1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
|
index,dataset_name,key,lat,lng,loc,loc_type,paper_id,paper_type,paper_url,title,year
0,MORPH Commercial,morph,0.0,0.0,,,9055b155cbabdce3b98e16e5ac9c0edf00f9552f,main,http://doi.ieeecomputersociety.org/10.1109/FGR.2006.78,MORPH: a longitudinal image database of normal adult age-progression,2006
1,MORPH Commercial,morph,34.80809035,135.45785218,Osaka University,edu,dad6b36fd515bda801f3d22a462cc62348f6aad8,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6117531,Gait-based age estimation using a whole-generation gait database,2011
2,MORPH Commercial,morph,40.0044795,116.370238,Chinese Academy of Sciences,edu,ddd0f1c53f76d7fc20e11b7e33bbdc0437516d2b,citation,https://doi.org/10.1109/ICDSP.2016.7868598,Deep learning-based learning to rank with ties for image re-ranking,2016
3,MORPH Commercial,morph,39.1118774,117.3497451,Civil Aviation University of China,edu,ddd0f1c53f76d7fc20e11b7e33bbdc0437516d2b,citation,https://doi.org/10.1109/ICDSP.2016.7868598,Deep learning-based learning to rank with ties for image re-ranking,2016
4,MORPH Commercial,morph,25.0410728,121.6147562,Institute of Information Science,edu,4c71b0cdb6b80889b976e8eb4457942bd4dd7b66,citation,https://doi.org/10.1109/TIP.2014.2387379,A Learning Framework for Age Rank Estimation Based on Face Images With Scattering Transform,2015
5,MORPH Commercial,morph,51.0267513,-1.3972576,"IBM Hursley Labs, UK",company,7123e510dea783035b02f6c35e35a1a09677c5ab,citation,https://doi.org/10.1109/ICPR.2016.7900297,Back to the future: A fully automatic method for robust age progression,2016
6,MORPH Commercial,morph,35.9042272,-78.85565763,"IBM Research, North Carolina",company,7123e510dea783035b02f6c35e35a1a09677c5ab,citation,https://doi.org/10.1109/ICPR.2016.7900297,Back to the future: A fully automatic method for robust age progression,2016
7,MORPH Commercial,morph,51.49887085,-0.17560797,Imperial College London,edu,7123e510dea783035b02f6c35e35a1a09677c5ab,citation,https://doi.org/10.1109/ICPR.2016.7900297,Back to the future: A fully automatic method for robust age progression,2016
8,MORPH Commercial,morph,35.5167538,139.48342251,Tokyo Institute of Technology,edu,3083d2c6d4f456e01cbb72930dc2207af98a6244,citation,http://pdfs.semanticscholar.org/3083/d2c6d4f456e01cbb72930dc2207af98a6244.pdf,Perceived Age Estimation from Face Images,2011
9,MORPH Commercial,morph,41.3868913,2.16352385,University of Barcelona,edu,500fbe18afd44312738cab91b4689c12b4e0eeee,citation,http://www.maia.ub.es/~sergio/linked/ijcnn_age_and_cultural_2015.pdf,ChaLearn looking at people 2015 new competitions: Age estimation and cultural event recognition,2015
10,MORPH Commercial,morph,45.4312742,12.3265377,University of Venezia,edu,500fbe18afd44312738cab91b4689c12b4e0eeee,citation,http://www.maia.ub.es/~sergio/linked/ijcnn_age_and_cultural_2015.pdf,ChaLearn looking at people 2015 new competitions: Age estimation and cultural event recognition,2015
11,MORPH Commercial,morph,41.10427915,29.02231159,Istanbul Technical University,edu,fd53be2e0a9f33080a9db4b5a5e416e24ae8e198,citation,https://arxiv.org/pdf/1606.02909.pdf,Apparent Age Estimation Using Ensemble of Deep Learning Models,2016
12,MORPH Commercial,morph,40.6341322,-8.6599726,"University of Beira Interior, Portugal",edu,81c21f4aafab39b7f5965829ec9e0f828d6a6182,citation,https://doi.org/10.1109/BTAS.2015.7358744,Acquiring high-resolution face images in outdoor environments: A master-slave calibration algorithm,2015
13,MORPH Commercial,morph,42.36782045,-71.12666653,Harvard University,edu,0ba402af3b8682e2aa89f76bd823ddffdf89fa0a,citation,http://pdfs.semanticscholar.org/c0d8/4377168c554cb8e83099bed940091fe49dec.pdf,Squared Earth Mover's Distance-based Loss for Training Deep Neural Networks,2016
14,MORPH Commercial,morph,40.9153196,-73.1270626,Stony Brook University,edu,0ba402af3b8682e2aa89f76bd823ddffdf89fa0a,citation,http://pdfs.semanticscholar.org/c0d8/4377168c554cb8e83099bed940091fe49dec.pdf,Squared Earth Mover's Distance-based Loss for Training Deep Neural Networks,2016
15,MORPH Commercial,morph,40.47913175,-74.43168868,Rutgers University,edu,31f1e711fcf82c855f27396f181bf5e565a2f58d,citation,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2015.54,Unconstrained Age Estimation with Deep Convolutional Neural Networks,2015
16,MORPH Commercial,morph,39.2899685,-76.62196103,University of Maryland,edu,31f1e711fcf82c855f27396f181bf5e565a2f58d,citation,http://doi.ieeecomputersociety.org/10.1109/ICCVW.2015.54,Unconstrained Age Estimation with Deep Convolutional Neural Networks,2015
17,MORPH Commercial,morph,39.65404635,-79.96475355,West Virginia University,edu,af12a79892bd030c19dfea392f7a7ccb0e7ebb72,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2012.6247972,A study on human age estimation under facial expression changes,2012
18,MORPH Commercial,morph,23.09461185,113.28788994,Sun Yat-Sen University,edu,2d7c2c015053fff5300515a7addcd74b523f3f66,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8323422,Age-Related Factor Guided Joint Task Modeling Convolutional Neural Network for Cross-Age Face Recognition,2018
19,MORPH Commercial,morph,40.0044795,116.370238,Chinese Academy of Sciences,edu,b234d429c9ea682e54fca52f4b889b3170f65ffc,citation,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2012.22,A Concatenational Graph Evolution Aging Model,2012
20,MORPH Commercial,morph,39.9922379,116.30393816,Peking University,edu,b234d429c9ea682e54fca52f4b889b3170f65ffc,citation,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2012.22,A Concatenational Graph Evolution Aging Model,2012
21,MORPH Commercial,morph,40.00229045,116.32098908,Tsinghua University,edu,b234d429c9ea682e54fca52f4b889b3170f65ffc,citation,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2012.22,A Concatenational Graph Evolution Aging Model,2012
22,MORPH Commercial,morph,30.19331415,120.11930822,Zhejiang University,edu,ee65cee5151928c63d3ef36fcbb582fabb2b6d2c,citation,https://doi.org/10.1109/LSP.2016.2602538,Structure-Aware Slow Feature Analysis for Age Estimation,2016
23,MORPH Commercial,morph,40.0141905,-83.0309143,University of Electronic Science and Technology of China,edu,ee65cee5151928c63d3ef36fcbb582fabb2b6d2c,citation,https://doi.org/10.1109/LSP.2016.2602538,Structure-Aware Slow Feature Analysis for Age Estimation,2016
24,MORPH Commercial,morph,40.0044795,116.370238,Chinese Academy of Sciences,edu,288964068cd87d97a98b8bc927d6e0d2349458a2,citation,https://pdfs.semanticscholar.org/2889/64068cd87d97a98b8bc927d6e0d2349458a2.pdf,Mean-Variance Loss for Deep Age Estimation from a Face,0
25,MORPH Commercial,morph,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,288964068cd87d97a98b8bc927d6e0d2349458a2,citation,https://pdfs.semanticscholar.org/2889/64068cd87d97a98b8bc927d6e0d2349458a2.pdf,Mean-Variance Loss for Deep Age Estimation from a Face,0
