1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
|
index,dataset_name,key,lat,lng,loc,loc_type,paper_id,paper_type,paper_url,title,year
0,COFW,cofw,0.0,0.0,,,2724ba85ec4a66de18da33925e537f3902f21249,main,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6751298,Robust Face Landmark Estimation under Occlusion,2013
1,COFW,cofw,23.04436505,113.36668458,Guangzhou University,edu,293d69d042fe9bc4fea256c61915978ddaf7cc92,citation,https://doi.org/10.1007/978-981-10-7302-1_6,Face Recognition by Coarse-to-Fine Landmark Regression with Application to ATM Surveillance,2017
2,COFW,cofw,23.09461185,113.28788994,Sun Yat-Sen University,edu,293d69d042fe9bc4fea256c61915978ddaf7cc92,citation,https://doi.org/10.1007/978-981-10-7302-1_6,Face Recognition by Coarse-to-Fine Landmark Regression with Application to ATM Surveillance,2017
3,COFW,cofw,32.87935255,-117.23110049,"University of California, San Diego",edu,d68dbb71b34dfe98dee0680198a23d3b53056394,citation,http://pdfs.semanticscholar.org/d68d/bb71b34dfe98dee0680198a23d3b53056394.pdf,VIVA Face-off Challenge: Dataset Creation and Balancing Privacy,2015
4,COFW,cofw,40.0044795,116.370238,Chinese Academy of Sciences,edu,c2474202d56bb80663e7bece5924245978425fc1,citation,https://doi.org/10.1109/ICIP.2016.7532771,Localize heavily occluded human faces via deep segmentation,2016
5,COFW,cofw,31.83907195,117.26420748,University of Science and Technology of China,edu,a7a3ec1128f920066c25cb86fbc33445ce613919,citation,https://doi.org/10.1109/VCIP.2017.8305115,Joint facial landmark detection and action estimation based on deep probabilistic random forest,2017
6,COFW,cofw,42.9336278,-78.88394479,SUNY Buffalo,edu,a7a3ec1128f920066c25cb86fbc33445ce613919,citation,https://doi.org/10.1109/VCIP.2017.8305115,Joint facial landmark detection and action estimation based on deep probabilistic random forest,2017
7,COFW,cofw,42.718568,-84.47791571,Michigan State University,edu,0141cb33c822e87e93b0c1bad0a09db49b3ad470,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7298876,Unconstrained 3D face reconstruction,2015
8,COFW,cofw,22.2081469,114.25964115,University of Hong Kong,edu,fb87045600da73b07f0757f345a937b1c8097463,citation,https://pdfs.semanticscholar.org/5c54/2fef80a35a4f930e5c82040b52c58e96ce87.pdf,Reflective Regression of 2D-3D Face Shape Across Large Pose,2016
9,COFW,cofw,1.2962018,103.77689944,National University of Singapore,edu,1fe59275142844ce3ade9e2aed900378dd025880,citation,http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w25/papers/Xiao_Facial_Landmark_Detection_ICCV_2015_paper.pdf,Facial Landmark Detection via Progressive Initialization,2015
10,COFW,cofw,42.7298459,-73.67950216,Rensselaer Polytechnic Institute,edu,171d8a39b9e3d21231004f7008397d5056ff23af,citation,http://arxiv.org/abs/1709.08130,"Simultaneous Facial Landmark Detection, Pose and Deformation Estimation Under Facial Occlusion",2017
11,COFW,cofw,52.17638955,0.14308882,University of Cambridge,edu,4ae291b070ad7940b3c9d3cb10e8c05955c9e269,citation,http://www.cl.cam.ac.uk/~pr10/publications/icmi14.pdf,Automatic Detection of Naturalistic Hand-over-Face Gesture Descriptors,2014
12,COFW,cofw,39.9041999,116.4073963,"360 AI Institute, Beijing, China",company,54f169ad7d1f6c9ce94381e9b5ccc1a07fd49cc6,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7911334,Towards Robust and Accurate Multi-View and Partially-Occluded Face Alignment,2018
13,COFW,cofw,51.2352438,7.1593132,Delphi Deutschland GMBH,company,54f169ad7d1f6c9ce94381e9b5ccc1a07fd49cc6,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7911334,Towards Robust and Accurate Multi-View and Partially-Occluded Face Alignment,2018
14,COFW,cofw,40.0044795,116.370238,Chinese Academy of Sciences,edu,54f169ad7d1f6c9ce94381e9b5ccc1a07fd49cc6,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7911334,Towards Robust and Accurate Multi-View and Partially-Occluded Face Alignment,2018
15,COFW,cofw,40.0044795,116.370238,Chinese Academy of Sciences,edu,bc910ca355277359130da841a589a36446616262,citation,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Huang_Conditional_High-Order_Boltzmann_ICCV_2015_paper.pdf,Conditional High-Order Boltzmann Machine: A Supervised Learning Model for Relation Learning,2015
16,COFW,cofw,29.7207902,-95.34406271,University of Houston,edu,466f80b066215e85da63e6f30e276f1a9d7c843b,citation,http://doi.ieeecomputersociety.org/10.1109/FG.2017.81,Joint Head Pose Estimation and Face Alignment Framework Using Global and Local CNN Features,2017
17,COFW,cofw,37.4102193,-122.05965487,Carnegie Mellon University,edu,3146fabd5631a7d1387327918b184103d06c2211,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w18/papers/Jeni_Person-Independent_3D_Gaze_CVPR_2016_paper.pdf,Person-Independent 3D Gaze Estimation Using Face Frontalization,2016
18,COFW,cofw,40.44415295,-79.96243993,University of Pittsburgh,edu,3146fabd5631a7d1387327918b184103d06c2211,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w18/papers/Jeni_Person-Independent_3D_Gaze_CVPR_2016_paper.pdf,Person-Independent 3D Gaze Estimation Using Face Frontalization,2016
19,COFW,cofw,42.718568,-84.47791571,Michigan State University,edu,b53485dbdd2dc5e4f3c7cff26bd8707964bb0503,citation,http://doi.org/10.1007/s11263-017-1012-z,Pose-Invariant Face Alignment via CNN-Based Dense 3D Model Fitting,2017
20,COFW,cofw,38.83133325,-77.30798839,George Mason University,edu,a9426cb98c8aedf79ea19839643a7cf1e435aeaa,citation,https://doi.org/10.1109/GlobalSIP.2016.7905998,Cascaded regression for 3D pose estimation for mouse in fisheye lens distorted monocular images,2016
21,COFW,cofw,39.00041165,-77.10327775,National Institutes of Health,edu,a9426cb98c8aedf79ea19839643a7cf1e435aeaa,citation,https://doi.org/10.1109/GlobalSIP.2016.7905998,Cascaded regression for 3D pose estimation for mouse in fisheye lens distorted monocular images,2016
22,COFW,cofw,41.3861759,2.1248717,"Transmural Biotech, Barcelona, Spain",edu,a9426cb98c8aedf79ea19839643a7cf1e435aeaa,citation,https://doi.org/10.1109/GlobalSIP.2016.7905998,Cascaded regression for 3D pose estimation for mouse in fisheye lens distorted monocular images,2016
23,COFW,cofw,26.88111275,112.62850666,Hunan University,edu,1fe1a78c941e03abe942498249c041b2703fd3d2,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8393355,Face alignment based on improved shape searching,2017
24,COFW,cofw,32.8164178,130.72703969,Kumamoto University,edu,7aafeb9aab48fb2c34bed4b86755ac71e3f00338,citation,http://pdfs.semanticscholar.org/7aaf/eb9aab48fb2c34bed4b86755ac71e3f00338.pdf,Real Time 3D Facial Movement Tracking Using a Monocular Camera,2016
25,COFW,cofw,31.28473925,121.49694909,Tongji University,edu,7aafeb9aab48fb2c34bed4b86755ac71e3f00338,citation,http://pdfs.semanticscholar.org/7aaf/eb9aab48fb2c34bed4b86755ac71e3f00338.pdf,Real Time 3D Facial Movement Tracking Using a Monocular Camera,2016
26,COFW,cofw,32.8164178,130.72703969,Kumamoto University,edu,6fdf2f4f7ae589af6016305a17d460617d9ef345,citation,https://doi.org/10.1109/ICIP.2015.7350767,Robust facial landmark localization using multi partial features,2015
27,COFW,cofw,31.28473925,121.49694909,Tongji University,edu,6fdf2f4f7ae589af6016305a17d460617d9ef345,citation,https://doi.org/10.1109/ICIP.2015.7350767,Robust facial landmark localization using multi partial features,2015
28,COFW,cofw,31.21051105,29.91314562,Alexandria University,edu,9a4c45e5c6e4f616771a7325629d167a38508691,citation,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W02/papers/Mostafa_A_Facial_Features_2015_CVPR_paper.pdf,A facial features detector integrating holistic facial information and part-based model,2015
