summaryrefslogtreecommitdiff
path: root/site/datasets/final/imdb_wiki.csv
blob: 645649ff804942ecdeb38449176037154131429f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
index,dataset_name,key,lat,lng,loc,loc_type,paper_id,paper_type,paper_url,title,year
0,IMDB,imdb_wiki,0.0,0.0,,,10195a163ab6348eef37213a46f60a3d87f289c5,main,https://doi.org/10.1007/s11263-016-0940-3,Deep Expectation of Real and Apparent Age from a Single Image Without Facial Landmarks,2016
1,IMDB,imdb_wiki,40.9153196,-73.1270626,Stony Brook University,edu,14e9158daf17985ccbb15c9cd31cf457e5551990,citation,http://pdfs.semanticscholar.org/14e9/158daf17985ccbb15c9cd31cf457e5551990.pdf,ConvNets with Smooth Adaptive Activation Functions for Regression,2017
2,IMDB,imdb_wiki,40.90826665,-73.11520891,Stony Brook University Hospital,edu,14e9158daf17985ccbb15c9cd31cf457e5551990,citation,http://pdfs.semanticscholar.org/14e9/158daf17985ccbb15c9cd31cf457e5551990.pdf,ConvNets with Smooth Adaptive Activation Functions for Regression,2017
3,IMDB,imdb_wiki,51.5231607,-0.1282037,University College London,edu,3c4f6d24b55b1fd3c5b85c70308d544faef3f69a,citation,http://pdfs.semanticscholar.org/3c4f/6d24b55b1fd3c5b85c70308d544faef3f69a.pdf,A Hybrid Deep Learning Architecture for Privacy-Preserving Mobile Analytics,2017
4,IMDB,imdb_wiki,45.5039761,-73.5749687,McGill University,edu,13719bbb4bb8bbe0cbcdad009243a926d93be433,citation,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w6/papers/Tian_Deep_LDA-Pruned_Nets_CVPR_2017_paper.pdf,Deep LDA-Pruned Nets for Efficient Facial Gender Classification,2017
5,IMDB,imdb_wiki,41.3868913,2.16352385,University of Barcelona,edu,b7845e0b0ce17cde7db37d5524ef2a61dee3e540,citation,https://doi.org/10.1109/ICPR.2016.7899608,Fusion of classifier predictions for audio-visual emotion recognition,2016
6,IMDB,imdb_wiki,44.812384,20.453501,Singidunum University,edu,b7845e0b0ce17cde7db37d5524ef2a61dee3e540,citation,https://doi.org/10.1109/ICPR.2016.7899608,Fusion of classifier predictions for audio-visual emotion recognition,2016
7,IMDB,imdb_wiki,58.38131405,26.72078081,University of Tartu,edu,b7845e0b0ce17cde7db37d5524ef2a61dee3e540,citation,https://doi.org/10.1109/ICPR.2016.7899608,Fusion of classifier predictions for audio-visual emotion recognition,2016
8,IMDB,imdb_wiki,1.2962018,103.77689944,National University of Singapore,edu,fca9ebaa30d69ccec8bb577c31693c936c869e72,citation,https://arxiv.org/pdf/1809.00338.pdf,Look Across Elapse: Disentangled Representation Learning and Photorealistic Cross-Age Face Synthesis for Age-Invariant Face Recognition,2018
9,IMDB,imdb_wiki,40.0044795,116.370238,Chinese Academy of Sciences,edu,fca9ebaa30d69ccec8bb577c31693c936c869e72,citation,https://arxiv.org/pdf/1809.00338.pdf,Look Across Elapse: Disentangled Representation Learning and Photorealistic Cross-Age Face Synthesis for Age-Invariant Face Recognition,2018
10,IMDB,imdb_wiki,55.91029135,-3.32345777,Heriot-Watt University,edu,2cdc40f20b70ca44d9fd8e7716080ee05ca7924a,citation,http://pdfs.semanticscholar.org/2cdc/40f20b70ca44d9fd8e7716080ee05ca7924a.pdf,Real-time Convolutional Neural Networks for Emotion and Gender Classification,2017
11,IMDB,imdb_wiki,56.45796755,-2.98214831,University of Dundee,edu,d5b0e73b584be507198b6665bcddeba92b62e1e5,citation,http://pdfs.semanticscholar.org/d5b0/e73b584be507198b6665bcddeba92b62e1e5.pdf,Multi-Region Ensemble Convolutional Neural Networks for High-Accuracy Age Estimation,2017
12,IMDB,imdb_wiki,22.15263985,113.56803206,Macau University of Science and Technology,edu,d5b0e73b584be507198b6665bcddeba92b62e1e5,citation,http://pdfs.semanticscholar.org/d5b0/e73b584be507198b6665bcddeba92b62e1e5.pdf,Multi-Region Ensemble Convolutional Neural Networks for High-Accuracy Age Estimation,2017
13,IMDB,imdb_wiki,24.12084345,120.67571165,National Chung Hsing University,edu,6feafc5c1d8b0e9d65ebe4c1512b7860c538fbdc,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8448885,Smart Facial Age Estimation with Stacked Deep Network Fusion,2018