26,MORPH Commercial,morph,39.65404635,-79.96475355,West Virginia University,edu,cd63759842a56bd2ede3999f6e11a74ccbec318b,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5995404,Simultaneous dimensionality reduction and human age estimation via kernel partial least squares regression,2011
27,MORPH Commercial,morph,28.5456282,77.2731505,"IIIT Delhi, India",edu,ffc81ced9ee8223ab0adb18817321cbee99606e6,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7791157,A multibiometrics-based CAPTCHA for improved online security,2016
28,MORPH Commercial,morph,39.65404635,-79.96475355,West Virginia University,edu,ffc81ced9ee8223ab0adb18817321cbee99606e6,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7791157,A multibiometrics-based CAPTCHA for improved online security,2016
29,MORPH Commercial,morph,41.25713055,-72.9896696,Yale University,edu,df7312cbabb7d75d915ba0d91dea77100ded5c56,citation,https://arxiv.org/pdf/1811.06446.pdf,Preliminary Studies on a Large Face Database,2018
30,MORPH Commercial,morph,29.6328784,-82.3490133,University of Florida,edu,df7312cbabb7d75d915ba0d91dea77100ded5c56,citation,https://arxiv.org/pdf/1811.06446.pdf,Preliminary Studies on a Large Face Database,2018
31,MORPH Commercial,morph,31.83907195,117.26420748,University of Science and Technology of China,edu,56c700693b63e3da3b985777da6d9256e2e0dc21,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1A_079.pdf,Global refinement of random forest,2015
32,MORPH Commercial,morph,40.00229045,116.32098908,Tsinghua University,edu,1e344b99583b782e3eaf152cdfa15f217b781181,citation,http://doi.acm.org/10.1145/2499788.2499789,A new biologically inspired active appearance model for face age estimation by using local ordinal ranking,2013
33,MORPH Commercial,morph,39.94976005,116.33629046,Beijing Jiaotong University,edu,4b9ec224949c79a980a5a66664d0ac6233c3d575,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7565501,Human Facial Age Estimation by Cost-Sensitive Label Ranking and Trace Norm Regularization,2017
34,MORPH Commercial,morph,43.1576969,-77.58829158,University of Rochester,edu,4b9ec224949c79a980a5a66664d0ac6233c3d575,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7565501,Human Facial Age Estimation by Cost-Sensitive Label Ranking and Trace Norm Regularization,2017
35,MORPH Commercial,morph,1.2962018,103.77689944,National University of Singapore,edu,4b9ec224949c79a980a5a66664d0ac6233c3d575,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7565501,Human Facial Age Estimation by Cost-Sensitive Label Ranking and Trace Norm Regularization,2017
36,MORPH Commercial,morph,40.0044795,116.370238,Chinese Academy of Sciences,edu,bd8b7599acf53e3053aa27cfd522764e28474e57,citation,http://www.jdl.ac.cn/doc/2009/iccv09_Learning%20Long%20Term%20Face%20Aging%20Patterns%20from%20Partially%20Dense%20Aging%20Databases.pdf,Learning long term face aging patterns from partially dense aging databases,2009
37,MORPH Commercial,morph,39.9922379,116.30393816,Peking University,edu,bd8b7599acf53e3053aa27cfd522764e28474e57,citation,http://www.jdl.ac.cn/doc/2009/iccv09_Learning%20Long%20Term%20Face%20Aging%20Patterns%20from%20Partially%20Dense%20Aging%20Databases.pdf,Learning long term face aging patterns from partially dense aging databases,2009
38,MORPH Commercial,morph,43.614386,7.071125,EURECOM,edu,70569810e46f476515fce80a602a210f8d9a2b95,citation,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2016.105,Apparent Age Estimation from Face Images Combining General and Children-Specialized Deep Learning Models,2016
39,MORPH Commercial,morph,39.9213097,32.7988233,"TOBB Economy and Technology University, Ankara, Turkey",edu,cc1ed45b02d7fffb42a0fd8cffe5f11792b6ea74,citation,https://doi.org/10.1109/SIU.2016.7495874,Analysis of the effect of image resolution on automatic face gender and age classification,2016
40,MORPH Commercial,morph,-33.91758275,151.23124025,University of New South Wales,edu,29631ca6cff21c9199c70bcdbbcd5f812d331a96,citation,http://pdfs.semanticscholar.org/2963/1ca6cff21c9199c70bcdbbcd5f812d331a96.pdf,Error Rates in Users of Automatic Face Recognition Software,2015
41,MORPH Commercial,morph,-33.88890695,151.18943366,University of Sydney,edu,29631ca6cff21c9199c70bcdbbcd5f812d331a96,citation,http://pdfs.semanticscholar.org/2963/1ca6cff21c9199c70bcdbbcd5f812d331a96.pdf,Error Rates in Users of Automatic Face Recognition Software,2015
42,MORPH Commercial,morph,42.718568,-84.47791571,Michigan State University,edu,1a53ca294bbe5923c46a339955e8207907e9c8c6,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7273870,What Else Does Your Biometric Data Reveal? A Survey on Soft Biometrics,2016
43,MORPH Commercial,morph,43.614386,7.071125,EURECOM,edu,1a53ca294bbe5923c46a339955e8207907e9c8c6,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7273870,What Else Does Your Biometric Data Reveal? A Survey on Soft Biometrics,2016
44,MORPH Commercial,morph,40.4319722,-86.92389368,Purdue University,edu,c7c53d75f6e963b403057d8ba5952e4974a779ad,citation,https://pdfs.semanticscholar.org/c7c5/3d75f6e963b403057d8ba5952e4974a779ad.pdf,Aging effects in automated face recognition,2018
45,MORPH Commercial,morph,41.02451875,28.97697953,Bahçeşehir University,edu,0c2370e156a4eb8d84a5fdb049c5a894c3431f1c,citation,https://doi.org/10.1109/CIBIM.2014.7015437,Biometric template update under facial aging,2014
46,MORPH Commercial,morph,53.22853665,-0.54873472,University of Lincoln,edu,0c2370e156a4eb8d84a5fdb049c5a894c3431f1c,citation,https://doi.org/10.1109/CIBIM.2014.7015437,Biometric template update under facial aging,2014
47,MORPH Commercial,morph,46.0810723,13.2119474,University of Udine,edu,0c2370e156a4eb8d84a5fdb049c5a894c3431f1c,citation,https://doi.org/10.1109/CIBIM.2014.7015437,Biometric template update under facial aging,2014
48,MORPH Commercial,morph,25.0410728,121.6147562,Institute of Information Science,edu,1c17450c4d616e1e1eece248c42eba4f87de9e0d,citation,http://pdfs.semanticscholar.org/d269/39a00a8d3964de612cd3faa86764343d5622.pdf,Automatic Age Estimation from Face Images via Deep Ranking,2015
49,MORPH Commercial,morph,43.47061295,-80.54724732,University of Waterloo,edu,f2902f5956d7e2dca536d9131d4334f85f52f783,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6460191,Facial age estimation using Clustered Multi-task Support Vector Regression Machine,2012
50,MORPH Commercial,morph,39.65404635,-79.96475355,West Virginia University,edu,ba2bbef34f05551291410103e3de9e82fdf9dddd,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Guo_A_Study_on_2014_CVPR_paper.pdf,A Study on Cross-Population Age Estimation,2014
51,MORPH Commercial,morph,31.32235655,121.38400941,Shanghai University,edu,d454ad60b061c1a1450810a0f335fafbfeceeccc,citation,https://arxiv.org/pdf/1712.07195.pdf,Deep Regression Forests for Age Estimation,2017
52,MORPH Commercial,morph,42.718568,-84.47791571,Michigan State University,edu,ad2cb5c255e555d9767d526721a4c7053fa2ac58,citation,https://arxiv.org/pdf/1711.03990.pdf,Longitudinal Study of Child Face Recognition,2018