29,COFW,cofw,27.18794105,31.17009498,Assiut University,edu,9a4c45e5c6e4f616771a7325629d167a38508691,citation,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W02/papers/Mostafa_A_Facial_Features_2015_CVPR_paper.pdf,A facial features detector integrating holistic facial information and part-based model,2015
30,COFW,cofw,38.2167565,-85.75725023,University of Louisville,edu,9a4c45e5c6e4f616771a7325629d167a38508691,citation,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W02/papers/Mostafa_A_Facial_Features_2015_CVPR_paper.pdf,A facial features detector integrating holistic facial information and part-based model,2015
31,COFW,cofw,37.5901411,127.0362318,Korea University,edu,5957936195c10521dadc9b90ca9b159eb1fc4871,citation,https://doi.org/10.1109/TCE.2016.7838098,LBP-ferns-based feature extraction for robust facial recognition,2016
32,COFW,cofw,33.5866784,-101.87539204,Electrical and Computer Engineering,edu,ebb3d5c70bedf2287f9b26ac0031004f8f617b97,citation,https://doi.org/10.1109/MSP.2017.2764116,"Deep Learning for Understanding Faces: Machines May Be Just as Good, or Better, than Humans",2018
33,COFW,cofw,39.2899685,-76.62196103,University of Maryland,edu,ebb3d5c70bedf2287f9b26ac0031004f8f617b97,citation,https://doi.org/10.1109/MSP.2017.2764116,"Deep Learning for Understanding Faces: Machines May Be Just as Good, or Better, than Humans",2018
34,COFW,cofw,40.0141905,-83.0309143,University of Electronic Science and Technology of China,edu,21a2f67b21905ff6e0afa762937427e92dc5aa0b,citation,http://pdfs.semanticscholar.org/21a2/f67b21905ff6e0afa762937427e92dc5aa0b.pdf,Extra Facial Landmark Localization via Global Shape Reconstruction,2017
35,COFW,cofw,40.0141905,-83.0309143,University of Electronic Science and Technology of China,edu,88e2574af83db7281c2064e5194c7d5dfa649846,citation,http://pdfs.semanticscholar.org/88e2/574af83db7281c2064e5194c7d5dfa649846.pdf,A Robust Shape Reconstruction Method for Facial Feature Point Detection,2017
36,COFW,cofw,29.7207902,-95.34406271,University of Houston,edu,607aebe7568407421e8ffc7b23a5fda52650ad93,citation,https://doi.org/10.1109/ISBA.2016.7477237,Face alignment via an ensemble of random ferns,2016
37,COFW,cofw,-27.49741805,153.01316956,University of Queensland,edu,710c3aaffef29730ffd909a63798e9185f488327,citation,https://doi.org/10.1109/ICPR.2016.7900095,The GIST of aligning faces,2016
38,COFW,cofw,32.7283683,-97.11201835,University of Texas at Arlington,edu,411dc8874fd7b3a9a4c1fd86bb5b583788027776,citation,https://pdfs.semanticscholar.org/701f/56f0eac9f88387de1f556acef78016b05d52.pdf,Direct Shape Regression Networks for End-to-End Face Alignment,2018
39,COFW,cofw,34.1235825,108.83546,Xidian University,edu,411dc8874fd7b3a9a4c1fd86bb5b583788027776,citation,https://pdfs.semanticscholar.org/701f/56f0eac9f88387de1f556acef78016b05d52.pdf,Direct Shape Regression Networks for End-to-End Face Alignment,2018
40,COFW,cofw,30.44235995,-84.29747867,Florida State University,edu,1ed6c7e02b4b3ef76f74dd04b2b6050faa6e2177,citation,http://pdfs.semanticscholar.org/6433/c412149382418ccd8aa966aa92973af41671.pdf,Face Detection with a 3D Model,2014
41,COFW,cofw,39.00041165,-77.10327775,National Institutes of Health,edu,1ed6c7e02b4b3ef76f74dd04b2b6050faa6e2177,citation,http://pdfs.semanticscholar.org/6433/c412149382418ccd8aa966aa92973af41671.pdf,Face Detection with a 3D Model,2014
42,COFW,cofw,32.87935255,-117.23110049,"University of California, San Diego",edu,43776d1bfa531e66d5e9826ff5529345b792def7,citation,http://cvrr.ucsd.edu/scmartin/presentation/DriveAnalysisByLookingIn-ITSC2015-NDS.pdf,Automatic Critical Event Extraction and Semantic Interpretation by Looking-Inside,2015
43,COFW,cofw,38.99203005,-76.9461029,University of Maryland College Park,edu,f7824758800a7b1a386db5bd35f84c81454d017a,citation,https://arxiv.org/pdf/1702.05085.pdf,KEPLER: Keypoint and Pose Estimation of Unconstrained Faces by Learning Efficient H-CNN Regressors,2017
44,COFW,cofw,38.99203005,-76.9461029,University of Maryland College Park,edu,ceeb67bf53ffab1395c36f1141b516f893bada27,citation,http://pdfs.semanticscholar.org/ceeb/67bf53ffab1395c36f1141b516f893bada27.pdf,Face Alignment by Local Deep Descriptor Regression,2016
45,COFW,cofw,40.47913175,-74.43168868,Rutgers University,edu,ceeb67bf53ffab1395c36f1141b516f893bada27,citation,http://pdfs.semanticscholar.org/ceeb/67bf53ffab1395c36f1141b516f893bada27.pdf,Face Alignment by Local Deep Descriptor Regression,2016
46,COFW,cofw,39.2899685,-76.62196103,University of Maryland,edu,ceeb67bf53ffab1395c36f1141b516f893bada27,citation,http://pdfs.semanticscholar.org/ceeb/67bf53ffab1395c36f1141b516f893bada27.pdf,Face Alignment by Local Deep Descriptor Regression,2016
47,COFW,cofw,1.2962018,103.77689944,National University of Singapore,edu,3be8f1f7501978287af8d7ebfac5963216698249,citation,https://pdfs.semanticscholar.org/3be8/f1f7501978287af8d7ebfac5963216698249.pdf,Deep Cascaded Regression for Face Alignment,2015
48,COFW,cofw,23.09461185,113.28788994,Sun Yat-Sen University,edu,3be8f1f7501978287af8d7ebfac5963216698249,citation,https://pdfs.semanticscholar.org/3be8/f1f7501978287af8d7ebfac5963216698249.pdf,Deep Cascaded Regression for Face Alignment,2015
49,COFW,cofw,51.7534538,-1.25400997,University of Oxford,edu,a3d0ebb50d49116289fb176d28ea98a92badada6,citation,https://pdfs.semanticscholar.org/a3d0/ebb50d49116289fb176d28ea98a92badada6.pdf,Unsupervised Learning of Object Landmarks through Conditional Image Generation,2018
50,COFW,cofw,55.94951105,-3.19534913,University of Edinburgh,edu,a3d0ebb50d49116289fb176d28ea98a92badada6,citation,https://pdfs.semanticscholar.org/a3d0/ebb50d49116289fb176d28ea98a92badada6.pdf,Unsupervised Learning of Object Landmarks through Conditional Image Generation,2018
51,COFW,cofw,30.642769,104.06751175,"Sichuan University, Chengdu",edu,a0aa32bb7f406693217fba6dcd4aeb6c4d5a479b,citation,https://pdfs.semanticscholar.org/a0aa/32bb7f406693217fba6dcd4aeb6c4d5a479b.pdf,Cascaded Regressor based 3D Face Reconstruction from a Single Arbitrary View Image,2015
52,COFW,cofw,25.01353105,121.54173736,National Taiwan University of Science and Technology,edu,deb89950939ae9847f0a1a4bb198e6dbfed62778,citation,https://doi.org/10.1109/LSP.2016.2543019,Accurate Facial Landmark Extraction,2016
53,COFW,cofw,3.12267405,101.65356103,University of Malaya,edu,deb89950939ae9847f0a1a4bb198e6dbfed62778,citation,https://doi.org/10.1109/LSP.2016.2543019,Accurate Facial Landmark Extraction,2016
54,COFW,cofw,37.4102193,-122.05965487,Carnegie Mellon University,edu,78598e7005f7c96d64cc47ff47e6f13ae52245b8,citation,https://arxiv.org/pdf/1708.00370.pdf,Hand2Face: Automatic synthesis and recognition of hand over face occlusions,2017
55,COFW,cofw,28.59899755,-81.19712501,University of Central Florida,edu,78598e7005f7c96d64cc47ff47e6f13ae52245b8,citation,https://arxiv.org/pdf/1708.00370.pdf,Hand2Face: Automatic synthesis and recognition of hand over face occlusions,2017
56,COFW,cofw,52.17638955,0.14308882,University of Cambridge,edu,9901f473aeea177a55e58bac8fd4f1b086e575a4,citation,https://arxiv.org/pdf/1509.04954.pdf,Human and sheep facial landmarks localisation by triplet interpolated features,2016
57,COFW,cofw,40.00229045,116.32098908,Tsinghua University,edu,e4fa062bff299a0bcef9f6b2e593c85be116c9f1,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7407641,Cascaded Elastically Progressive Model for Accurate Face Alignment,2017