14,IMDB,imdb_wiki,24.15031065,120.68325501,National Taichung University of Science and Technology,edu,6feafc5c1d8b0e9d65ebe4c1512b7860c538fbdc,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8448885,Smart Facial Age Estimation with Stacked Deep Network Fusion,2018
15,IMDB,imdb_wiki,41.10427915,29.02231159,Istanbul Technical University,edu,fd53be2e0a9f33080a9db4b5a5e416e24ae8e198,citation,https://arxiv.org/pdf/1606.02909.pdf,Apparent Age Estimation Using Ensemble of Deep Learning Models,2016
16,IMDB,imdb_wiki,42.357757,-83.06286711,Wayne State University,edu,4f1249369127cc2e2894f6b2f1052d399794919a,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8239663,Deep Age Estimation: From Classification to Ranking,2018
17,IMDB,imdb_wiki,45.47567215,9.23336232,Università degli Studi di Milano,edu,a713a01971e73d0c3118d0409dc7699a24f521d6,citation,https://doi.org/10.1109/SSCI.2017.8285381,Age estimation based on face images and pre-trained convolutional neural networks,2017
18,IMDB,imdb_wiki,35.6894875,139.6917064,"IBJ, Inc., Tokyo, Japan",company,df7af280771a6c8302b75ed0a14ffe7854cca679,citation,http://doi.ieeecomputersociety.org/10.1109/ICMEW.2017.8026293,Prediction of users' facial attractiveness on an online dating website,2017
19,IMDB,imdb_wiki,35.9020448,139.93622009,University of Tokyo,edu,df7af280771a6c8302b75ed0a14ffe7854cca679,citation,http://doi.ieeecomputersociety.org/10.1109/ICMEW.2017.8026293,Prediction of users' facial attractiveness on an online dating website,2017
20,IMDB,imdb_wiki,35.9990522,-78.9290629,Duke University,edu,cca9ae621e8228cfa787ec7954bb375536160e0d,citation,https://arxiv.org/pdf/1805.07410.pdf,Learning to Collaborate for User-Controlled Privacy,2018
21,IMDB,imdb_wiki,51.5231607,-0.1282037,University College London,edu,cca9ae621e8228cfa787ec7954bb375536160e0d,citation,https://arxiv.org/pdf/1805.07410.pdf,Learning to Collaborate for User-Controlled Privacy,2018
22,IMDB,imdb_wiki,51.7534538,-1.25400997,University of Oxford,edu,3ca5d3b8f5f071148cb50f22955fd8c1c1992719,citation,http://pdfs.semanticscholar.org/3ca5/d3b8f5f071148cb50f22955fd8c1c1992719.pdf,Evaluating race and sex diversity in the world's largest companies using deep neural networks,2017
23,IMDB,imdb_wiki,53.57227,9.99472,"Dermalog Identification Systems, Hamburg, Germany",company,5b64584d6b01e66dfd0b6025b2552db1447ccdeb,citation,https://doi.org/10.1109/BTAS.2017.8272697,Deep expectation for estimation of fingerprint orientation fields,2017
24,IMDB,imdb_wiki,60.7897318,10.6821927,"Norwegian Biometrics Lab, NTNU, Norway",edu,5b64584d6b01e66dfd0b6025b2552db1447ccdeb,citation,https://doi.org/10.1109/BTAS.2017.8272697,Deep expectation for estimation of fingerprint orientation fields,2017
25,IMDB,imdb_wiki,51.49887085,-0.17560797,Imperial College London,edu,56e079f4eb40744728fd1d7665938b06426338e5,citation,https://arxiv.org/pdf/1705.04293.pdf,Bayesian Approaches to Distribution Regression,2018
26,IMDB,imdb_wiki,51.5231607,-0.1282037,University College London,edu,56e079f4eb40744728fd1d7665938b06426338e5,citation,https://arxiv.org/pdf/1705.04293.pdf,Bayesian Approaches to Distribution Regression,2018
27,IMDB,imdb_wiki,51.7534538,-1.25400997,University of Oxford,edu,56e079f4eb40744728fd1d7665938b06426338e5,citation,https://arxiv.org/pdf/1705.04293.pdf,Bayesian Approaches to Distribution Regression,2018
28,IMDB,imdb_wiki,45.5039761,-73.5749687,McGill University,edu,407bb798ab153bf6156ba2956f8cf93256b6910a,citation,http://pdfs.semanticscholar.org/407b/b798ab153bf6156ba2956f8cf93256b6910a.pdf,Fisher Pruning of Deep Nets for Facial Trait Classification,2018
29,IMDB,imdb_wiki,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,39c10888a470b92b917788c57a6fd154c97b421c,citation,https://doi.org/10.1109/VCIP.2017.8305036,Joint multi-feature fusion and attribute relationships for facial attribute prediction,2017
30,IMDB,imdb_wiki,51.7534538,-1.25400997,University of Oxford,edu,eb027969f9310e0ae941e2adee2d42cdf07d938c,citation,https://arxiv.org/pdf/1710.08092.pdf,VGGFace2: A Dataset for Recognising Faces across Pose and Age,2018
31,IMDB,imdb_wiki,45.5039761,-73.5749687,McGill University,edu,ed9d11e995baeec17c5d2847ec1a8d5449254525,citation,https://pdfs.semanticscholar.org/ed9d/11e995baeec17c5d2847ec1a8d5449254525.pdf,Efficient Gender Classification Using a Deep LDA-Pruned Net,2017