53,MORPH Commercial,morph,39.95472495,-75.15346905,Temple University,edu,0cf2eecf20cfbcb7f153713479e3206670ea0e9c,citation,https://arxiv.org/pdf/1806.08906.pdf,Privacy-Protective-GAN for Face De-identification,2018
54,MORPH Commercial,morph,31.32235655,121.38400941,Shanghai University,edu,c0b02be66a5a1907e8cfb8117de50f80b90a65a8,citation,http://doi.acm.org/10.1145/2808492.2808523,Manifold learning in sparse selected feature subspaces,2015
55,MORPH Commercial,morph,47.6423318,-122.1369302,Microsoft,company,ff012c56b9b1de969328dacd13e26b7138ff298b,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7762921,Facial Age Estimation With Age Difference,2017
56,MORPH Commercial,morph,1.2962018,103.77689944,National University of Singapore,edu,ff012c56b9b1de969328dacd13e26b7138ff298b,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7762921,Facial Age Estimation With Age Difference,2017
57,MORPH Commercial,morph,31.846918,117.29053367,Hefei University of Technology,edu,ff012c56b9b1de969328dacd13e26b7138ff298b,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7762921,Facial Age Estimation With Age Difference,2017
58,MORPH Commercial,morph,1.3484104,103.68297965,Nanyang Technological University,edu,ff012c56b9b1de969328dacd13e26b7138ff298b,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7762921,Facial Age Estimation With Age Difference,2017
59,MORPH Commercial,morph,40.00229045,116.32098908,Tsinghua University,edu,2149d49c84a83848d6051867290d9c8bfcef0edb,citation,https://doi.org/10.1109/TIFS.2017.2746062,Label-Sensitive Deep Metric Learning for Facial Age Estimation,2018
60,MORPH Commercial,morph,25.0410728,121.6147562,Institute of Information Science,edu,c44c84540db1c38ace232ef34b03bda1c81ba039,citation,http://pdfs.semanticscholar.org/c44c/84540db1c38ace232ef34b03bda1c81ba039.pdf,Cross-Age Reference Coding for Age-Invariant Face Recognition and Retrieval,2014
61,MORPH Commercial,morph,25.01682835,121.53846924,National Taiwan University,edu,c44c84540db1c38ace232ef34b03bda1c81ba039,citation,http://pdfs.semanticscholar.org/c44c/84540db1c38ace232ef34b03bda1c81ba039.pdf,Cross-Age Reference Coding for Age-Invariant Face Recognition and Retrieval,2014
62,MORPH Commercial,morph,33.5866784,-101.87539204,Electrical and Computer Engineering,edu,ebb3d5c70bedf2287f9b26ac0031004f8f617b97,citation,https://doi.org/10.1109/MSP.2017.2764116,"Deep Learning for Understanding Faces: Machines May Be Just as Good, or Better, than Humans",2018
63,MORPH Commercial,morph,39.2899685,-76.62196103,University of Maryland,edu,ebb3d5c70bedf2287f9b26ac0031004f8f617b97,citation,https://doi.org/10.1109/MSP.2017.2764116,"Deep Learning for Understanding Faces: Machines May Be Just as Good, or Better, than Humans",2018
64,MORPH Commercial,morph,42.718568,-84.47791571,Michigan State University,edu,2f2406551c693d616a840719ae1e6ea448e2f5d3,citation,http://biometrics.cse.msu.edu/Presentations/CharlesOtto_ICB13_AgeEstimationFaceImages_HumanVsMachinePerformance.pdf,Age estimation from face images: Human vs. machine performance,2013
65,MORPH Commercial,morph,1.3037257,103.7737763,"Advanced Digital Sciences Center, Singapore",edu,15fbb5fc3bdd692a6b2dd737cce7f39f7c89a25c,citation,https://doi.org/10.1109/TMM.2011.2167317,Web Image and Video Mining Towards Universal and Robust Age Estimator,2011
66,MORPH Commercial,morph,1.2962018,103.77689944,National University of Singapore,edu,15fbb5fc3bdd692a6b2dd737cce7f39f7c89a25c,citation,https://doi.org/10.1109/TMM.2011.2167317,Web Image and Video Mining Towards Universal and Robust Age Estimator,2011
67,MORPH Commercial,morph,42.718568,-84.47791571,Michigan State University,edu,b446bcd7fb78adfe346cf7a01a38e4f43760f363,citation,http://pdfs.semanticscholar.org/b446/bcd7fb78adfe346cf7a01a38e4f43760f363.pdf,To appear in ICB 2018 Longitudinal Study of Child Face Recognition,2017
68,MORPH Commercial,morph,42.718568,-84.47791571,Michigan State University,edu,c035c193eed5d72c7f187f0bc880a17d217dada0,citation,http://pdfs.semanticscholar.org/c035/c193eed5d72c7f187f0bc880a17d217dada0.pdf,"Local Gradient Gabor Pattern (LGGP) with Applications in Face Recognition, Cross-spectral Matching and Soft Biometrics",2013
69,MORPH Commercial,morph,39.65404635,-79.96475355,West Virginia University,edu,c035c193eed5d72c7f187f0bc880a17d217dada0,citation,http://pdfs.semanticscholar.org/c035/c193eed5d72c7f187f0bc880a17d217dada0.pdf,"Local Gradient Gabor Pattern (LGGP) with Applications in Face Recognition, Cross-spectral Matching and Soft Biometrics",2013
70,MORPH Commercial,morph,34.66869155,-82.83743476,Clemson University,edu,c907104680ad53bdc673f2648d713e4d26335825,citation,http://doi.acm.org/10.1145/3077286.3077304,Dataset and Metrics for Adult Age-Progression Evaluation,2017
71,MORPH Commercial,morph,34.2375581,-77.9270129,University of North Carolina Wilmington,edu,c907104680ad53bdc673f2648d713e4d26335825,citation,http://doi.acm.org/10.1145/3077286.3077304,Dataset and Metrics for Adult Age-Progression Evaluation,2017
72,MORPH Commercial,morph,37.5600406,126.9369248,Yonsei University,edu,fde41dc4ec6ac6474194b99e05b43dd6a6c4f06f,citation,https://arxiv.org/pdf/1809.01990.pdf,Multi-Expert Gender Classification on Age Group by Integrating Deep Neural Networks,2018
73,MORPH Commercial,morph,34.2375581,-77.9270129,University of North Carolina Wilmington,edu,31a36014354ee7c89aa6d94e656db77922b180a5,citation,http://doi.acm.org/10.1145/2304496.2304509,An interactive tool for extremely dense landmarking of faces,2012
74,MORPH Commercial,morph,37.5901411,127.0362318,Korea University,edu,4b519e2e88ccd45718b0fc65bfd82ebe103902f7,citation,http://biometrics.cse.msu.edu/Publications/Face/LiParkJain_DiscriminativeModelAgeInvariantFR_TIFS11.pdf,A Discriminative Model for Age Invariant Face Recognition,2011
75,MORPH Commercial,morph,42.718568,-84.47791571,Michigan State University,edu,4b519e2e88ccd45718b0fc65bfd82ebe103902f7,citation,http://biometrics.cse.msu.edu/Publications/Face/LiParkJain_DiscriminativeModelAgeInvariantFR_TIFS11.pdf,A Discriminative Model for Age Invariant Face Recognition,2011
76,MORPH Commercial,morph,22.59805605,113.98533784,Shenzhen Institutes of Advanced Technology,edu,4b519e2e88ccd45718b0fc65bfd82ebe103902f7,citation,http://biometrics.cse.msu.edu/Publications/Face/LiParkJain_DiscriminativeModelAgeInvariantFR_TIFS11.pdf,A Discriminative Model for Age Invariant Face Recognition,2011
77,MORPH Commercial,morph,23.09461185,113.28788994,Sun Yat-Sen University,edu,23edcd0d2011d9c0d421193af061f2eb3e155da3,citation,http://doi.org/10.1007/s00371-015-1137-4,Facial age estimation by using stacked feature composition and selection,2015
78,MORPH Commercial,morph,23.04436505,113.36668458,Guangzhou University,edu,23edcd0d2011d9c0d421193af061f2eb3e155da3,citation,http://doi.org/10.1007/s00371-015-1137-4,Facial age estimation by using stacked feature composition and selection,2015