58,COFW,cofw,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,5c820e47981d21c9dddde8d2f8020146e600368f,citation,http://pdfs.semanticscholar.org/5c82/0e47981d21c9dddde8d2f8020146e600368f.pdf,Extended Supervised Descent Method for Robust Face Alignment,2014
59,COFW,cofw,51.49887085,-0.17560797,Imperial College London,edu,29c340c83b3bbef9c43b0c50b4d571d5ed037cbd,citation,https://pdfs.semanticscholar.org/29c3/40c83b3bbef9c43b0c50b4d571d5ed037cbd.pdf,Stacked Dense U-Nets with Dual Transformers for Robust Face Alignment,2018
60,COFW,cofw,30.19331415,120.11930822,Zhejiang University,edu,5213549200bccec57232fc3ff788ddf1043af7b3,citation,http://doi.acm.org/10.1145/2601097.2601204,Displaced dynamic expression regression for real-time facial tracking and animation,2014
61,COFW,cofw,51.49887085,-0.17560797,Imperial College London,edu,034b3f3bac663fb814336a69a9fd3514ca0082b9,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7298991,Unifying holistic and Parts-Based Deformable Model fitting,2015
62,COFW,cofw,50.74223495,-1.89433739,Bournemouth University,edu,91f0a95b8eb76e8fa24c8267e4a7a17815fc7a11,citation,http://doi.org/10.1007/s41095-016-0068-y,Robust facial landmark detection and tracking across poses and expressions for in-the-wild monocular video,2016
63,COFW,cofw,45.7413921,126.62552755,Harbin Institute of Technology,edu,91f0a95b8eb76e8fa24c8267e4a7a17815fc7a11,citation,http://doi.org/10.1007/s41095-016-0068-y,Robust facial landmark detection and tracking across poses and expressions for in-the-wild monocular video,2016
64,COFW,cofw,39.9808333,116.34101249,Beihang University,edu,86b6afc667bb14ff4d69e7a5e8bb2454a6bbd2cd,citation,https://pdfs.semanticscholar.org/86b6/afc667bb14ff4d69e7a5e8bb2454a6bbd2cd.pdf,Attentional Alignment Networks,2018
65,COFW,cofw,31.20081505,121.42840681,Shanghai Jiao Tong University,edu,86b6afc667bb14ff4d69e7a5e8bb2454a6bbd2cd,citation,https://pdfs.semanticscholar.org/86b6/afc667bb14ff4d69e7a5e8bb2454a6bbd2cd.pdf,Attentional Alignment Networks,2018
66,COFW,cofw,32.7283683,-97.11201835,University of Texas at Arlington,edu,86b6afc667bb14ff4d69e7a5e8bb2454a6bbd2cd,citation,https://pdfs.semanticscholar.org/86b6/afc667bb14ff4d69e7a5e8bb2454a6bbd2cd.pdf,Attentional Alignment Networks,2018
67,COFW,cofw,40.0044795,116.370238,Chinese Academy of Sciences,edu,22e2066acfb795ac4db3f97d2ac176d6ca41836c,citation,http://pdfs.semanticscholar.org/26f5/3a1abb47b1f0ea1f213dc7811257775dc6e6.pdf,Coarse-to-Fine Auto-Encoder Networks (CFAN) for Real-Time Face Alignment,2014
68,COFW,cofw,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,22e2066acfb795ac4db3f97d2ac176d6ca41836c,citation,http://pdfs.semanticscholar.org/26f5/3a1abb47b1f0ea1f213dc7811257775dc6e6.pdf,Coarse-to-Fine Auto-Encoder Networks (CFAN) for Real-Time Face Alignment,2014
69,COFW,cofw,43.13800205,-75.22943591,SUNY Polytechnic Institute,edu,69b18d62330711bfd7f01a45f97aaec71e9ea6a5,citation,http://pdfs.semanticscholar.org/69b1/8d62330711bfd7f01a45f97aaec71e9ea6a5.pdf,M-Track: A New Software for Automated Detection of Grooming Trajectories in Mice,2016
70,COFW,cofw,-30.0338248,-51.218828,Federal University of Rio Grande do Sul,edu,fa08b52dda21ccf71ebc91bc0c4d206ac0aa3719,citation,https://doi.org/10.1109/TIM.2015.2415012,Customized Orthogonal Locality Preserving Projections With Soft-Margin Maximization for Face Recognition,2015
71,COFW,cofw,-28.234493,-52.38044,University of Passo Fundo,edu,fa08b52dda21ccf71ebc91bc0c4d206ac0aa3719,citation,https://doi.org/10.1109/TIM.2015.2415012,Customized Orthogonal Locality Preserving Projections With Soft-Margin Maximization for Face Recognition,2015
72,COFW,cofw,34.0224149,-118.28634407,University of Southern California,edu,632b24ddd42fda4aebc5a8af3ec44f7fd3ecdc6c,citation,https://arxiv.org/pdf/1604.02647.pdf,Real-Time Facial Segmentation and Performance Capture from RGB Input,2016
73,COFW,cofw,22.42031295,114.20788644,Chinese University of Hong Kong,edu,329d58e8fb30f1bf09acb2f556c9c2f3e768b15c,citation,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Wu_Leveraging_Intra_and_CVPR_2017_paper.pdf,Leveraging Intra and Inter-Dataset Variations for Robust Face Alignment,2017
74,COFW,cofw,40.00229045,116.32098908,Tsinghua University,edu,329d58e8fb30f1bf09acb2f556c9c2f3e768b15c,citation,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Wu_Leveraging_Intra_and_CVPR_2017_paper.pdf,Leveraging Intra and Inter-Dataset Variations for Robust Face Alignment,2017
75,COFW,cofw,43.07982815,-89.43066425,University of Wisconsin Madison,edu,77fbbf0c5729f97fcdbfdc507deee3d388cd4889,citation,https://pdfs.semanticscholar.org/ec7f/c7bf79204166f78c27e870b620205751fff6.pdf,Pose-Robust 3D Facial Landmark Estimation from a Single 2D Image,2016
76,COFW,cofw,36.3697191,127.362537,Korea Advanced Institute of Science and Technology,edu,72e10a2a7a65db7ecdc7d9bd3b95a4160fab4114,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2015/ext/2B_094_ext.pdf,Face alignment using cascade Gaussian process regression trees,2015
77,COFW,cofw,-33.88890695,151.18943366,University of Sydney,edu,58d43e32660446669ff54f29658961fe8bb6cc72,citation,https://doi.org/10.1109/ISBI.2017.7950504,Automatic detection of obstructive sleep apnea using facial images,2017
78,COFW,cofw,52.3793131,-1.5604252,University of Warwick,edu,0bc53b338c52fc635687b7a6c1e7c2b7191f42e5,citation,http://pdfs.semanticscholar.org/a32a/8d6d4c3b4d69544763be48ffa7cb0d7f2f23.pdf,Loglet SIFT for Part Description in Deformable Part Models: Application to Face Alignment,2016
79,COFW,cofw,40.51865195,-74.44099801,State University of New Jersey,edu,bbc5f4052674278c96abe7ff9dc2d75071b6e3f3,citation,https://pdfs.semanticscholar.org/287b/7baff99d6995fd5852002488eb44659be6c1.pdf,Nonlinear Hierarchical Part-Based Regression for Unconstrained Face Alignment,2016
80,COFW,cofw,30.5097537,114.4062881,Huazhong University of Science and Technology,edu,7f2a4cd506fe84dee26c0fb41848cb219305173f,citation,http://pdfs.semanticscholar.org/7f2a/4cd506fe84dee26c0fb41848cb219305173f.pdf,Face Detection and Pose Estimation Based on Evaluating Facial Feature Selection,2015
81,COFW,cofw,32.77824165,34.99565673,Open University of Israel,edu,0a34fe39e9938ae8c813a81ae6d2d3a325600e5c,citation,https://arxiv.org/pdf/1708.07517.pdf,FacePoseNet: Making a Case for Landmark-Free Face Alignment,2017
82,COFW,cofw,23.09461185,113.28788994,Sun Yat-Sen University,edu,4c078c2919c7bdc26ca2238fa1a79e0331898b56,citation,http://pdfs.semanticscholar.org/4c07/8c2919c7bdc26ca2238fa1a79e0331898b56.pdf,Unconstrained Facial Landmark Localization with Backbone-Branches Fully-Convolutional Networks,2015
83,COFW,cofw,34.0224149,-118.28634407,University of Southern California,edu,43e99b76ca8e31765d4571d609679a689afdc99e,citation,http://arxiv.org/abs/1709.00536,Learning Dense Facial Correspondences in Unconstrained Images,2017
84,COFW,cofw,32.0565957,118.77408833,Nanjing University,edu,46b2ecef197b465abc43e0e017543b1af61921ac,citation,https://doi.org/10.1109/ICPR.2016.7899652,Face alignment with Cascaded Bidirectional LSTM Neural Networks,2016
85,COFW,cofw,31.20081505,121.42840681,Shanghai Jiao Tong University,edu,c00f402b9cfc3f8dd2c74d6b3552acbd1f358301,citation,http://pdfs.semanticscholar.org/c00f/402b9cfc3f8dd2c74d6b3552acbd1f358301.pdf,Learning deep representation from coarse to fine for face alignment,2016
86,COFW,cofw,17.4454957,78.34854698,International Institute of Information Technology,edu,185263189a30986e31566394680d6d16b0089772,citation,https://pdfs.semanticscholar.org/1852/63189a30986e31566394680d6d16b0089772.pdf,Efficient Annotation of Objects for Video Analysis,2018