32,IMDB,imdb_wiki,31.32235655,121.38400941,Shanghai University,edu,d454ad60b061c1a1450810a0f335fafbfeceeccc,citation,https://arxiv.org/pdf/1712.07195.pdf,Deep Regression Forests for Age Estimation,2017
33,IMDB,imdb_wiki,40.0044795,116.370238,Chinese Academy of Sciences,edu,288964068cd87d97a98b8bc927d6e0d2349458a2,citation,https://pdfs.semanticscholar.org/2889/64068cd87d97a98b8bc927d6e0d2349458a2.pdf,Mean-Variance Loss for Deep Age Estimation from a Face,0
34,IMDB,imdb_wiki,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,288964068cd87d97a98b8bc927d6e0d2349458a2,citation,https://pdfs.semanticscholar.org/2889/64068cd87d97a98b8bc927d6e0d2349458a2.pdf,Mean-Variance Loss for Deep Age Estimation from a Face,0
35,IMDB,imdb_wiki,40.51865195,-74.44099801,State University of New Jersey,edu,d00e9a6339e34c613053d3b2c132fccbde547b56,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7791154,A cascaded convolutional neural network for age estimation of unconstrained faces,2016
36,IMDB,imdb_wiki,39.2899685,-76.62196103,University of Maryland,edu,d00e9a6339e34c613053d3b2c132fccbde547b56,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7791154,A cascaded convolutional neural network for age estimation of unconstrained faces,2016
37,IMDB,imdb_wiki,37.2830003,127.04548469,Ajou University,edu,c43dc4ae68a317b34a79636fadb3bcc4d1ccb61c,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8369763,Age and gender estimation using deep residual learning network,2018
38,IMDB,imdb_wiki,37.403917,127.159786,Korea Electronics Technology Institute,edu,c43dc4ae68a317b34a79636fadb3bcc4d1ccb61c,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8369763,Age and gender estimation using deep residual learning network,2018
39,IMDB,imdb_wiki,37.26728,126.9841151,Seoul National University,edu,c43dc4ae68a317b34a79636fadb3bcc4d1ccb61c,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8369763,Age and gender estimation using deep residual learning network,2018
40,IMDB,imdb_wiki,1.2962018,103.77689944,National University of Singapore,edu,5f94969b9491db552ffebc5911a45def99026afe,citation,https://pdfs.semanticscholar.org/5f94/969b9491db552ffebc5911a45def99026afe.pdf,Multimodal Learning and Reasoning for Visual Question Answering,2017
41,IMDB,imdb_wiki,42.357757,-83.06286711,Wayne State University,edu,28d99dc2d673d62118658f8375b414e5192eac6f,citation,http://www.cs.wayne.edu/~mdong/cvpr17.pdf,Using Ranking-CNN for Age Estimation,2017
42,IMDB,imdb_wiki,49.2767454,-122.91777375,Simon Fraser University,edu,975978ee6a32383d6f4f026b944099e7739e5890,citation,https://pdfs.semanticscholar.org/9759/78ee6a32383d6f4f026b944099e7739e5890.pdf,Privacy-Preserving Age Estimation for Content Rating,2018
43,IMDB,imdb_wiki,49.8091536,-97.13304179,University of Manitoba,edu,975978ee6a32383d6f4f026b944099e7739e5890,citation,https://pdfs.semanticscholar.org/9759/78ee6a32383d6f4f026b944099e7739e5890.pdf,Privacy-Preserving Age Estimation for Content Rating,2018
44,IMDB,imdb_wiki,43.66333345,-79.39769975,University of Toronto,edu,36a3a96ef54000a0cd63de867a5eb7e84396de09,citation,http://www.cs.toronto.edu/~guerzhoy/oriviz/crv17.pdf,Automatic Photo Orientation Detection with Convolutional Neural Networks,2017
45,IMDB,imdb_wiki,31.32235655,121.38400941,Shanghai University,edu,5f0d4a0b5f72d8700cdf8cb179263a8fa866b59b,citation,https://pdfs.semanticscholar.org/5f0d/4a0b5f72d8700cdf8cb179263a8fa866b59b.pdf,Memo No . 85 06 / 2018 Deep Regression Forests for Age Estimation,2018
46,IMDB,imdb_wiki,51.5247272,-0.03931035,Queen Mary University of London,edu,6cefb70f4668ee6c0bf0c18ea36fd49dd60e8365,citation,http://pdfs.semanticscholar.org/6cef/b70f4668ee6c0bf0c18ea36fd49dd60e8365.pdf,Privacy-Preserving Deep Inference for Rich User Data on The Cloud,2017
47,IMDB,imdb_wiki,35.7036227,51.35125097,Sharif University of Technology,edu,6cefb70f4668ee6c0bf0c18ea36fd49dd60e8365,citation,http://pdfs.semanticscholar.org/6cef/b70f4668ee6c0bf0c18ea36fd49dd60e8365.pdf,Privacy-Preserving Deep Inference for Rich User Data on The Cloud,2017