79,MORPH Commercial,morph,38.9530519,-77.3354508,"Cernium Corporation, Reston, VA, USA",company,604a281100784b4d5bc1a6db993d423abc5dc8f0,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5353681,Face Verification Across Age Progression Using Discriminative Methods,2010
80,MORPH Commercial,morph,39.2899685,-76.62196103,University of Maryland,edu,604a281100784b4d5bc1a6db993d423abc5dc8f0,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5353681,Face Verification Across Age Progression Using Discriminative Methods,2010
81,MORPH Commercial,morph,39.95472495,-75.15346905,Temple University,edu,604a281100784b4d5bc1a6db993d423abc5dc8f0,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5353681,Face Verification Across Age Progression Using Discriminative Methods,2010
82,MORPH Commercial,morph,51.2975344,1.07296165,University of Kent,edu,6486b36c6f7fd7675257d26e896223a02a1881d9,citation,https://doi.org/10.1109/THMS.2014.2376874,Selective Review and Analysis of Aging Effects in Biometric System Implementation,2015
83,MORPH Commercial,morph,22.42031295,114.20788644,Chinese University of Hong Kong,edu,16bce9f940bb01aa5ec961892cc021d4664eb9e4,citation,http://www.cise.ufl.edu/~dihong/assets/TIST-2014-10-0214.R2.pdf,Mutual Component Analysis for Heterogeneous Face Recognition,2016
84,MORPH Commercial,morph,22.59805605,113.98533784,Shenzhen Institutes of Advanced Technology,edu,16bce9f940bb01aa5ec961892cc021d4664eb9e4,citation,http://www.cise.ufl.edu/~dihong/assets/TIST-2014-10-0214.R2.pdf,Mutual Component Analysis for Heterogeneous Face Recognition,2016
85,MORPH Commercial,morph,34.67567405,33.04577648,Cyprus University of Technology,edu,9d3aa3b7d392fad596b067b13b9e42443bbc377c,citation,http://pdfs.semanticscholar.org/9d3a/a3b7d392fad596b067b13b9e42443bbc377c.pdf,Facial Biometric Templates and Aging: Problems and Challenges for Artificial Intelligence,2009
86,MORPH Commercial,morph,22.59805605,113.98533784,Shenzhen Institutes of Advanced Technology,edu,217a21d60bb777d15cd9328970cab563d70b5d23,citation,http://www.cise.ufl.edu/~dihong/assets/iccv2013.pdf,Hidden Factor Analysis for Age Invariant Face Recognition,2013
87,MORPH Commercial,morph,22.42031295,114.20788644,Chinese University of Hong Kong,edu,217a21d60bb777d15cd9328970cab563d70b5d23,citation,http://www.cise.ufl.edu/~dihong/assets/iccv2013.pdf,Hidden Factor Analysis for Age Invariant Face Recognition,2013
88,MORPH Commercial,morph,32.0565957,118.77408833,Nanjing University,edu,b1bb517bd87a1212174033fc786b2237844b04e6,citation,https://doi.org/10.1016/j.neucom.2015.03.078,Cumulative attribute relation regularization learning for human age estimation,2015
89,MORPH Commercial,morph,40.8419836,-73.94368971,Columbia University,edu,a0dc68c546e0fc72eb0d9ca822cf0c9ccb4b4c4f,citation,http://www.cs.columbia.edu/~neeraj/base/papers/nk_ijcb2011_fusion.pdf,Fusing with context: A Bayesian approach to combining descriptive attributes,2011
90,MORPH Commercial,morph,34.2375581,-77.9270129,University of North Carolina Wilmington,edu,a0dc68c546e0fc72eb0d9ca822cf0c9ccb4b4c4f,citation,http://www.cs.columbia.edu/~neeraj/base/papers/nk_ijcb2011_fusion.pdf,Fusing with context: A Bayesian approach to combining descriptive attributes,2011
91,MORPH Commercial,morph,1.3484104,103.68297965,Nanyang Technological University,edu,d119443de1d75cad384d897c2ed5a7b9c1661d98,citation,https://doi.org/10.1109/ICIP.2010.5650873,Cost-sensitive subspace learning for human age estimation,2010
92,MORPH Commercial,morph,34.2249827,-77.86907744,University of North Carolina at Wilmington,edu,97c59db934ff85c60c460a4591106682b5ab9caa,citation,https://doi.org/10.1109/BTAS.2012.6374568,Extremely dense face registration: Comparing automatic landmarking algorithms for general and ethno-gender models,2012
93,MORPH Commercial,morph,43.2213516,-75.4085577,"Air Force Research Lab, Rome, NY",mil,834736698f2cc5c221c22369abe95515243a9fc3,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6996249,GARP-face: Balancing privacy protection and utility preservation in face de-identification,2014
94,MORPH Commercial,morph,39.95472495,-75.15346905,Temple University,edu,834736698f2cc5c221c22369abe95515243a9fc3,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6996249,GARP-face: Balancing privacy protection and utility preservation in face de-identification,2014
95,MORPH Commercial,morph,32.0575279,118.78682252,Southeast University,edu,3cb488a3b71f221a8616716a1fc2b951dd0de549,citation,http://doi.ieeecomputersociety.org/10.1109/ICPR.2014.764,Facial Age Estimation by Adaptive Label Distribution Learning,2014
96,MORPH Commercial,morph,22.3386304,114.2620337,Hong Kong University of Science and Technology,edu,8000c4f278e9af4d087c0d0895fff7012c5e3d78,citation,https://www.cse.ust.hk/~yuzhangcse/papers/Zhang_Yeung_CVPR10.pdf,Multi-task warped Gaussian process for personalized age estimation,2010
97,MORPH Commercial,morph,31.20081505,121.42840681,Shanghai Jiao Tong University,edu,59fe66eeb06d1a7e1496a85f7ffc7b37512cd7e5,citation,http://doi.ieeecomputersociety.org/10.1109/ICME.2016.7552862,Robust feature encoding for age-invariant face recognition,2016
98,MORPH Commercial,morph,23.0502042,113.39880323,South China University of Technology,edu,4bd3de97b256b96556d19a5db71dda519934fd53,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2016.529,Latent Factor Guided Convolutional Neural Networks for Age-Invariant Face Recognition,2016
99,MORPH Commercial,morph,22.59805605,113.98533784,Shenzhen Institutes of Advanced Technology,edu,4bd3de97b256b96556d19a5db71dda519934fd53,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2016.529,Latent Factor Guided Convolutional Neural Networks for Age-Invariant Face Recognition,2016
100,MORPH Commercial,morph,22.59805605,113.98533784,Shenzhen Institutes of Advanced Technology,edu,1d3dd9aba79a53390317ec1e0b7cd742cba43132,citation,http://www.cise.ufl.edu/~dihong/assets/Gong_A_Maximum_Entropy_2015_CVPR_paper.pdf,A maximum entropy feature descriptor for age invariant face recognition,2015
101,MORPH Commercial,morph,40.0044795,116.370238,Chinese Academy of Sciences,edu,1d3dd9aba79a53390317ec1e0b7cd742cba43132,citation,http://www.cise.ufl.edu/~dihong/assets/Gong_A_Maximum_Entropy_2015_CVPR_paper.pdf,A maximum entropy feature descriptor for age invariant face recognition,2015
102,MORPH Commercial,morph,22.42031295,114.20788644,Chinese University of Hong Kong,edu,1d3dd9aba79a53390317ec1e0b7cd742cba43132,citation,http://www.cise.ufl.edu/~dihong/assets/Gong_A_Maximum_Entropy_2015_CVPR_paper.pdf,A maximum entropy feature descriptor for age invariant face recognition,2015
103,MORPH Commercial,morph,32.0575279,118.78682252,Southeast University,edu,1c530de1a94ac70bf9086e39af1712ea8d2d2781,citation,http://pdfs.semanticscholar.org/1c53/0de1a94ac70bf9086e39af1712ea8d2d2781.pdf,Sparsity Conditional Energy Label Distribution Learning for Age Estimation,2016
104,MORPH Commercial,morph,37.4102193,-122.05965487,Carnegie Mellon University,edu,eb8519cec0d7a781923f68fdca0891713cb81163,citation,https://arxiv.org/pdf/1703.08617.pdf,Temporal Non-volume Preserving Approach to Facial Age-Progression and Age-Invariant Face Recognition,2017