87,COFW,cofw,-33.8809651,151.20107299,University of Technology Sydney,edu,ebc2a3e8a510c625353637e8e8f07bd34410228f,citation,https://doi.org/10.1109/TIP.2015.2502485,Dual Sparse Constrained Cascade Regression for Robust Face Alignment,2016
88,COFW,cofw,22.59805605,113.98533784,Shenzhen Institutes of Advanced Technology,edu,1922ad4978ab92ce0d23acc4c7441a8812f157e5,citation,http://personal.ie.cuhk.edu.hk/~ccloy/files/cvpr_2015_alignment.pdf,Face alignment by coarse-to-fine shape searching,2015
89,COFW,cofw,22.42031295,114.20788644,Chinese University of Hong Kong,edu,1922ad4978ab92ce0d23acc4c7441a8812f157e5,citation,http://personal.ie.cuhk.edu.hk/~ccloy/files/cvpr_2015_alignment.pdf,Face alignment by coarse-to-fine shape searching,2015
90,COFW,cofw,34.0224149,-118.28634407,University of Southern California,edu,53e081f5af505374c3b8491e9c4470fe77fe7934,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Hsieh_Unconstrained_Realtime_Facial_2015_CVPR_paper.pdf,Unconstrained realtime facial performance capture,2015
91,COFW,cofw,39.9922379,116.30393816,Peking University,edu,11ba01ce7d606bab5c2d7e998c6d94325521b8a0,citation,https://doi.org/10.1109/ICIP.2015.7350911,Regression based landmark estimation and multi-feature fusion for visual speech recognition,2015
92,COFW,cofw,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,b11bb6bd63ee6f246d278dd4edccfbe470263803,citation,http://pdfs.semanticscholar.org/b11b/b6bd63ee6f246d278dd4edccfbe470263803.pdf,Joint Voxel and Coordinate Regression for Accurate 3D Facial Landmark Localization,2018
93,COFW,cofw,42.718568,-84.47791571,Michigan State University,edu,86204fc037936754813b91898377e8831396551a,citation,https://arxiv.org/pdf/1709.01442.pdf,Dense Face Alignment,2017
94,COFW,cofw,43.07982815,-89.43066425,University of Wisconsin Madison,edu,0eac652139f7ab44ff1051584b59f2dc1757f53b,citation,http://pdfs.semanticscholar.org/0eac/652139f7ab44ff1051584b59f2dc1757f53b.pdf,Efficient Branching Cascaded Regression for Face Alignment under Significant Head Rotation,2016
95,COFW,cofw,39.9586652,116.30971281,Beijing Institute of Technology,edu,0ea7b7fff090c707684fd4dc13e0a8f39b300a97,citation,http://arxiv.org/abs/1711.06055,Integrated Face Analytics Networks through Cross-Dataset Hybrid Training,2017
96,COFW,cofw,33.5866784,-101.87539204,Electrical and Computer Engineering,edu,0ea7b7fff090c707684fd4dc13e0a8f39b300a97,citation,http://arxiv.org/abs/1711.06055,Integrated Face Analytics Networks through Cross-Dataset Hybrid Training,2017
97,COFW,cofw,1.2962018,103.77689944,National University of Singapore,edu,0ea7b7fff090c707684fd4dc13e0a8f39b300a97,citation,http://arxiv.org/abs/1711.06055,Integrated Face Analytics Networks through Cross-Dataset Hybrid Training,2017
98,COFW,cofw,-26.1888813,28.02479073,University of the Witwatersrand,edu,aa4af9b3811db6a30e1c7cc1ebf079078c1ee152,citation,http://doi.acm.org/10.1145/3129416.3129451,Deformable part models with CNN features for facial landmark detection under occlusion,2017
99,COFW,cofw,40.0044795,116.370238,Chinese Academy of Sciences,edu,303a7099c01530fa0beb197eb1305b574168b653,citation,http://openaccess.thecvf.com/content_cvpr_2016/papers/Zhang_Occlusion-Free_Face_Alignment_CVPR_2016_paper.pdf,Occlusion-Free Face Alignment: Deep Regression Networks Coupled with De-Corrupt AutoEncoders,2016
100,COFW,cofw,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,303a7099c01530fa0beb197eb1305b574168b653,citation,http://openaccess.thecvf.com/content_cvpr_2016/papers/Zhang_Occlusion-Free_Face_Alignment_CVPR_2016_paper.pdf,Occlusion-Free Face Alignment: Deep Regression Networks Coupled with De-Corrupt AutoEncoders,2016
101,COFW,cofw,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,b5da4943c348a6b4c934c2ea7330afaf1d655e79,citation,http://pdfs.semanticscholar.org/b5da/4943c348a6b4c934c2ea7330afaf1d655e79.pdf,Facial Landmarks Detection by Self-Iterative Regression based Landmarks-Attention Network,2018
102,COFW,cofw,40.0044795,116.370238,Chinese Academy of Sciences,edu,a73405038fdc0d8bf986539ef755a80ebd341e97,citation,https://doi.org/10.1109/TIP.2017.2698918,Conditional High-Order Boltzmann Machines for Supervised Relation Learning,2017
103,COFW,cofw,34.13710185,-118.12527487,California Institute of Technology,edu,11aa527c01e61ec3a7a67eef8d7ffe9d9ce63f1d,citation,http://pdfs.semanticscholar.org/11aa/527c01e61ec3a7a67eef8d7ffe9d9ce63f1d.pdf,"Automated measurement of mouse social behaviors using depth sensing, video tracking, and machine learning.",2015
104,COFW,cofw,51.24303255,-0.59001382,University of Surrey,edu,56e25056153a15eae2a6b10c109f812d2b753cee,citation,https://arxiv.org/pdf/1711.06753.pdf,Wing Loss for Robust Facial Landmark Localisation with Convolutional Neural Networks,2017
105,COFW,cofw,31.4854255,120.2739581,Jiangnan University,edu,56e25056153a15eae2a6b10c109f812d2b753cee,citation,https://arxiv.org/pdf/1711.06753.pdf,Wing Loss for Robust Facial Landmark Localisation with Convolutional Neural Networks,2017
106,COFW,cofw,37.4102193,-122.05965487,Carnegie Mellon University,edu,f1b4583c576d6d8c661b4b2c82bdebf3ba3d7e53,citation,https://arxiv.org/pdf/1707.05653.pdf,Faster than Real-Time Facial Alignment: A 3D Spatial Transformer Network Approach in Unconstrained Poses,2017
107,COFW,cofw,40.00229045,116.32098908,Tsinghua University,edu,445e3ba7eabcc55b5d24f951b029196b47830684,citation,https://doi.org/10.1109/TMM.2016.2591508,Learning Cascaded Deep Auto-Encoder Networks for Face Alignment,2016
108,COFW,cofw,1.3484104,103.68297965,Nanyang Technological University,edu,445e3ba7eabcc55b5d24f951b029196b47830684,citation,https://doi.org/10.1109/TMM.2016.2591508,Learning Cascaded Deep Auto-Encoder Networks for Face Alignment,2016
109,COFW,cofw,38.99203005,-76.9461029,University of Maryland College Park,edu,1389ba6c3ff34cdf452ede130c738f37dca7e8cb,citation,http://pdfs.semanticscholar.org/1389/ba6c3ff34cdf452ede130c738f37dca7e8cb.pdf,A Convolution Tree with Deconvolution Branches: Exploiting Geometric Relationships for Single Shot Keypoint Detection,2017
110,COFW,cofw,32.87935255,-117.23110049,"University of California, San Diego",edu,b806a31c093b31e98cc5fca7e3ec53f2cc169db9,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7995928,Gaze fixations and dynamics for behavior modeling and prediction of on-road driving maneuvers,2017
111,COFW,cofw,37.4102193,-122.05965487,Carnegie Mellon University,edu,4140498e96a5ff3ba816d13daf148fffb9a2be3f,citation,http://multicomp.cs.cmu.edu/wp-content/uploads/2017/10/2017_FG_Li_Constrained.pdf,Constrained Ensemble Initialization for Facial Landmark Tracking in Video,2017
112,COFW,cofw,38.99203005,-76.9461029,University of Maryland College Park,edu,f8e64dd25c3174dff87385db56abc48101b69009,citation,https://arxiv.org/pdf/1802.06713.pdf,Disentangling 3D Pose in A Dendritic CNN for Unconstrained 2D Face Alignment,2018
113,COFW,cofw,43.7047927,-72.2925909,Dartmouth College,edu,df71a00071d5a949f9c31371c2e5ee8b478e7dc8,citation,http://studentlife.cs.dartmouth.edu/facelogging.pdf,Using opportunistic face logging from smartphone to infer mental health: challenges and future directions,2015
114,COFW,cofw,22.59805605,113.98533784,Shenzhen Institutes of Advanced Technology,edu,2c17d36bab56083293456fe14ceff5497cc97d75,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zhu_Unconstrained_Face_Alignment_CVPR_2016_paper.pdf,Unconstrained Face Alignment via Cascaded Compositional Learning,2016