48,IMDB,imdb_wiki,51.99882735,4.37396037,Delft University of Technology,edu,dfbf941adeea19f5dff4a70a466ddd1b77f3b727,citation,https://pdfs.semanticscholar.org/dfbf/941adeea19f5dff4a70a466ddd1b77f3b727.pdf,Models for supervised learning in sequence data,2018
49,IMDB,imdb_wiki,36.3697191,127.362537,Korea Advanced Institute of Science and Technology,edu,cb27b45329d61f5f95ed213798d4b2a615e76be2,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8329236,Deep Facial Age Estimation Using Conditional Multitask Learning With Weak Label Expansion,2018
50,IMDB,imdb_wiki,37.2520226,127.0555019,"Samsung SAIT, Korea",company,cb27b45329d61f5f95ed213798d4b2a615e76be2,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8329236,Deep Facial Age Estimation Using Conditional Multitask Learning With Weak Label Expansion,2018
51,IMDB,imdb_wiki,35.9042272,-78.85565763,"IBM Research, North Carolina",company,00a967cb2d18e1394226ad37930524a31351f6cf,citation,https://arxiv.org/pdf/1611.05377v1.pdf,Fully-Adaptive Feature Sharing in Multi-Task Networks with Applications in Person Attribute Classification,2017
52,IMDB,imdb_wiki,12.9803537,77.6975101,"Samsung R&D Institute, Bangalore, India",company,cf736f596bf881ca97ec4b29776baaa493b9d50e,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7952629,Low Dimensional Deep Features for facial landmark alignment,2017
53,IMDB,imdb_wiki,-35.0636071,147.3552234,Charles Sturt University,edu,2e231f1e7e641dd3619bec59e14d02e91360ac01,citation,https://arxiv.org/pdf/1807.10421.pdf,Fusion Network for Face-Based Age Estimation,2018
54,IMDB,imdb_wiki,51.3791442,-2.3252332,University of Bath,edu,2e231f1e7e641dd3619bec59e14d02e91360ac01,citation,https://arxiv.org/pdf/1807.10421.pdf,Fusion Network for Face-Based Age Estimation,2018
55,IMDB,imdb_wiki,1.340216,103.965089,Singapore University of Technology and Design,edu,00823e6c0b6f1cf22897b8d0b2596743723ec51c,citation,https://arxiv.org/pdf/1708.07689.pdf,Understanding and Comparing Deep Neural Networks for Age and Gender Classification,2017
56,IMDB,imdb_wiki,31.2284923,121.40211389,East China Normal University,edu,5364e58ba1f4cdfcffb247c2421e8f56a75fad8d,citation,https://doi.org/10.1109/VCIP.2017.8305113,Facial age estimation through self-paced learning,2017
57,IMDB,imdb_wiki,61.44964205,23.85877462,Tampere University of Technology,edu,7f21a7441c6ded38008c1fd0b91bdd54425d3f80,citation,https://arxiv.org/pdf/1809.05474.pdf,Real Time System for Facial Analysis,2018
58,IMDB,imdb_wiki,55.94951105,-3.19534913,University of Edinburgh,edu,f5fae7810a33ed67852ad6a3e0144cb278b24b41,citation,https://pdfs.semanticscholar.org/f5fa/e7810a33ed67852ad6a3e0144cb278b24b41.pdf,Multilingual Gender Classification with Multi-view Deep Learning: Notebook for PAN at CLEF 2018,2018
59,IMDB,imdb_wiki,40.9153196,-73.1270626,Stony Brook University,edu,1190cba0cae3c8bb81bf80d6a0a83ae8c41240bc,citation,https://pdfs.semanticscholar.org/1190/cba0cae3c8bb81bf80d6a0a83ae8c41240bc.pdf,Squared Earth Mover ’ s Distance Loss for Training Deep Neural Networks on Ordered-Classes,2017
60,IMDB,imdb_wiki,26.88111275,112.62850666,Hunan University,edu,86d0127e1fd04c3d8ea78401c838af621647dc95,citation,https://arxiv.org/pdf/1804.02810.pdf,A Novel Multi-Task Tensor Correlation Neural Network for Facial Attribute Prediction,2018
61,IMDB,imdb_wiki,28.2290209,112.99483204,"National University of Defense Technology, China",edu,86d0127e1fd04c3d8ea78401c838af621647dc95,citation,https://arxiv.org/pdf/1804.02810.pdf,A Novel Multi-Task Tensor Correlation Neural Network for Facial Attribute Prediction,2018
62,IMDB,imdb_wiki,29.58333105,-98.61944505,University of Texas at San Antonio,edu,86d0127e1fd04c3d8ea78401c838af621647dc95,citation,https://arxiv.org/pdf/1804.02810.pdf,A Novel Multi-Task Tensor Correlation Neural Network for Facial Attribute Prediction,2018
63,IMDB,imdb_wiki,22.42031295,114.20788644,Chinese University of Hong Kong,edu,d80a3d1f3a438e02a6685e66ee908446766fefa9,citation,https://arxiv.org/pdf/1708.09687.pdf,Quantifying Facial Age by Posterior of Age Comparisons,2017