105,MORPH Commercial,morph,45.57022705,-122.63709346,Concordia University,edu,eb8519cec0d7a781923f68fdca0891713cb81163,citation,https://arxiv.org/pdf/1703.08617.pdf,Temporal Non-volume Preserving Approach to Facial Age-Progression and Age-Invariant Face Recognition,2017
106,MORPH Commercial,morph,57.6252103,39.8845656,Yaroslavl State University,edu,cfaf61bacf61901b7e1ac25b779a1f87c1e8cf7f,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6737950,Application for video analysis based on machine learning and computer vision algorithms,2013
107,MORPH Commercial,morph,51.49887085,-0.17560797,Imperial College London,edu,54bb25a213944b08298e4e2de54f2ddea890954a,citation,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Moschoglou_AgeDB_The_First_CVPR_2017_paper.pdf,"AgeDB: The First Manually Collected, In-the-Wild Age Database",2017
108,MORPH Commercial,morph,51.59029705,-0.22963221,Middlesex University,edu,54bb25a213944b08298e4e2de54f2ddea890954a,citation,http://openaccess.thecvf.com/content_cvpr_2017_workshops/w33/papers/Moschoglou_AgeDB_The_First_CVPR_2017_paper.pdf,"AgeDB: The First Manually Collected, In-the-Wild Age Database",2017
109,MORPH Commercial,morph,37.4102193,-122.05965487,Carnegie Mellon University,edu,17670b60dcfb5cbf8fdae0b266e18cf995f6014c,citation,http://arxiv.org/abs/1606.02254,Longitudinal Face Modeling via Temporal Deep Restricted Boltzmann Machines,2016
110,MORPH Commercial,morph,45.57022705,-122.63709346,Concordia University,edu,17670b60dcfb5cbf8fdae0b266e18cf995f6014c,citation,http://arxiv.org/abs/1606.02254,Longitudinal Face Modeling via Temporal Deep Restricted Boltzmann Machines,2016
111,MORPH Commercial,morph,46.0658836,11.1159894,University of Trento,edu,2fd96238a7e372146cdf6c2338edc932031dd1f0,citation,https://arxiv.org/pdf/1802.00237.pdf,Face Aging with Contextual Generative Adversarial Nets,2017
112,MORPH Commercial,morph,1.2962018,103.77689944,National University of Singapore,edu,2fd96238a7e372146cdf6c2338edc932031dd1f0,citation,https://arxiv.org/pdf/1802.00237.pdf,Face Aging with Contextual Generative Adversarial Nets,2017
113,MORPH Commercial,morph,51.44415765,7.26096541,Ruhr-University Bochum,edu,b249f10a30907a80f2a73582f696bc35ba4db9e2,citation,http://pdfs.semanticscholar.org/f06d/6161eef9325285b32356e1c4b5527479eb9b.pdf,Improved graph-based SFA: Information preservation complements the slowness principle,2016
114,MORPH Commercial,morph,39.9808333,116.34101249,Beihang University,edu,8b266e68cc71f98ee42b04dc8f3e336c47f199cb,citation,https://arxiv.org/pdf/1711.10352.pdf,Learning Face Age Progression: A Pyramid Architecture of GANs,2017
115,MORPH Commercial,morph,42.718568,-84.47791571,Michigan State University,edu,8b266e68cc71f98ee42b04dc8f3e336c47f199cb,citation,https://arxiv.org/pdf/1711.10352.pdf,Learning Face Age Progression: A Pyramid Architecture of GANs,2017
116,MORPH Commercial,morph,32.0565957,118.77408833,Nanjing University,edu,0e2d956790d3b8ab18cee8df6c949504ee78ad42,citation,https://doi.org/10.1109/IVCNZ.2013.6727024,Scalable face image retrieval integrating multi-feature quantization and constrained reference re-ranking,2013
117,MORPH Commercial,morph,40.0044795,116.370238,Chinese Academy of Sciences,edu,2a7e6a1b2638550370a47f2f6f6e38e76fe9ac13,citation,http://doi.acm.org/10.1145/3090311,Multifeature Anisotropic Orthogonal Gaussian Process for Automatic Age Estimation,2017
118,MORPH Commercial,morph,-33.88890695,151.18943366,University of Sydney,edu,2a7e6a1b2638550370a47f2f6f6e38e76fe9ac13,citation,http://doi.acm.org/10.1145/3090311,Multifeature Anisotropic Orthogonal Gaussian Process for Automatic Age Estimation,2017
119,MORPH Commercial,morph,51.2975344,1.07296165,University of Kent,edu,2336de3a81dada63eb00ea82f7570c4069342fb5,citation,http://doi.acm.org/10.1145/2361407.2361428,A methodological framework for investigating age factors on the performance of biometric systems,2012
120,MORPH Commercial,morph,39.2899685,-76.62196103,University of Maryland,edu,93420d9212dd15b3ef37f566e4d57e76bb2fab2f,citation,https://arxiv.org/pdf/1611.00851.pdf,An All-In-One Convolutional Neural Network for Face Analysis,2017
121,MORPH Commercial,morph,39.95472495,-75.15346905,Temple University,edu,019e471667c72b5b3728b4a9ba9fe301a7426fb2,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/2A_012.pdf,Cross-age face verification by coordinating with cross-face age verification,2015
122,MORPH Commercial,morph,45.57022705,-122.63709346,Concordia University,edu,c418a3441f992fea523926f837f4bfb742548c16,citation,http://pdfs.semanticscholar.org/c418/a3441f992fea523926f837f4bfb742548c16.pdf,A Computer Approach for Face Aging Problems,2010
123,MORPH Commercial,morph,22.42031295,114.20788644,Chinese University of Hong Kong,edu,d80a3d1f3a438e02a6685e66ee908446766fefa9,citation,https://arxiv.org/pdf/1708.09687.pdf,Quantifying Facial Age by Posterior of Age Comparisons,2017
124,MORPH Commercial,morph,34.67567405,33.04577648,Cyprus University of Technology,edu,ebbceab4e15bf641f74e335b70c6c4490a043961,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4813349,Evaluating the performance of face-aging algorithms,2008
125,MORPH Commercial,morph,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,d84a48f7d242d73b32a9286f9b148f5575acf227,citation,http://pdfs.semanticscholar.org/d84a/48f7d242d73b32a9286f9b148f5575acf227.pdf,Global and Local Consistent Age Generative Adversarial Networks,2018
126,MORPH Commercial,morph,12.9551259,77.5741985,Bangalore Institute of Technology,edu,8f5facdc0a2a79283864aad03edc702e2a400346,citation,http://pdfs.semanticscholar.org/8f5f/acdc0a2a79283864aad03edc702e2a400346.pdf,Estimation Framework using Bio - Inspired Features for Facial Image,0
127,MORPH Commercial,morph,42.718568,-84.47791571,Michigan State University,edu,08f6ad0a3e75b715852f825d12b6f28883f5ca05,citation,http://www.cse.msu.edu/biometrics/Publications/Face/JainKlarePark_FaceRecognition_ChallengesinForensics_FG11.pdf,Face recognition: Some challenges in forensics,2011
128,MORPH Commercial,morph,41.10427915,29.02231159,Istanbul Technical University,edu,2050847bc7a1a0453891f03aeeb4643e360fde7d,citation,https://cvhci.anthropomatik.kit.edu/~mtapaswi/papers/ICMR2015.pdf,Accio: A Data Set for Face Track Retrieval in Movies Across Age,2015
129,MORPH Commercial,morph,49.10184375,8.4331256,Karlsruhe Institute of Technology,edu,2050847bc7a1a0453891f03aeeb4643e360fde7d,citation,https://cvhci.anthropomatik.kit.edu/~mtapaswi/papers/ICMR2015.pdf,Accio: A Data Set for Face Track Retrieval in Movies Across Age,2015
130,MORPH Commercial,morph,40.62984145,22.9588935,Aristotle University of Thessaloniki,edu,3cc46bf79fb9225cf308815c7d41c8dd5625cc29,citation,http://poseidon.csd.auth.gr/papers/PUBLISHED/CONFERENCE/pdf/2016/Pantraki2016.pdf,Age interval and gender prediction using PARAFAC2 applied to speech utterances,2016