115,COFW,cofw,22.42031295,114.20788644,Chinese University of Hong Kong,edu,2c17d36bab56083293456fe14ceff5497cc97d75,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zhu_Unconstrained_Face_Alignment_CVPR_2016_paper.pdf,Unconstrained Face Alignment via Cascaded Compositional Learning,2016
116,COFW,cofw,51.24303255,-0.59001382,University of Surrey,edu,438e7999c937b94f0f6384dbeaa3febff6d283b6,citation,https://arxiv.org/pdf/1705.02402v2.pdf,"Face Detection, Bounding Box Aggregation and Pose Estimation for Robust Facial Landmark Localisation in the Wild",2017
117,COFW,cofw,31.4854255,120.2739581,Jiangnan University,edu,438e7999c937b94f0f6384dbeaa3febff6d283b6,citation,https://arxiv.org/pdf/1705.02402v2.pdf,"Face Detection, Bounding Box Aggregation and Pose Estimation for Robust Facial Landmark Localisation in the Wild",2017
118,COFW,cofw,40.0044795,116.370238,Chinese Academy of Sciences,edu,5ee0103048e1ce46e34a04c45ff2c2c31529b466,citation,https://doi.org/10.1109/ICIP.2015.7350886,Learning occlusion patterns using semantic phrases for object detection,2015
119,COFW,cofw,32.77824165,34.99565673,Open University of Israel,edu,c75e6ce54caf17b2780b4b53f8d29086b391e839,citation,https://arxiv.org/pdf/1802.00542.pdf,"ExpNet: Landmark-Free, Deep, 3D Facial Expressions",2018
120,COFW,cofw,51.24303255,-0.59001382,University of Surrey,edu,96c6f50ce8e1b9e8215b8791dabd78b2bbd5f28d,citation,https://arxiv.org/pdf/1611.05396.pdf,Dynamic Attention-Controlled Cascaded Shape Regression Exploiting Training Data Augmentation and Fuzzy-Set Sample Weighting,2017
121,COFW,cofw,31.4854255,120.2739581,Jiangnan University,edu,96c6f50ce8e1b9e8215b8791dabd78b2bbd5f28d,citation,https://arxiv.org/pdf/1611.05396.pdf,Dynamic Attention-Controlled Cascaded Shape Regression Exploiting Training Data Augmentation and Fuzzy-Set Sample Weighting,2017
122,COFW,cofw,30.60903415,114.3514284,Wuhan University of Technology,edu,258b3b1df82186dd76064ef86b28555e91389b73,citation,https://doi.org/10.1109/ACCESS.2017.2739822,Initial Shape Pool Construction for Facial Landmark Localization Under Occlusion,2017
123,COFW,cofw,22.42031295,114.20788644,Chinese University of Hong Kong,edu,85674b1b6007634f362cbe9b921912b697c0a32c,citation,http://pdfs.semanticscholar.org/8567/4b1b6007634f362cbe9b921912b697c0a32c.pdf,Optimizing Facial Landmark Detection by Facial Attribute Learning,2014
124,COFW,cofw,43.07982815,-89.43066425,University of Wisconsin Madison,edu,716d6c2eb8a0d8089baf2087ce9fcd668cd0d4c0,citation,http://pdfs.semanticscholar.org/ec7f/c7bf79204166f78c27e870b620205751fff6.pdf,Pose-Robust 3D Facial Landmark Estimation from a Single 2D Image,2016
125,COFW,cofw,40.0141905,-83.0309143,University of Electronic Science and Technology of China,edu,2a84f7934365f05b6707ea0ac225210f78e547af,citation,https://doi.org/10.1109/ICPR.2016.7899690,A joint facial point detection method of deep convolutional network and shape regression,2016
126,COFW,cofw,41.40657415,2.1945341,Universitat Oberta de Catalunya,edu,cc4fc9a309f300e711e09712701b1509045a8e04,citation,https://pdfs.semanticscholar.org/cea6/9010a2f75f7a057d56770e776dec206ed705.pdf,Continuous Supervised Descent Method for Facial Landmark Localisation,2016
127,COFW,cofw,13.65450525,100.49423171,Robotics Institute,edu,cc4fc9a309f300e711e09712701b1509045a8e04,citation,https://pdfs.semanticscholar.org/cea6/9010a2f75f7a057d56770e776dec206ed705.pdf,Continuous Supervised Descent Method for Facial Landmark Localisation,2016
128,COFW,cofw,40.44415295,-79.96243993,University of Pittsburgh,edu,cc4fc9a309f300e711e09712701b1509045a8e04,citation,https://pdfs.semanticscholar.org/cea6/9010a2f75f7a057d56770e776dec206ed705.pdf,Continuous Supervised Descent Method for Facial Landmark Localisation,2016
129,COFW,cofw,1.2962018,103.77689944,National University of Singapore,edu,30cd39388b5c1aae7d8153c0ab9d54b61b474ffe,citation,http://pdfs.semanticscholar.org/3be8/f1f7501978287af8d7ebfac5963216698249.pdf,Deep Cascaded Regression for Face Alignment,2015
130,COFW,cofw,23.09461185,113.28788994,Sun Yat-Sen University,edu,30cd39388b5c1aae7d8153c0ab9d54b61b474ffe,citation,http://pdfs.semanticscholar.org/3be8/f1f7501978287af8d7ebfac5963216698249.pdf,Deep Cascaded Regression for Face Alignment,2015
131,COFW,cofw,22.42031295,114.20788644,Chinese University of Hong Kong,edu,8a3c5507237957d013a0fe0f082cab7f757af6ee,citation,http://pdfs.semanticscholar.org/fcd7/1c18192928a2e0b264edd4d919ab2f8f652a.pdf,Facial Landmark Detection by Deep Multi-task Learning,2014
132,COFW,cofw,22.59805605,113.98533784,Shenzhen Institutes of Advanced Technology,edu,cf5c9b521c958b84bb63bea9d5cbb522845e4ba7,citation,http://pdfs.semanticscholar.org/cf5c/9b521c958b84bb63bea9d5cbb522845e4ba7.pdf,Towards Arbitrary-View Face Alignment by Recommendation Trees,2015
133,COFW,cofw,22.42031295,114.20788644,Chinese University of Hong Kong,edu,cf5c9b521c958b84bb63bea9d5cbb522845e4ba7,citation,http://pdfs.semanticscholar.org/cf5c/9b521c958b84bb63bea9d5cbb522845e4ba7.pdf,Towards Arbitrary-View Face Alignment by Recommendation Trees,2015
134,COFW,cofw,30.642769,104.06751175,"Sichuan University, Chengdu",edu,b29b42f7ab8d25d244bfc1413a8d608cbdc51855,citation,http://pdfs.semanticscholar.org/b29b/42f7ab8d25d244bfc1413a8d608cbdc51855.pdf,Effective face landmark localization via single deep network,2017
135,COFW,cofw,23.0490047,113.3971571,South China University of China,edu,7d7be6172fc2884e1da22d1e96d5899a29831ad2,citation,http://pdfs.semanticscholar.org/7d7b/e6172fc2884e1da22d1e96d5899a29831ad2.pdf,L2GSCI: Local to Global Seam Cutting and Integrating for Accurate Face Contour Extraction,2017
136,COFW,cofw,22.46935655,114.19474194,Education University of Hong Kong,edu,7d7be6172fc2884e1da22d1e96d5899a29831ad2,citation,http://pdfs.semanticscholar.org/7d7b/e6172fc2884e1da22d1e96d5899a29831ad2.pdf,L2GSCI: Local to Global Seam Cutting and Integrating for Accurate Face Contour Extraction,2017
137,COFW,cofw,39.9922379,116.30393816,Peking University,edu,8c048be9dd2b601808b893b5d3d51f00907bdee0,citation,https://doi.org/10.1631/FITEE.1600041,Spontaneous versus posed smile recognition via region-specific texture descriptor and geometric facial dynamics,2017
138,COFW,cofw,22.42031295,114.20788644,Chinese University of Hong Kong,edu,433a6d6d2a3ed8a6502982dccc992f91d665b9b3,citation,http://pdfs.semanticscholar.org/433a/6d6d2a3ed8a6502982dccc992f91d665b9b3.pdf,Transferring Landmark Annotations for Cross-Dataset Face Alignment,2014
139,COFW,cofw,40.00229045,116.32098908,Tsinghua University,edu,433a6d6d2a3ed8a6502982dccc992f91d665b9b3,citation,http://pdfs.semanticscholar.org/433a/6d6d2a3ed8a6502982dccc992f91d665b9b3.pdf,Transferring Landmark Annotations for Cross-Dataset Face Alignment,2014
140,COFW,cofw,47.05821,15.46019568,Graz University of Technology,edu,96a9ca7a8366ae0efe6b58a515d15b44776faf6e,citation,https://arxiv.org/pdf/1609.00129.pdf,Grid Loss: Detecting Occluded Faces,2016
141,COFW,cofw,40.0044795,116.370238,Chinese Academy of Sciences,edu,3d18ce183b5a5b4dcaa1216e30b774ef49eaa46f,citation,https://arxiv.org/pdf/1511.07212.pdf,Face Alignment in Full Pose Range: A 3D Total Solution,2017
142,COFW,cofw,42.718568,-84.47791571,Michigan State University,edu,3d18ce183b5a5b4dcaa1216e30b774ef49eaa46f,citation,https://arxiv.org/pdf/1511.07212.pdf,Face Alignment in Full Pose Range: A 3D Total Solution,2017