64,IMDB,imdb_wiki,51.49887085,-0.17560797,Imperial College London,edu,54bb25a213944b08298e4e2de54f2ddea890954a,citation,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Moschoglou_AgeDB_The_First_CVPR_2017_paper.pdf,"AgeDB: The First Manually Collected, In-the-Wild Age Database",2017
65,IMDB,imdb_wiki,51.59029705,-0.22963221,Middlesex University,edu,54bb25a213944b08298e4e2de54f2ddea890954a,citation,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Moschoglou_AgeDB_The_First_CVPR_2017_paper.pdf,"AgeDB: The First Manually Collected, In-the-Wild Age Database",2017
66,IMDB,imdb_wiki,40.00229045,116.32098908,Tsinghua University,edu,493c8591d6a1bef5d7b84164a73761cefb9f5a25,citation,http://dl.acm.org/citation.cfm?id=3159691,User Profiling through Deep Multimodal Fusion,2018
67,IMDB,imdb_wiki,47.6543238,-122.30800894,University of Washington,edu,493c8591d6a1bef5d7b84164a73761cefb9f5a25,citation,http://dl.acm.org/citation.cfm?id=3159691,User Profiling through Deep Multimodal Fusion,2018
68,IMDB,imdb_wiki,30.44235995,-84.29747867,Florida State University,edu,b8c08c1330779283b3fbf06d133faf8bd55ea941,citation,https://arxiv.org/pdf/1803.11521.pdf,Online Regression with Feature Selection in Stochastic Data Streams,2018
69,IMDB,imdb_wiki,30.44235995,-84.29747867,Florida State University,edu,1cfca6b71b0ead87bbb79a8614ddec3a10100faa,citation,https://arxiv.org/pdf/1809.05465.pdf,Are screening methods useful in feature selection? An empirical study,2018
70,IMDB,imdb_wiki,51.49887085,-0.17560797,Imperial College London,edu,a06b6d30e2b31dc600f622ab15afe5e2929581a7,citation,https://ibug.doc.ic.ac.uk/media/uploads/documents/2209.pdf,Robust Joint and Individual Variance Explained,2017
71,IMDB,imdb_wiki,51.59029705,-0.22963221,Middlesex University,edu,a06b6d30e2b31dc600f622ab15afe5e2929581a7,citation,https://ibug.doc.ic.ac.uk/media/uploads/documents/2209.pdf,Robust Joint and Individual Variance Explained,2017
72,IMDB,imdb_wiki,32.0575279,118.78682252,Southeast University,edu,8ff8c64288a2f7e4e8bf8fda865820b04ab3dbe8,citation,https://pdfs.semanticscholar.org/0056/92b9fa6728df3a7f14578c43410867bba425.pdf,Age Estimation Using Expectation of Label Distribution Learning,2018
73,IMDB,imdb_wiki,32.0565957,118.77408833,Nanjing University,edu,8ff8c64288a2f7e4e8bf8fda865820b04ab3dbe8,citation,https://pdfs.semanticscholar.org/0056/92b9fa6728df3a7f14578c43410867bba425.pdf,Age Estimation Using Expectation of Label Distribution Learning,2018
74,IMDB,imdb_wiki,58.38131405,26.72078081,University of Tartu,edu,1b248ed8e7c9514648cd598960fadf9ab17e7fe8,citation,https://pdfs.semanticscholar.org/1b24/8ed8e7c9514648cd598960fadf9ab17e7fe8.pdf,"From apparent to real age: gender, age, ethnic, makeup, and expression bias analysis in real age estimation",0
75,IMDB,imdb_wiki,41.3868913,2.16352385,University of Barcelona,edu,1b248ed8e7c9514648cd598960fadf9ab17e7fe8,citation,https://pdfs.semanticscholar.org/1b24/8ed8e7c9514648cd598960fadf9ab17e7fe8.pdf,"From apparent to real age: gender, age, ethnic, makeup, and expression bias analysis in real age estimation",0
76,IMDB,imdb_wiki,35.9542493,-83.9307395,University of Tennessee,edu,7fab17ef7e25626643f1d55257a3e13348e435bd,citation,https://arxiv.org/pdf/1702.08423.pdf,Age Progression/Regression by Conditional Adversarial Autoencoder,2017
77,IMDB,imdb_wiki,37.4102193,-122.05965487,Carnegie Mellon University,edu,ec05078be14a11157ac0e1c6b430ac886124589b,citation,http://pdfs.semanticscholar.org/ec05/078be14a11157ac0e1c6b430ac886124589b.pdf,Longitudinal Face Aging in the Wild - Recent Deep Learning Approaches,2018
78,IMDB,imdb_wiki,45.57022705,-122.63709346,Concordia University,edu,ec05078be14a11157ac0e1c6b430ac886124589b,citation,http://pdfs.semanticscholar.org/ec05/078be14a11157ac0e1c6b430ac886124589b.pdf,Longitudinal Face Aging in the Wild - Recent Deep Learning Approaches,2018
79,IMDB,imdb_wiki,40.00229045,116.32098908,Tsinghua University,edu,2149d49c84a83848d6051867290d9c8bfcef0edb,citation,https://doi.org/10.1109/TIFS.2017.2746062,Label-Sensitive Deep Metric Learning for Facial Age Estimation,2018