131,MORPH Commercial,morph,34.67567405,33.04577648,Cyprus University of Technology,edu,3cc46bf79fb9225cf308815c7d41c8dd5625cc29,citation,http://poseidon.csd.auth.gr/papers/PUBLISHED/CONFERENCE/pdf/2016/Pantraki2016.pdf,Age interval and gender prediction using PARAFAC2 applied to speech utterances,2016
132,MORPH Commercial,morph,23.09461185,113.28788994,Sun Yat-Sen University,edu,189e5a2fa51ed471c0e7227d82dffb52736070d8,citation,https://doi.org/10.1109/ICIP.2017.8296995,Cross-age face recognition using reference coding with kernel direct discriminant analysis,2017
133,MORPH Commercial,morph,42.357757,-83.06286711,Wayne State University,edu,4f1249369127cc2e2894f6b2f1052d399794919a,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8239663,Deep Age Estimation: From Classification to Ranking,2018
134,MORPH Commercial,morph,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,cd6aaa37fffd0b5c2320f386be322b8adaa1cc68,citation,https://arxiv.org/pdf/1804.06655.pdf,Deep Face Recognition: A Survey,2018
135,MORPH Commercial,morph,52.3553655,4.9501644,University of Amsterdam,edu,14014a1bdeb5d63563b68b52593e3ac1e3ce7312,citation,http://pdfs.semanticscholar.org/1401/4a1bdeb5d63563b68b52593e3ac1e3ce7312.pdf,Expression-Invariant Age Estimation,2014
136,MORPH Commercial,morph,31.83907195,117.26420748,University of Science and Technology of China,edu,659dc6aa517645a118b79f0f0273e46ab7b53cd9,citation,https://doi.org/10.1109/ACPR.2015.7486608,Age-invariant face recognition using a feature progressing model,2015
137,MORPH Commercial,morph,30.0818727,31.24454841,Benha University,edu,a9fc23d612e848250d5b675e064dba98f05ad0d9,citation,http://pdfs.semanticscholar.org/a9fc/23d612e848250d5b675e064dba98f05ad0d9.pdf,Face Age Estimation Approach based on Deep Learning and Principle Component Analysis,2018
138,MORPH Commercial,morph,31.51368535,34.44019341,"Islamic University of Gaza, Palestine",edu,d5fa9d98c8da54a57abf353767a927d662b7f026,citation,http://pdfs.semanticscholar.org/f15e/9712b8731e1f5fd9566aca513edda910b5b8.pdf,Age Estimation based on Neural Networks using Face Features,2010
139,MORPH Commercial,morph,32.0575279,118.78682252,Southeast University,edu,8ff8c64288a2f7e4e8bf8fda865820b04ab3dbe8,citation,https://pdfs.semanticscholar.org/0056/92b9fa6728df3a7f14578c43410867bba425.pdf,Age Estimation Using Expectation of Label Distribution Learning,2018
140,MORPH Commercial,morph,32.0565957,118.77408833,Nanjing University,edu,8ff8c64288a2f7e4e8bf8fda865820b04ab3dbe8,citation,https://pdfs.semanticscholar.org/0056/92b9fa6728df3a7f14578c43410867bba425.pdf,Age Estimation Using Expectation of Label Distribution Learning,2018
141,MORPH Commercial,morph,34.0224149,-118.28634407,University of Southern California,edu,eb6ee56e085ebf473da990d032a4249437a3e462,citation,http://www-scf.usc.edu/~chuntinh/doc/Age_Gender_Classification_APSIPA_2017.pdf,Age/gender classification with whole-component convolutional neural networks (WC-CNN),2017
142,MORPH Commercial,morph,42.718568,-84.47791571,Michigan State University,edu,e506cdb250eba5e70c5147eb477fbd069714765b,citation,https://pdfs.semanticscholar.org/e506/cdb250eba5e70c5147eb477fbd069714765b.pdf,Heterogeneous Face Recognition,2012
143,MORPH Commercial,morph,35.90503535,-79.04775327,University of North Carolina,edu,f374ac9307be5f25145b44931f5a53b388a77e49,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5339060,Improvements in Active Appearance Model based synthetic age progression for adult aging,2009
144,MORPH Commercial,morph,38.83133325,-77.30798839,George Mason University,edu,62750d78e819d745b9200b0c5c35fcae6fb9f404,citation,http://doi.org/10.1007/s11042-016-4085-8,Leveraging implicit demographic information for face recognition using a multi-expert system,2016
145,MORPH Commercial,morph,41.9037626,12.5144384,Sapienza University of Rome,edu,62750d78e819d745b9200b0c5c35fcae6fb9f404,citation,http://doi.org/10.1007/s11042-016-4085-8,Leveraging implicit demographic information for face recognition using a multi-expert system,2016
146,MORPH Commercial,morph,40.845492,14.2578058,University of Naples Federico II,edu,62750d78e819d745b9200b0c5c35fcae6fb9f404,citation,http://doi.org/10.1007/s11042-016-4085-8,Leveraging implicit demographic information for face recognition using a multi-expert system,2016
147,MORPH Commercial,morph,25.01353105,121.54173736,National Taiwan University of Science and Technology,edu,e4c3587392d477b7594086c6f28a00a826abf004,citation,https://doi.org/10.1109/ICIP.2017.8296998,Face recognition by facial attribute assisted network,2017
148,MORPH Commercial,morph,39.9922379,116.30393816,Peking University,edu,c4ca092972abb74ee1c20b7cae6e69c654479e2c,citation,https://doi.org/10.1109/ICIP.2016.7532960,Linear canonical correlation analysis based ranking approach for facial age estimation,2016
149,MORPH Commercial,morph,40.0044795,116.370238,Chinese Academy of Sciences,edu,575141e42740564f64d9be8ab88d495192f5b3bc,citation,http://pdfs.semanticscholar.org/5751/41e42740564f64d9be8ab88d495192f5b3bc.pdf,Age Estimation Based on Multi-Region Convolutional Neural Network,2016
150,MORPH Commercial,morph,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,575141e42740564f64d9be8ab88d495192f5b3bc,citation,http://pdfs.semanticscholar.org/5751/41e42740564f64d9be8ab88d495192f5b3bc.pdf,Age Estimation Based on Multi-Region Convolutional Neural Network,2016
151,MORPH Commercial,morph,56.66340325,12.87929727,Halmstad University,edu,555f75077a02f33a05841f9b63a1388ec5fbcba5,citation,https://arxiv.org/pdf/1810.03360.pdf,A Survey on Periocular Biometrics Research,2016
152,MORPH Commercial,morph,39.94976005,116.33629046,Beijing Jiaotong University,edu,0821028073981f9bd2dba2ad2557b25403fe7d7d,citation,http://doi.acm.org/10.1145/2733373.2806318,Facial Age Estimation Based on Structured Low-rank Representation,2015
153,MORPH Commercial,morph,46.109237,7.08453549,IDIAP Research Institute,edu,939123cf21dc9189a03671484c734091b240183e,citation,http://publications.idiap.ch/downloads/papers/2015/Erdogmus_MMSP_2015.pdf,Within- and cross- database evaluations for face gender classification via befit protocols,2014
154,MORPH Commercial,morph,36.689487,2.981877,"Center for Development of Advanced Technologies, Algeria",edu,4551194408383b12db19a22cca5db0f185cced5c,citation,https://doi.org/10.1109/TNNLS.2014.2341634,Nonlinear Topological Component Analysis: Application to Age-Invariant Face Recognition,2015
155,MORPH Commercial,morph,56.45796755,-2.98214831,University of Dundee,edu,8b10383ef569ea0029a2c4a60cc2d8c87391b4db,citation,http://pdfs.semanticscholar.org/fe2d/20dca6dcedc7944cc2d9fea76de6cbb9d90c.pdf,Age classification using Radon transform and entropy based scaling SVM,2011
156,MORPH Commercial,morph,40.0044795,116.370238,Chinese Academy of Sciences,edu,d37ca68742b2999667faf464f78d2fbf81e0cb07,citation,https://doi.org/10.1007/978-3-319-25417-3_76,DFDnet: Discriminant Face Descriptor Network for Facial Age Estimation,2015