143,COFW,cofw,31.30104395,121.50045497,Fudan University,edu,862d17895fe822f7111e737cbcdd042ba04377e8,citation,http://pdfs.semanticscholar.org/862d/17895fe822f7111e737cbcdd042ba04377e8.pdf,Semi-Latent GAN: Learning to generate and modify facial images from attributes,2017
144,COFW,cofw,42.718568,-84.47791571,Michigan State University,edu,085ceda1c65caf11762b3452f87660703f914782,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Jourabloo_Large-Pose_Face_Alignment_CVPR_2016_paper.pdf,Large-Pose Face Alignment via CNN-Based Dense 3D Model Fitting,2016
145,COFW,cofw,39.977217,116.337632,Microsoft Research Asia,company,9aade3d26996ce7ef6d657130464504b8d812534,citation,https://doi.org/10.1109/TNNLS.2016.2618340,Face Alignment With Deep Regression,2018
146,COFW,cofw,30.5097537,114.4062881,Huazhong University of Science and Technology,edu,9aade3d26996ce7ef6d657130464504b8d812534,citation,https://doi.org/10.1109/TNNLS.2016.2618340,Face Alignment With Deep Regression,2018
147,COFW,cofw,40.0044795,116.370238,Chinese Academy of Sciences,edu,055cd8173536031e189628c879a2acad6cf2a5d0,citation,https://doi.org/10.1109/BTAS.2017.8272740,Fast multi-view face alignment via multi-task auto-encoders,2017
148,COFW,cofw,36.20304395,117.05842113,Tianjin University,edu,4223917177405eaa6bdedca061eb28f7b440ed8e,citation,http://pdfs.semanticscholar.org/4223/917177405eaa6bdedca061eb28f7b440ed8e.pdf,B-spline Shape from Motion & Shading: An Automatic Free-form Surface Modeling for Face Reconstruction,2016
149,COFW,cofw,22.304572,114.17976285,Hong Kong Polytechnic University,edu,4cfa8755fe23a8a0b19909fa4dec54ce6c1bd2f7,citation,https://arxiv.org/pdf/1611.09956v1.pdf,Efficient likelihood Bayesian constrained local model,2017
150,COFW,cofw,40.0044795,116.370238,Chinese Academy of Sciences,edu,2a4153655ad1169d482e22c468d67f3bc2c49f12,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zhu_Face_Alignment_Across_CVPR_2016_paper.pdf,Face Alignment Across Large Poses: A 3D Solution,2016
151,COFW,cofw,42.718568,-84.47791571,Michigan State University,edu,2a4153655ad1169d482e22c468d67f3bc2c49f12,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zhu_Face_Alignment_Across_CVPR_2016_paper.pdf,Face Alignment Across Large Poses: A 3D Solution,2016
152,COFW,cofw,40.0044795,116.370238,Chinese Academy of Sciences,edu,090ff8f992dc71a1125636c1adffc0634155b450,citation,http://pdfs.semanticscholar.org/090f/f8f992dc71a1125636c1adffc0634155b450.pdf,Topic-Aware Deep Auto-Encoders (TDA) for Face Alignment,2014
153,COFW,cofw,51.49887085,-0.17560797,Imperial College London,edu,090ff8f992dc71a1125636c1adffc0634155b450,citation,http://pdfs.semanticscholar.org/090f/f8f992dc71a1125636c1adffc0634155b450.pdf,Topic-Aware Deep Auto-Encoders (TDA) for Face Alignment,2014
154,COFW,cofw,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,090ff8f992dc71a1125636c1adffc0634155b450,citation,http://pdfs.semanticscholar.org/090f/f8f992dc71a1125636c1adffc0634155b450.pdf,Topic-Aware Deep Auto-Encoders (TDA) for Face Alignment,2014
155,COFW,cofw,40.0044795,116.370238,Chinese Academy of Sciences,edu,26949c1ba7f55f0c389000aa234238bf01a32d3b,citation,https://doi.org/10.1109/ICIP.2017.8296814,Coupled cascade regression for simultaneous facial landmark detection and head pose estimation,2017
156,COFW,cofw,42.7298459,-73.67950216,Rensselaer Polytechnic Institute,edu,26949c1ba7f55f0c389000aa234238bf01a32d3b,citation,https://doi.org/10.1109/ICIP.2017.8296814,Coupled cascade regression for simultaneous facial landmark detection and head pose estimation,2017
157,COFW,cofw,-27.49741805,153.01316956,University of Queensland,edu,de79437f74e8e3b266afc664decf4e6e4bdf34d7,citation,https://doi.org/10.1109/IVCNZ.2016.7804415,To face or not to face: Towards reducing false positive of face detection,2016
158,COFW,cofw,31.20081505,121.42840681,Shanghai Jiao Tong University,edu,a26fd9df58bb76d6c7a3254820143b3da5bd584b,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8446759,Monitor Pupils' Attention by Image Super-Resolution and Anomaly Detection,2017
159,COFW,cofw,51.5247272,-0.03931035,Queen Mary University of London,edu,0f81b0fa8df5bf3fcfa10f20120540342a0c92e5,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2015.7299100,"Mirror, mirror on the wall, tell me, is the error small?",2015
160,COFW,cofw,31.2284923,121.40211389,East China Normal University,edu,83295bce2340cb87901499cff492ae6ff3365475,citation,https://arxiv.org/pdf/1808.01558.pdf,Deep Multi-Center Learning for Face Alignment,2018
161,COFW,cofw,31.20081505,121.42840681,Shanghai Jiao Tong University,edu,83295bce2340cb87901499cff492ae6ff3365475,citation,https://arxiv.org/pdf/1808.01558.pdf,Deep Multi-Center Learning for Face Alignment,2018
162,COFW,cofw,52.9387428,-1.20029569,University of Nottingham,edu,721e5ba3383b05a78ef1dfe85bf38efa7e2d611d,citation,http://pdfs.semanticscholar.org/74f1/9d0986c9d39aabb359abaa2a87a248a48deb.pdf,"BULAT, TZIMIROPOULOS: CONVOLUTIONAL AGGREGATION OF LOCAL EVIDENCE 1 Convolutional aggregation of local evidence for large pose face alignment",2016
163,COFW,cofw,32.0565957,118.77408833,Nanjing University,edu,ad5a35a251e07628dd035c68e44a64c53652be6b,citation,https://doi.org/10.1016/j.patcog.2016.12.024,Robust facial landmark tracking via cascade regression,2017
164,COFW,cofw,39.9922379,116.30393816,Peking University,edu,5df17c81c266cf2ebb0778e48e825905e161a8d9,citation,https://doi.org/10.1109/TMM.2016.2520091,A Novel Lip Descriptor for Audio-Visual Keyword Spotting Based on Adaptive Decision Fusion,2016
165,COFW,cofw,45.2182986,5.80703193,INRIA Grenoble,edu,5df17c81c266cf2ebb0778e48e825905e161a8d9,citation,https://doi.org/10.1109/TMM.2016.2520091,A Novel Lip Descriptor for Audio-Visual Keyword Spotting Based on Adaptive Decision Fusion,2016
166,COFW,cofw,31.20081505,121.42840681,Shanghai Jiao Tong University,edu,3d9e44d8f8bc2663192c7ce668ccbbb084e466e4,citation,http://doi.ieeecomputersociety.org/10.1109/ICME.2017.8019505,Learning a multi-center convolutional network for unconstrained face alignment,2017
167,COFW,cofw,53.8338371,10.7035939,Institute of Systems and Robotics,edu,6604fd47f92ce66dd0c669dd66b347b80e17ebc9,citation,https://pdfs.semanticscholar.org/6604/fd47f92ce66dd0c669dd66b347b80e17ebc9.pdf,Simultaneous Cascaded Regression,2018
168,COFW,cofw,25.01353105,121.54173736,National Taiwan University of Science and Technology,edu,e4e07f5f201c6986e93ddb42dcf11a43c339ea2e,citation,https://doi.org/10.1109/BTAS.2017.8272722,Cross-pose landmark localization using multi-dropout framework,2017
169,COFW,cofw,31.20081505,121.42840681,Shanghai Jiao Tong University,edu,9048732c8591a92a1f4f589b520a733f07578f80,citation,https://doi.org/10.1109/CISP-BMEI.2017.8301921,Improved CNN-based facial landmarks tracking via ridge regression at 150 Fps on mobile devices,2017
170,COFW,cofw,31.83907195,117.26420748,University of Science and Technology of China,edu,084bd02d171e36458f108f07265386f22b34a1ae,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Ren_Face_Alignment_at_2014_CVPR_paper.pdf,Face Alignment at 3000 FPS via Regressing Local Binary Features,2014
171,COFW,cofw,33.6431901,-117.84016494,"University of California, Irvine",edu,65126e0b1161fc8212643b8ff39c1d71d262fbc1,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Ghiasi_Occlusion_Coherence_Localizing_2014_CVPR_paper.pdf,Occlusion Coherence: Localizing Occluded Faces with a Hierarchical Deformable Part Model,2014
172,COFW,cofw,17.4454957,78.34854698,International Institute of Information Technology,edu,156cd2a0e2c378e4c3649a1d046cd080d3338bca,citation,http://pdfs.semanticscholar.org/156c/d2a0e2c378e4c3649a1d046cd080d3338bca.pdf,Exemplar based approaches on Face Fiducial Detection and Frontalization,2017