80,IMDB,imdb_wiki,42.36782045,-71.12666653,Harvard University,edu,0ba402af3b8682e2aa89f76bd823ddffdf89fa0a,citation,http://pdfs.semanticscholar.org/c0d8/4377168c554cb8e83099bed940091fe49dec.pdf,Squared Earth Mover's Distance-based Loss for Training Deep Neural Networks,2016
81,IMDB,imdb_wiki,40.9153196,-73.1270626,Stony Brook University,edu,0ba402af3b8682e2aa89f76bd823ddffdf89fa0a,citation,http://pdfs.semanticscholar.org/c0d8/4377168c554cb8e83099bed940091fe49dec.pdf,Squared Earth Mover's Distance-based Loss for Training Deep Neural Networks,2016
82,IMDB,imdb_wiki,46.0658836,11.1159894,University of Trento,edu,df31e9c882dfb3ea5a3abe3b139ceacb1d90a302,citation,https://arxiv.org/pdf/1808.09211.pdf,DeepGUM: Learning Deep Robust Regression with a Gaussian-Uniform Mixture Model,2018
83,IMDB,imdb_wiki,51.7534538,-1.25400997,University of Oxford,edu,523854a7d8755e944bd50217c14481fe1329a969,citation,https://arxiv.org/pdf/1808.00380.pdf,A Differentially Private Kernel Two-Sample Test,2018
84,IMDB,imdb_wiki,51.49887085,-0.17560797,Imperial College London,edu,9b0489f2d5739213ef8c3e2e18739c4353c3a3b7,citation,http://pdfs.semanticscholar.org/9b04/89f2d5739213ef8c3e2e18739c4353c3a3b7.pdf,Visual Data Augmentation through Learning,2018
85,IMDB,imdb_wiki,51.59029705,-0.22963221,Middlesex University,edu,9b0489f2d5739213ef8c3e2e18739c4353c3a3b7,citation,http://pdfs.semanticscholar.org/9b04/89f2d5739213ef8c3e2e18739c4353c3a3b7.pdf,Visual Data Augmentation through Learning,2018
86,IMDB,imdb_wiki,40.00229045,116.32098908,Tsinghua University,edu,51f626540860ad75b68206025a45466a6d087aa6,citation,https://doi.org/10.1109/ICIP.2017.8296595,Cluster convolutional neural networks for facial age estimation,2017
87,IMDB,imdb_wiki,49.2593879,-122.9151893,"AltumView Systems Inc., Burnaby, BC, Canada",company,b44f03b5fa8c6275238c2d13345652e6ff7e6ea9,citation,https://doi.org/10.1109/GlobalSIP.2017.8309138,Lapped convolutional neural networks for embedded systems,2017
88,IMDB,imdb_wiki,39.2899685,-76.62196103,University of Maryland,edu,93420d9212dd15b3ef37f566e4d57e76bb2fab2f,citation,https://arxiv.org/pdf/1611.00851.pdf,An All-In-One Convolutional Neural Network for Face Analysis,2017
89,IMDB,imdb_wiki,22.15263985,113.56803206,Macau University of Science and Technology,edu,56f231fc40424ed9a7c93cbc9f5a99d022e1d242,citation,http://pdfs.semanticscholar.org/d060/f2f3641c6a89ade021eea749414a5c6b443f.pdf,Age Estimation Based on a Single Network with Soft Softmax of Aging Modeling,2016
90,IMDB,imdb_wiki,40.0044795,116.370238,Chinese Academy of Sciences,edu,56f231fc40424ed9a7c93cbc9f5a99d022e1d242,citation,http://pdfs.semanticscholar.org/d060/f2f3641c6a89ade021eea749414a5c6b443f.pdf,Age Estimation Based on a Single Network with Soft Softmax of Aging Modeling,2016
91,IMDB,imdb_wiki,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,56f231fc40424ed9a7c93cbc9f5a99d022e1d242,citation,http://pdfs.semanticscholar.org/d060/f2f3641c6a89ade021eea749414a5c6b443f.pdf,Age Estimation Based on a Single Network with Soft Softmax of Aging Modeling,2016
92,IMDB,imdb_wiki,43.614386,7.071125,EURECOM,edu,1648cf24c042122af2f429641ba9599a2187d605,citation,https://doi.org/10.1109/BTAS.2017.8272698,Boosting cross-age face verification via generative age normalization,2017
93,IMDB,imdb_wiki,21.003952,105.84360183,Hanoi University of Science and Technology,edu,ca37933b6297cdca211aa7250cbe6b59f8be40e5,citation,http://doi.acm.org/10.1145/3155133.3155207,"Multi-task learning for smile detection, emotion recognition and gender classification",2017
94,IMDB,imdb_wiki,51.49887085,-0.17560797,Imperial College London,edu,cf2002fac81ccdccdadb5cc43f7b1cd30882d2c2,citation,https://arxiv.org/pdf/1803.09546.pdf,Calibrated Prediction Intervals for Neural Network Regressors,2018
95,IMDB,imdb_wiki,51.7534538,-1.25400997,University of Oxford,edu,75f9d3533f175943e33c9155f4038488f32a24bc,citation,https://arxiv.org/pdf/1811.06817.pdf,Evaluating Uncertainty Quantification in End-to-End Autonomous Driving Control,2018
96,IMDB,imdb_wiki,32.8536333,-117.2035286,Kyung Hee University,edu,854b1f0581f5d3340f15eb79452363cbf38c04c8,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7903648,Directional Age-Primitive Pattern (DAPP) for Human Age Group Recognition and Age Estimation,2017