157,MORPH Commercial,morph,-35.2776999,149.118527,Australian National University,edu,a7191958e806fce2505a057196ccb01ea763b6ea,citation,http://pdfs.semanticscholar.org/a719/1958e806fce2505a057196ccb01ea763b6ea.pdf,Convolutional Neural Network based Age Estimation from Facial Image and Depth Prediction from Single Image,2016
158,MORPH Commercial,morph,35.907757,127.766922,"Electronics and Telecommunications Research Institute, Korea",edu,abbc6dcbd032ff80e0535850f1bc27c4610b0d45,citation,https://doi.org/10.1109/ICIP.2015.7350983,Facial age estimation via extended curvature Gabor filter,2015
159,MORPH Commercial,morph,36.3697191,127.362537,Korea Advanced Institute of Science and Technology,edu,abbc6dcbd032ff80e0535850f1bc27c4610b0d45,citation,https://doi.org/10.1109/ICIP.2015.7350983,Facial age estimation via extended curvature Gabor filter,2015
160,MORPH Commercial,morph,1.2962018,103.77689944,National University of Singapore,edu,989332c5f1b22604d6bb1f78e606cb6b1f694e1a,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Wang_Recurrent_Face_Aging_CVPR_2016_paper.pdf,Recurrent Face Aging,2016
161,MORPH Commercial,morph,32.0575279,118.78682252,Southeast University,edu,989332c5f1b22604d6bb1f78e606cb6b1f694e1a,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Wang_Recurrent_Face_Aging_CVPR_2016_paper.pdf,Recurrent Face Aging,2016
162,MORPH Commercial,morph,46.0658836,11.1159894,University of Trento,edu,989332c5f1b22604d6bb1f78e606cb6b1f694e1a,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Wang_Recurrent_Face_Aging_CVPR_2016_paper.pdf,Recurrent Face Aging,2016
163,MORPH Commercial,morph,40.62984145,22.9588935,Aristotle University of Thessaloniki,edu,1fd3dbb6e910708fa85c8a86e17ba0b6fef5617c,citation,http://pdfs.semanticscholar.org/1fd3/dbb6e910708fa85c8a86e17ba0b6fef5617c.pdf,Age interval and gender prediction using PARAFAC2 on speech recordings and face images,2016
164,MORPH Commercial,morph,40.00229045,116.32098908,Tsinghua University,edu,6c6f0e806e4e286f3b18b934f42c72b67030ce17,citation,https://doi.org/10.1109/FG.2011.5771345,Combination of age and head pose for adult face verification,2011
165,MORPH Commercial,morph,46.5190557,6.5667576,"Swiss Federal, Institute of Technology, Lausanne",edu,6c6f0e806e4e286f3b18b934f42c72b67030ce17,citation,https://doi.org/10.1109/FG.2011.5771345,Combination of age and head pose for adult face verification,2011
166,MORPH Commercial,morph,52.6221571,1.2409136,University of East Anglia,edu,05a0d04693b2a51a8131d195c68ad9f5818b2ce1,citation,http://pdfs.semanticscholar.org/05a0/d04693b2a51a8131d195c68ad9f5818b2ce1.pdf,Dual-reference Face Retrieval: What Does He/She Look Like at Age 'X'?,2017
167,MORPH Commercial,morph,40.44415295,-79.96243993,University of Pittsburgh,edu,05a0d04693b2a51a8131d195c68ad9f5818b2ce1,citation,http://pdfs.semanticscholar.org/05a0/d04693b2a51a8131d195c68ad9f5818b2ce1.pdf,Dual-reference Face Retrieval: What Does He/She Look Like at Age 'X'?,2017
168,MORPH Commercial,morph,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,387b54cf6c186c12d83f95df6bd458c5eb1254ee,citation,https://doi.org/10.1109/VCIP.2017.8305123,Deep probabilities for age estimation,2017
169,MORPH Commercial,morph,35.97320905,-78.89755054,North Carolina Central University,edu,1ca1b4f787712ede215030d22a0eea41534a601e,citation,https://doi.org/10.1109/CVPRW.2010.5543609,Human age estimation: What is the influence across race and gender?,2010
170,MORPH Commercial,morph,39.65404635,-79.96475355,West Virginia University,edu,1ca1b4f787712ede215030d22a0eea41534a601e,citation,https://doi.org/10.1109/CVPRW.2010.5543609,Human age estimation: What is the influence across race and gender?,2010
171,MORPH Commercial,morph,1.3484104,103.68297965,Nanyang Technological University,edu,b6a23f72007cb40223d7e1e1cc47e466716de945,citation,https://doi.org/10.1109/CVPRW.2010.5544598,Ordinary preserving manifold analysis for human age estimation,2010
172,MORPH Commercial,morph,60.7897318,10.6821927,"Norwegian Biometrics Lab, NTNU, Norway",edu,0647c9d56cf11215894d57d677997826b22f6a13,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8401557,Transgender face recognition with off-the-shelf pre-trained CNNs: A comprehensive study,2018
173,MORPH Commercial,morph,52.3553655,4.9501644,University of Amsterdam,edu,935a7793cbb8f102924fa34fce1049727de865c2,citation,https://doi.org/10.1109/ICIP.2015.7351554,Age estimation under changes in image quality: An experimental study,2015
174,MORPH Commercial,morph,40.01407945,-105.26695944,"University of Colorado, Boulder",edu,4aabd6db4594212019c9af89b3e66f39f3108aac,citation,http://pdfs.semanticscholar.org/4aab/d6db4594212019c9af89b3e66f39f3108aac.pdf,The Mere Exposure Effect and Classical Conditioning,2015
175,MORPH Commercial,morph,34.2375581,-77.9270129,University of North Carolina Wilmington,edu,73d15a975b0595e0cc2e0981a9396a89c474dc7e,citation,https://arxiv.org/pdf/1811.03680.pdf,Gender Effect on Face Recognition for a Large Longitudinal Database,2018
176,MORPH Commercial,morph,40.00229045,116.32098908,Tsinghua University,edu,51bb86dc8748088a198b216f7e97616634147388,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6890496,Face age estimation by using Bisection Search Tree,2013
177,MORPH Commercial,morph,1.3037257,103.7737763,"Advanced Digital Sciences Center, Singapore",edu,8cffe360a05085d4bcba111a3a3cd113d96c0369,citation,http://doi.ieeecomputersociety.org/10.1109/ICCV.2011.6126248,Learning universal multi-view age estimator using video context,2011
178,MORPH Commercial,morph,1.3170417,103.8321041,"Facebook, Singapore",company,8cffe360a05085d4bcba111a3a3cd113d96c0369,citation,http://doi.ieeecomputersociety.org/10.1109/ICCV.2011.6126248,Learning universal multi-view age estimator using video context,2011
179,MORPH Commercial,morph,1.2962018,103.77689944,National University of Singapore,edu,8cffe360a05085d4bcba111a3a3cd113d96c0369,citation,http://doi.ieeecomputersociety.org/10.1109/ICCV.2011.6126248,Learning universal multi-view age estimator using video context,2011
180,MORPH Commercial,morph,23.143197,113.34009651,South China Normal University,edu,dc6ad30c7a4bc79bb06b4725b16e202d3d7d8935,citation,http://doi.org/10.1007/s11042-017-4646-5,Age classification with deep learning face representation,2017
181,MORPH Commercial,morph,23.0502042,113.39880323,South China University of Technology,edu,dc6ad30c7a4bc79bb06b4725b16e202d3d7d8935,citation,http://doi.org/10.1007/s11042-017-4646-5,Age classification with deep learning face representation,2017
182,MORPH Commercial,morph,50.0764296,14.41802312,Czech Technical University,edu,023ed32ac3ea6029f09b8c582efbe3866de7d00a,citation,http://pdfs.semanticscholar.org/023e/d32ac3ea6029f09b8c582efbe3866de7d00a.pdf,Discriminative learning from partially annotated examples,2016
183,MORPH Commercial,morph,35.5167538,139.48342251,Tokyo Institute of Technology,edu,435dc062d565ce87c6c20a5f49430eb9a4b573c4,citation,http://pdfs.semanticscholar.org/435d/c062d565ce87c6c20a5f49430eb9a4b573c4.pdf,Lighting Condition Adaptation for Perceived Age Estimation,2011