173,COFW,cofw,-27.5953995,-48.6154218,University of Campinas,edu,159b1e3c3ed0982061dae3cc8ab7d9b149a0cdb1,citation,https://doi.org/10.1109/TIP.2017.2694226,Weak Classifier for Density Estimation in Eye Localization and Tracking,2017
174,COFW,cofw,-22.9541412,-43.1753638,Universidade Federal do Rio de Janeiro,edu,159b1e3c3ed0982061dae3cc8ab7d9b149a0cdb1,citation,https://doi.org/10.1109/TIP.2017.2694226,Weak Classifier for Density Estimation in Eye Localization and Tracking,2017
175,COFW,cofw,38.99203005,-76.9461029,University of Maryland College Park,edu,b2cd92d930ed9b8d3f9dfcfff733f8384aa93de8,citation,http://pdfs.semanticscholar.org/b2cd/92d930ed9b8d3f9dfcfff733f8384aa93de8.pdf,"HyperFace: A Deep Multi-task Learning Framework for Face Detection, Landmark Localization, Pose Estimation, and Gender Recognition",2016
176,COFW,cofw,39.2899685,-76.62196103,University of Maryland,edu,b2cd92d930ed9b8d3f9dfcfff733f8384aa93de8,citation,http://pdfs.semanticscholar.org/b2cd/92d930ed9b8d3f9dfcfff733f8384aa93de8.pdf,"HyperFace: A Deep Multi-task Learning Framework for Face Detection, Landmark Localization, Pose Estimation, and Gender Recognition",2016
177,COFW,cofw,32.87935255,-117.23110049,"University of California, San Diego",edu,d4a5eaf2e9f2fd3e264940039e2cbbf08880a090,citation,https://arxiv.org/pdf/1802.02137.pdf,An Occluded Stacked Hourglass Approach to Facial Landmark Localization and Occlusion Estimation,2017
178,COFW,cofw,30.274084,120.15507,Alibaba,company,89497854eada7e32f06aa8f3c0ceedc0e91ecfef,citation,https://doi.org/10.1109/TIP.2017.2784571,Deep Context-Sensitive Facial Landmark Detection With Tree-Structured Modeling,2018
179,COFW,cofw,30.19331415,120.11930822,Zhejiang University,edu,89497854eada7e32f06aa8f3c0ceedc0e91ecfef,citation,https://doi.org/10.1109/TIP.2017.2784571,Deep Context-Sensitive Facial Landmark Detection With Tree-Structured Modeling,2018
180,COFW,cofw,32.0565957,118.77408833,Nanjing University,edu,9cb7b3b14fd01cc2ed76784ab76304132dab6ff3,citation,https://doi.org/10.1109/ICIP.2015.7351174,Facial landmark detection via pose-induced auto-encoder networks,2015
181,COFW,cofw,12.9803537,77.6975101,"Samsung R&D Institute, Bangalore, India",company,cf736f596bf881ca97ec4b29776baaa493b9d50e,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7952629,Low Dimensional Deep Features for facial landmark alignment,2017
182,COFW,cofw,46.0658836,11.1159894,University of Trento,edu,f201baf618574108bcee50e9a8b65f5174d832ee,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8031057,Viewpoint-Consistent 3D Face Alignment,2018
183,COFW,cofw,13.65450525,100.49423171,Robotics Institute,edu,f201baf618574108bcee50e9a8b65f5174d832ee,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8031057,Viewpoint-Consistent 3D Face Alignment,2018
184,COFW,cofw,50.74223495,-1.89433739,Bournemouth University,edu,370b6b83c7512419188f5373a962dd3175a56a9b,citation,https://pdfs.semanticscholar.org/370b/6b83c7512419188f5373a962dd3175a56a9b.pdf,Face Alignment Refinement via Exploiting Low-Rank property and Temporal Stability,2017
185,COFW,cofw,30.19331415,120.11930822,Zhejiang University,edu,370b6b83c7512419188f5373a962dd3175a56a9b,citation,https://pdfs.semanticscholar.org/370b/6b83c7512419188f5373a962dd3175a56a9b.pdf,Face Alignment Refinement via Exploiting Low-Rank property and Temporal Stability,2017
186,COFW,cofw,32.0565957,118.77408833,Nanjing University,edu,63c74794aedb40dd6b1650352a2da7a968180302,citation,https://doi.org/10.1016/j.neucom.2016.09.015,Recurrent neural network for facial landmark detection,2017
187,COFW,cofw,38.88140235,121.52281098,Dalian University of Technology,edu,940e5c45511b63f609568dce2ad61437c5e39683,citation,https://doi.org/10.1109/TIP.2015.2390976,Fiducial Facial Point Extraction Using a Novel Projective Invariant,2015
188,COFW,cofw,51.24303255,-0.59001382,University of Surrey,edu,3c6cac7ecf546556d7c6050f7b693a99cc8a57b3,citation,https://pdfs.semanticscholar.org/3c6c/ac7ecf546556d7c6050f7b693a99cc8a57b3.pdf,Robust facial landmark detection in the wild,2016
189,COFW,cofw,40.0044795,116.370238,Chinese Academy of Sciences,edu,a820941eaf03077d68536732a4d5f28d94b5864a,citation,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Zhang_Leveraging_Datasets_With_ICCV_2015_paper.pdf,Leveraging Datasets with Varying Annotations for Face Alignment via Deep Regression Network,2015
190,COFW,cofw,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,a820941eaf03077d68536732a4d5f28d94b5864a,citation,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Zhang_Leveraging_Datasets_With_ICCV_2015_paper.pdf,Leveraging Datasets with Varying Annotations for Face Alignment via Deep Regression Network,2015
191,COFW,cofw,34.0687788,-118.4450094,"University of California, Los Angeles",edu,195d331c958f2da3431f37a344559f9bce09c0f7,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2015/ext/2B_066_ext.pdf,Parsing occluded people by flexible compositions,2015
192,COFW,cofw,30.5097537,114.4062881,Huazhong University of Science and Technology,edu,5f448ab700528888019542e6fea1d1e0db6c35f2,citation,https://doi.org/10.1109/LSP.2016.2533721,Transferred Deep Convolutional Neural Network Features for Extensive Facial Landmark Localization,2016
193,COFW,cofw,31.846918,117.29053367,Hefei University of Technology,edu,2f73203fd71b755a9601d00fc202bbbd0a595110,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8394868,Micro-expression Analysis by Fusing Deep Convolutional Neural Network and Optical Flow,2018
194,COFW,cofw,33.620813,133.719755,Kochi University of Technology,edu,2f73203fd71b755a9601d00fc202bbbd0a595110,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8394868,Micro-expression Analysis by Fusing Deep Convolutional Neural Network and Optical Flow,2018
195,COFW,cofw,32.0565957,118.77408833,Nanjing University,edu,5b0bf1063b694e4b1575bb428edb4f3451d9bf04,citation,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2015.131,Facial Shape Tracking via Spatio-Temporal Cascade Shape Regression,2015
196,COFW,cofw,31.83907195,117.26420748,University of Science and Technology of China,edu,dd715a98dab34437ad05758b20cc640c2cdc5715,citation,https://doi.org/10.1007/s41095-017-0082-8,Joint head pose and facial landmark regression from depth images,2017
197,COFW,cofw,52.17638955,0.14308882,University of Cambridge,edu,2aa2b312da1554a7f3e48f71f2fce7ade6d5bf40,citation,http://www.cl.cam.ac.uk/~pr10/publications/fg17.pdf,Estimating Sheep Pain Level Using Facial Action Unit Detection,2017
198,COFW,cofw,55.7039571,13.1902011,Lund University,edu,995d55fdf5b6fe7fb630c93a424700d4bc566104,citation,http://openaccess.thecvf.com/content_iccv_2015/papers/Nilsson_The_One_Triangle_ICCV_2015_paper.pdf,The One Triangle Three Parallelograms Sampling Strategy and Its Application in Shape Regression,2015
199,COFW,cofw,13.65450525,100.49423171,Robotics Institute,edu,b6f15bf8723b2d5390122442ab04630d2d3878d8,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163142,Dense 3D face alignment from 2D videos in real-time,2015
200,COFW,cofw,32.77824165,34.99565673,Open University of Israel,edu,62e913431bcef5983955e9ca160b91bb19d9de42,citation,http://pdfs.semanticscholar.org/62e9/13431bcef5983955e9ca160b91bb19d9de42.pdf,Facial Landmark Detection with Tweaked Convolutional Neural Networks,2015