97,IMDB,imdb_wiki,24.7246403,46.62335012,King Saud University,edu,854b1f0581f5d3340f15eb79452363cbf38c04c8,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7903648,Directional Age-Primitive Pattern (DAPP) for Human Age Group Recognition and Age Estimation,2017
98,IMDB,imdb_wiki,23.7289899,90.3982682,Institute of Information Technology,edu,854b1f0581f5d3340f15eb79452363cbf38c04c8,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7903648,Directional Age-Primitive Pattern (DAPP) for Human Age Group Recognition and Age Estimation,2017
99,IMDB,imdb_wiki,28.5456282,77.2731505,"IIIT Delhi, India",edu,f726738954e7055bb3615fa7e8f59f136d3e0bdc,citation,https://arxiv.org/pdf/1803.07385.pdf,Are you eligible? Predicting adulthood from face images via class specific mean autoencoder,2018
100,IMDB,imdb_wiki,42.0551164,-87.67581113,Northwestern University,edu,c1586ee25e660f31cba0ca9ba5bf39ffcc020aab,citation,https://arxiv.org/pdf/1807.06708.pdf,A Modulation Module for Multi-task Learning with Applications in Image Retrieval,2018
101,IMDB,imdb_wiki,37.4102193,-122.05965487,Carnegie Mellon University,edu,c1586ee25e660f31cba0ca9ba5bf39ffcc020aab,citation,https://arxiv.org/pdf/1807.06708.pdf,A Modulation Module for Multi-task Learning with Applications in Image Retrieval,2018
102,IMDB,imdb_wiki,30.04287695,31.23664139,American University in Cairo,edu,3a2c90e0963bfb07fc7cd1b5061383e9a99c39d2,citation,https://arxiv.org/pdf/1710.03804.pdf,End-to-End Deep Learning for Steering Autonomous Vehicles Considering Temporal Dependencies,2017
103,IMDB,imdb_wiki,31.83907195,117.26420748,University of Science and Technology of China,edu,47cd161546c59ab1e05f8841b82e985f72e5ddcb,citation,https://doi.org/10.1109/ICIP.2017.8296552,Gender classification in live videos,2017
104,IMDB,imdb_wiki,39.2899685,-76.62196103,University of Maryland,edu,1491d0938bb4183bd19f2fee3b61997e1918160d,citation,https://arxiv.org/pdf/1807.00453.pdf,Elastic Neural Networks: A Scalable Framework for Embedded Computer Vision,2018
105,IMDB,imdb_wiki,30.44235995,-84.29747867,Florida State University,edu,b88bace97d214d279e3a2053ccff0b6425295708,citation,https://arxiv.org/pdf/1803.11521.pdf,A Novel Framework for Online Supervised Learning with Feature Selection,2018
106,IMDB,imdb_wiki,61.44964205,23.85877462,Tampere University of Technology,edu,b20cfbb2348984b4e25b6b9174f3c7b65b6aed9e,citation,http://pdfs.semanticscholar.org/b20c/fbb2348984b4e25b6b9174f3c7b65b6aed9e.pdf,Learning with Ambiguous Label Distribution for Apparent Age Estimation,2016
107,IMDB,imdb_wiki,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,f3ec43a7b22f6e5414fec473acda8ffd843e7baf,citation,https://arxiv.org/pdf/1809.07447.pdf,A Coupled Evolutionary Network for Age Estimation,2018
108,IMDB,imdb_wiki,39.94976005,116.33629046,Beijing Jiaotong University,edu,4b9ec224949c79a980a5a66664d0ac6233c3d575,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7565501,Human Facial Age Estimation by Cost-Sensitive Label Ranking and Trace Norm Regularization,2017
109,IMDB,imdb_wiki,43.1576969,-77.58829158,University of Rochester,edu,4b9ec224949c79a980a5a66664d0ac6233c3d575,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7565501,Human Facial Age Estimation by Cost-Sensitive Label Ranking and Trace Norm Regularization,2017
110,IMDB,imdb_wiki,1.2962018,103.77689944,National University of Singapore,edu,4b9ec224949c79a980a5a66664d0ac6233c3d575,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7565501,Human Facial Age Estimation by Cost-Sensitive Label Ranking and Trace Norm Regularization,2017
111,IMDB,imdb_wiki,31.846918,117.29053367,Hefei University of Technology,edu,dc9c0527f8d4461b1742cccc7317fec8dd96d81a,citation,https://arxiv.org/pdf/1805.08373.pdf,Speeding-Up Age Estimation in Intelligent Demographics System via Network Optimization,2018
112,IMDB,imdb_wiki,1.3484104,103.68297965,Nanyang Technological University,edu,dc9c0527f8d4461b1742cccc7317fec8dd96d81a,citation,https://arxiv.org/pdf/1805.08373.pdf,Speeding-Up Age Estimation in Intelligent Demographics System via Network Optimization,2018
