ff31632760611039372a07eeabc6,citation,https://pdfs.semanticscholar.org/a254/e59f6fd1f8c51e3a5398c01cc1b45aebc66e.pdf,Articulated Multi-person Tracking in the Wild,2016 +13,YouTube Pose,youtube_poses,-35.2776999,149.118527,Australian National University,edu,ce2fd44a8c43642b76f219fe32291c1b2644cb73,citation,https://arxiv.org/pdf/1707.09240.pdf,Human Pose Forecasting via Deep Markov Models,2017 +14,YouTube Pose,youtube_poses,52.17638955,0.14308882,University of Cambridge,edu,4065d038ecbda579a0791aaf46fc62bbcba5b1f3,citation,http://pdfs.semanticscholar.org/4065/d038ecbda579a0791aaf46fc62bbcba5b1f3.pdf,Real-time Factored ConvNets: Extracting the X Factor in Human Parsing,2017 +15,YouTube Pose,youtube_poses,50.7338124,7.1022465,University of Bonn,edu,7a0cd36d02ad962f628d9d504d02a850e27d5bfb,citation,https://arxiv.org/pdf/1710.10000.pdf,PoseTrack: A Benchmark for Human Pose Estimation and Tracking,2017 +16,YouTube Pose,youtube_poses,49.2579566,7.04577417,Max Planck Institute for Informatics,edu,8e74244e220a1c9e89417caa1ad22f649884d311,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2017.142,ArtTrack: Articulated Multi-Person Tracking in the Wild,2017 +17,YouTube Pose,youtube_poses,65.0592157,25.46632601,University of Oulu,edu,a287643d3eddca3dcc09b3532f2b070a28d4a022,citation,http://pdfs.semanticscholar.org/a287/643d3eddca3dcc09b3532f2b070a28d4a022.pdf,Real-time Human Pose Estimation from Video with Convolutional Neural Networks,2016 +18,YouTube Pose,youtube_poses,60.18558755,24.8242733,Aalto University,edu,a287643d3eddca3dcc09b3532f2b070a28d4a022,citation,http://pdfs.semanticscholar.org/a287/643d3eddca3dcc09b3532f2b070a28d4a022.pdf,Real-time Human Pose Estimation from Video with Convolutional Neural Networks,2016 |