201,COFW,cofw,37.4102193,-122.05965487,Carnegie Mellon University,edu,7cfbf90368553333b47731729e0e358479c25340,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7346480,"Towards a Unified Framework for Pose, Expression, and Occlusion Tolerant Automatic Facial Alignment",2016
202,COFW,cofw,40.986904,29.0530981,"Marmara University, Istanbul, Turkey",edu,a78025f39cf78f2fc66c4b2942fbe5bad3ea65fc,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8404357,A comparison of facial landmark detection methods,2018
203,COFW,cofw,41.6771297,26.5557145,"Trakya University, Edirne, Turkey",edu,a78025f39cf78f2fc66c4b2942fbe5bad3ea65fc,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8404357,A comparison of facial landmark detection methods,2018
204,COFW,cofw,65.0592157,25.46632601,University of Oulu,edu,193debca0be1c38dabc42dc772513e6653fd91d8,citation,http://ibug.doc.ic.ac.uk/media/uploads/documents/trigeorgis2016mnemonic.pdf,Mnemonic Descent Method: A Recurrent Process Applied for End-to-End Face Alignment,2016
205,COFW,cofw,51.5217668,-0.13019072,University of London,edu,193debca0be1c38dabc42dc772513e6653fd91d8,citation,http://ibug.doc.ic.ac.uk/media/uploads/documents/trigeorgis2016mnemonic.pdf,Mnemonic Descent Method: A Recurrent Process Applied for End-to-End Face Alignment,2016
206,COFW,cofw,51.49887085,-0.17560797,Imperial College London,edu,193debca0be1c38dabc42dc772513e6653fd91d8,citation,http://ibug.doc.ic.ac.uk/media/uploads/documents/trigeorgis2016mnemonic.pdf,Mnemonic Descent Method: A Recurrent Process Applied for End-to-End Face Alignment,2016
207,COFW,cofw,50.7791703,6.06728733,RWTH Aachen University,edu,141ee531d03fb6626043e33dd8f269a6f1f63a4b,citation,https://arxiv.org/pdf/1808.09316.pdf,How Robust is 3D Human Pose Estimation to Occlusion?,2018
208,COFW,cofw,42.718568,-84.47791571,Michigan State University,edu,37ce1d3a6415d6fc1760964e2a04174c24208173,citation,http://www.cse.msu.edu/~liuxm/publication/Jourabloo_Liu_ICCV2015.pdf,Pose-Invariant 3D Face Alignment,2015
209,COFW,cofw,38.88140235,121.52281098,Dalian University of Technology,edu,5f4219118556d2c627137827a617cf4e26242a6e,citation,https://doi.org/10.1109/TMM.2017.2751143,Explicit Shape Regression With Characteristic Number for Facial Landmark Localization,2018
210,COFW,cofw,42.2942142,-83.71003894,University of Michigan,edu,860588fafcc80c823e66429fadd7e816721da42a,citation,https://arxiv.org/pdf/1804.04412.pdf,Unsupervised Discovery of Object Landmarks as Structural Representations,2018
211,COFW,cofw,26.88111275,112.62850666,Hunan University,edu,4b936847f39094d6cb0bde68cea654d948c4735d,citation,http://doi.org/10.1007/s11042-016-3470-7,Face alignment under occlusion based on local and global feature regression,2016
212,COFW,cofw,34.13710185,-118.12527487,California Institute of Technology,edu,56ae6d94fc6097ec4ca861f0daa87941d1c10b70,citation,http://pdfs.semanticscholar.org/56ae/6d94fc6097ec4ca861f0daa87941d1c10b70.pdf,Distance Estimation of an Unknown Person from a Portrait,2014
213,COFW,cofw,40.0044795,116.370238,Chinese Academy of Sciences,edu,51b42da0706a1260430f27badcf9ee6694768b9b,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7471882,Shape initialization without ground truth for face alignment,2016
214,COFW,cofw,35.9542493,-83.9307395,University of Tennessee,edu,c2e03efd8c5217188ab685e73cc2e52c54835d1a,citation,http://doi.ieeecomputersociety.org/10.1109/WACV.2016.7477585,Deep tree-structured face: A unified representation for multi-task facial biometrics,2016
215,COFW,cofw,40.47913175,-74.43168868,Rutgers University,edu,3b470b76045745c0ef5321e0f1e0e6a4b1821339,citation,http://pdfs.semanticscholar.org/8e72/fa02f2d90ba31f31e0a7aa96a6d3e10a66fc.pdf,Consensus of Regression for Occlusion-Robust Facial Feature Localization,2014
216,COFW,cofw,30.642769,104.06751175,"Sichuan University, Chengdu",edu,3080026f2f0846d520bd5bacb0cb2acea0ffe16b,citation,https://doi.org/10.1109/BTAS.2017.8272690,2.5D cascaded regression for robust facial landmark detection,2017
217,COFW,cofw,31.20081505,121.42840681,Shanghai Jiao Tong University,edu,3fdfd6fa7a1cc9142de1f53e4ac7c2a7ac64c2e3,citation,http://pdfs.semanticscholar.org/3fdf/d6fa7a1cc9142de1f53e4ac7c2a7ac64c2e3.pdf,Intensity-Depth Face Alignment Using Cascade Shape Regression,2015
218,COFW,cofw,42.718568,-84.47791571,Michigan State University,edu,ec8ec2dfd73cf3667f33595fef84c95c42125945,citation,https://arxiv.org/pdf/1707.06286.pdf,Pose-Invariant Face Alignment with a Single CNN,2017
219,COFW,cofw,39.977217,116.337632,Microsoft Research Asia,company,898ff1bafee2a6fb3c848ad07f6f292416b5f07d,citation,https://doi.org/10.1109/TIP.2016.2518867,Face Alignment via Regressing Local Binary Features,2016
220,COFW,cofw,31.83907195,117.26420748,University of Science and Technology of China,edu,898ff1bafee2a6fb3c848ad07f6f292416b5f07d,citation,https://doi.org/10.1109/TIP.2016.2518867,Face Alignment via Regressing Local Binary Features,2016
221,COFW,cofw,47.6423318,-122.1369302,Microsoft,company,898ff1bafee2a6fb3c848ad07f6f292416b5f07d,citation,https://doi.org/10.1109/TIP.2016.2518867,Face Alignment via Regressing Local Binary Features,2016
222,COFW,cofw,39.977217,116.337632,Microsoft Research Asia,company,63d865c66faaba68018defee0daf201db8ca79ed,citation,http://pdfs.semanticscholar.org/63d8/65c66faaba68018defee0daf201db8ca79ed.pdf,Deep Regression for Face Alignment,2014
223,COFW,cofw,52.17638955,0.14308882,University of Cambridge,edu,be57d2aaab615ec8bc1dd2dba8bee41a4d038b85,citation,http://doi.acm.org/10.1145/2946796,Automatic Analysis of Naturalistic Hand-Over-Face Gestures,2016
224,COFW,cofw,-33.8840504,151.1992254,University of Technology,edu,336488746cc76e7f13b0ec68ccfe4df6d76cdc8f,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7762938,Adaptive Cascade Regression Model For Robust Face Alignment,2017
225,COFW,cofw,42.36782045,-71.12666653,Harvard University,edu,023be757b1769ecb0db810c95c010310d7daf00b,citation,http://pdfs.semanticscholar.org/023b/e757b1769ecb0db810c95c010310d7daf00b.pdf,Face Alignment Assisted by Head Pose Estimation,2015
226,COFW,cofw,51.5247272,-0.03931035,Queen Mary University of London,edu,023be757b1769ecb0db810c95c010310d7daf00b,citation,http://pdfs.semanticscholar.org/023b/e757b1769ecb0db810c95c010310d7daf00b.pdf,Face Alignment Assisted by Head Pose Estimation,2015
227,COFW,cofw,52.17638955,0.14308882,University of Cambridge,edu,023be757b1769ecb0db810c95c010310d7daf00b,citation,http://pdfs.semanticscholar.org/023b/e757b1769ecb0db810c95c010310d7daf00b.pdf,Face Alignment Assisted by Head Pose Estimation,2015
228,COFW,cofw,39.2899685,-76.62196103,University of Maryland,edu,93420d9212dd15b3ef37f566e4d57e76bb2fab2f,citation,https://arxiv.org/pdf/1611.00851.pdf,An All-In-One Convolutional Neural Network for Face Analysis,2017
229,COFW,cofw,34.13710185,-118.12527487,California Institute of Technology,edu,72282287f25c5419dc6fd9e89ec9d86d660dc0b5,citation,https://arxiv.org/pdf/1609.07495v1.pdf,A Rotation Invariant Latent Factor Model for Moveme Discovery from Static Poses,2016
230,COFW,cofw,51.5247272,-0.03931035,Queen Mary University of London,edu,f11c76efdc9651db329c8c862652820d61933308,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163100,Inference of personality traits and affect schedule by analysis of spontaneous reactions to affective videos,2015
231,COFW,cofw,46.0658836,11.1159894,University of Trento,edu,f11c76efdc9651db329c8c862652820d61933308,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163100,Inference of personality traits and affect schedule by analysis of spontaneous reactions to affective videos,2015
|