113,IMDB,imdb_wiki,43.614386,7.071125,EURECOM,edu,f7b422df567ce9813926461251517761e3e6cda0,citation,https://arxiv.org/pdf/1702.01983.pdf,Face aging with conditional generative adversarial networks,2017
114,IMDB,imdb_wiki,21.003952,105.84360183,Hanoi University of Science and Technology,edu,68573e296f069071d071fc158e974e8bc70c893f,citation,https://pdfs.semanticscholar.org/6857/3e296f069071d071fc158e974e8bc70c893f.pdf,"Effective Deep Multi-source Multi-task Learning Frameworks for Smile Detection, Emotion Recognition and Gender Classification",2018
115,IMDB,imdb_wiki,46.0658836,11.1159894,University of Trento,edu,cb43519894258b125624dc0df655ab5357b1e42f,citation,https://arxiv.org/pdf/1802.00237.pdf,Face Aging with Contextual Generative Adversarial Nets,2017
116,IMDB,imdb_wiki,1.2962018,103.77689944,National University of Singapore,edu,cb43519894258b125624dc0df655ab5357b1e42f,citation,https://arxiv.org/pdf/1802.00237.pdf,Face Aging with Contextual Generative Adversarial Nets,2017
117,IMDB,imdb_wiki,43.614386,7.071125,EURECOM,edu,70569810e46f476515fce80a602a210f8d9a2b95,citation,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2016.105,Apparent Age Estimation from Face Images Combining General and Children-Specialized Deep Learning Models,2016
118,IMDB,imdb_wiki,43.614386,7.071125,EURECOM,edu,f519723238701849f1160d5a9cedebd31017da89,citation,http://pdfs.semanticscholar.org/f519/723238701849f1160d5a9cedebd31017da89.pdf,Impact of multi-focused images on recognition of soft biometric traits,2016
119,IMDB,imdb_wiki,51.7534538,-1.25400997,University of Oxford,edu,4eab317b5ac436a949849ed286baa3de2a541eef,citation,https://arxiv.org/pdf/1809.02169.pdf,Turning a Blind Eye: Explicit Removal of Biases and Variation from Deep Neural Network Embeddings,2018
120,IMDB,imdb_wiki,33.5866784,-101.87539204,Electrical and Computer Engineering,edu,ebb3d5c70bedf2287f9b26ac0031004f8f617b97,citation,https://doi.org/10.1109/MSP.2017.2764116,"Deep Learning for Understanding Faces: Machines May Be Just as Good, or Better, than Humans",2018
121,IMDB,imdb_wiki,39.2899685,-76.62196103,University of Maryland,edu,ebb3d5c70bedf2287f9b26ac0031004f8f617b97,citation,https://doi.org/10.1109/MSP.2017.2764116,"Deep Learning for Understanding Faces: Machines May Be Just as Good, or Better, than Humans",2018
122,IMDB,imdb_wiki,51.7534538,-1.25400997,University of Oxford,edu,70c59dc3470ae867016f6ab0e008ac8ba03774a1,citation,https://arxiv.org/pdf/1710.08092.pdf,VGGFace2: A Dataset for Recognising Faces across Pose and Age,2018
123,IMDB,imdb_wiki,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,3dfb822e16328e0f98a47209d7ecd242e4211f82,citation,https://arxiv.org/pdf/1708.08197.pdf,Cross-Age LFW: A Database for Studying Cross-Age Face Recognition in Unconstrained Environments,2017
124,IMDB,imdb_wiki,30.44235995,-84.29747867,Florida State University,edu,bc99ff149c3c75b90f0110b8e72a9ae1300e29e7,citation,https://arxiv.org/pdf/1804.02744.pdf,Unsupervised Learning of Mixture Models with a Uniform Background Component,2018
125,IMDB,imdb_wiki,60.18558755,24.8242733,Aalto University,edu,08d41d2f68a2bf0091dc373573ca379de9b16385,citation,https://arxiv.org/pdf/1802.05023.pdf,Recursive Chaining of Reversible Image-to-image Translators For Face Aging,2018
126,IMDB,imdb_wiki,25.0410728,121.6147562,Institute of Information Science,edu,0951f42abbf649bb564a21d4ff5dddf9a5ea54d9,citation,https://arxiv.org/pdf/1806.02023.pdf,Joint Estimation of Age and Gender from Unconstrained Face Images Using Lightweight Multi-Task CNN for Mobile Applications,2018
127,IMDB,imdb_wiki,53.21967825,6.56251482,University of Groningen,edu,8efda5708bbcf658d4f567e3866e3549fe045bbb,citation,http://pdfs.semanticscholar.org/8efd/a5708bbcf658d4f567e3866e3549fe045bbb.pdf,Pre-trained Deep Convolutional Neural Networks for Face Recognition,2018
128,IMDB,imdb_wiki,22.5447154,113.9357164,Tencent,company,7a7fddb3020e0c2dd4e3fe275329eb10f1cfbb8a,citation,https://arxiv.org/pdf/1810.07599.pdf,Orthogonal Deep Features Decomposition for Age-Invariant Face Recognition,2018