184,MORPH Commercial,morph,42.718568,-84.47791571,Michigan State University,edu,6a5d7d20a8c4993d56bcf702c772aa3f95f99450,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4813408,Face recognition with temporal invariance: A 3D aging model,2008
185,MORPH Commercial,morph,35.97320905,-78.89755054,North Carolina Central University,edu,2a6783ae51d7ee781d584ef9a3eb8ab1997d0489,citation,https://doi.org/10.1109/CVPRW.2010.5543608,A study of large-scale ethnicity estimation with gender and age variations,2010
186,MORPH Commercial,morph,39.65404635,-79.96475355,West Virginia University,edu,2a6783ae51d7ee781d584ef9a3eb8ab1997d0489,citation,https://doi.org/10.1109/CVPRW.2010.5543608,A study of large-scale ethnicity estimation with gender and age variations,2010
187,MORPH Commercial,morph,40.00229045,116.32098908,Tsinghua University,edu,a53d13b9110cddb2a5f38b9d7ed69d328e3c6db9,citation,https://doi.org/10.1109/TIP.2015.2481327,Cost-Sensitive Local Binary Feature Learning for Facial Age Estimation,2015
188,MORPH Commercial,morph,1.3484104,103.68297965,Nanyang Technological University,edu,a53d13b9110cddb2a5f38b9d7ed69d328e3c6db9,citation,https://doi.org/10.1109/TIP.2015.2481327,Cost-Sensitive Local Binary Feature Learning for Facial Age Estimation,2015
189,MORPH Commercial,morph,42.718568,-84.47791571,Michigan State University,edu,141cb9ee401f223220d3468592effa90f0c255fa,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7815403,Longitudinal Study of Automatic Face Recognition,2015
190,MORPH Commercial,morph,42.718568,-84.47791571,Michigan State University,edu,e22adcd2a6a7544f017ec875ce8f89d5c59e09c8,citation,https://arxiv.org/pdf/1807.11936.pdf,Gender Privacy: An Ensemble of Semi Adversarial Networks for Confounding Arbitrary Gender Classifiers,2018
191,MORPH Commercial,morph,25.01682835,121.53846924,National Taiwan University,edu,6ab33fa51467595f18a7a22f1d356323876f8262,citation,http://www.iis.sinica.edu.tw/~kuangyu/OHRank_files/0523.pdf,Ordinal hyperplanes ranker with cost sensitivities for age estimation,2011
192,MORPH Commercial,morph,25.0410728,121.6147562,Institute of Information Science,edu,6ab33fa51467595f18a7a22f1d356323876f8262,citation,http://www.iis.sinica.edu.tw/~kuangyu/OHRank_files/0523.pdf,Ordinal hyperplanes ranker with cost sensitivities for age estimation,2011
193,MORPH Commercial,morph,25.0411727,121.6146518,"Academia Sinica, Taiwan",edu,6ab33fa51467595f18a7a22f1d356323876f8262,citation,http://www.iis.sinica.edu.tw/~kuangyu/OHRank_files/0523.pdf,Ordinal hyperplanes ranker with cost sensitivities for age estimation,2011
194,MORPH Commercial,morph,1.2962018,103.77689944,National University of Singapore,edu,63488398f397b55552f484409b86d812dacde99a,citation,http://pdfs.semanticscholar.org/6348/8398f397b55552f484409b86d812dacde99a.pdf,Learning Universal Multi-view Age Estimator by Video Contexts,2011
195,MORPH Commercial,morph,40.00229045,116.32098908,Tsinghua University,edu,6adecb82edbf84a0097ff623428f4f1936e31de0,citation,https://doi.org/10.1007/s11760-011-0246-4,Client-specific A-stack model for adult face verification across aging,2011
196,MORPH Commercial,morph,1.3037257,103.7737763,"Advanced Digital Sciences Center, Singapore",edu,fcb97ede372c5bddde7a61924ac2fd29788c82ce,citation,https://doi.org/10.1109/TSMCC.2012.2192727,Ordinary Preserving Manifold Analysis for Human Age and Head Pose Estimation,2013
197,MORPH Commercial,morph,1.3484104,103.68297965,Nanyang Technological University,edu,fcb97ede372c5bddde7a61924ac2fd29788c82ce,citation,https://doi.org/10.1109/TSMCC.2012.2192727,Ordinary Preserving Manifold Analysis for Human Age and Head Pose Estimation,2013
198,MORPH Commercial,morph,36.3697191,127.362537,Korea Advanced Institute of Science and Technology,edu,cb27b45329d61f5f95ed213798d4b2a615e76be2,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8329236,Deep Facial Age Estimation Using Conditional Multitask Learning With Weak Label Expansion,2018
199,MORPH Commercial,morph,37.2520226,127.0555019,"Samsung SAIT, Korea",company,cb27b45329d61f5f95ed213798d4b2a615e76be2,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8329236,Deep Facial Age Estimation Using Conditional Multitask Learning With Weak Label Expansion,2018
200,MORPH Commercial,morph,35.14479945,33.90492318,Eastern Mediterranean University,edu,c5421a18583f629b49ca20577022f201692c4f5d,citation,http://pdfs.semanticscholar.org/c542/1a18583f629b49ca20577022f201692c4f5d.pdf,Facial Age Classification using Subpattern-based Approaches,2011
201,MORPH Commercial,morph,40.0044795,116.370238,Chinese Academy of Sciences,edu,68c4a1d438ea1c6dfba92e3aee08d48f8e7f7090,citation,http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w11/papers/Liu_AgeNet_Deeply_Learned_ICCV_2015_paper.pdf,AgeNet: Deeply Learned Regressor and Classifier for Robust Apparent Age Estimation,2015
202,MORPH Commercial,morph,31.32235655,121.38400941,Shanghai University,edu,5f0d4a0b5f72d8700cdf8cb179263a8fa866b59b,citation,https://pdfs.semanticscholar.org/5f0d/4a0b5f72d8700cdf8cb179263a8fa866b59b.pdf,Memo No . 85 06 / 2018 Deep Regression Forests for Age Estimation,2018
203,MORPH Commercial,morph,24.96841805,121.19139696,National Central University,edu,c58ece1a3fa23608f022e424ec5a93cddda31308,citation,https://doi.org/10.1109/JSYST.2014.2325957,Extraction of Visual Facial Features for Health Management,2016
204,MORPH Commercial,morph,50.0764296,14.41802312,Czech Technical University,edu,56e25358ebfaf8a8b3c7c33ed007e24f026065d0,citation,https://doi.org/10.1007/s10994-015-5541-9,V-shaped interval insensitive loss for ordinal classification,2015
205,MORPH Commercial,morph,5.7648848,102.6281702,"University Sultan Zainal Abidin, Malaysia",edu,3337cfc3de2c16dee6f7cbeda5f263409a9ad81e,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8398675,Age prediction on face features via multiple classifiers,2018
206,MORPH Commercial,morph,1.2962018,103.77689944,National University of Singapore,edu,2836d68c86f29bb87537ea6066d508fde838ad71,citation,http://arxiv.org/pdf/1510.06503v1.pdf,Personalized Age Progression with Aging Dictionary,2015
207,MORPH Commercial,morph,32.0565957,118.77408833,Nanjing University,edu,2836d68c86f29bb87537ea6066d508fde838ad71,citation,http://arxiv.org/pdf/1510.06503v1.pdf,Personalized Age Progression with Aging Dictionary,2015
208,MORPH Commercial,morph,22.42031295,114.20788644,Chinese University of Hong Kong,edu,55966926e7c28b1eee1c7eb7a0b11b10605a1af0,citation,http://pdfs.semanticscholar.org/baa8/bdeb5aa545af5b5f43efaf9dda08490da0bc.pdf,Surpassing Human-Level Face Verification Performance on LFW with GaussianFace,2015
209,MORPH Commercial,morph,40.0044795,116.370238,Chinese Academy of Sciences,edu,d492dbfaa42b4f8b8a74786d7343b3be6a3e9a1d,citation,https://pdfs.semanticscholar.org/d492/dbfaa42b4f8b8a74786d7343b3be6a3e9a1d.pdf,Deep Cost-Sensitive and Order-Preserving Feature Learning for Cross-Population Age Estimation,0
210,MORPH Commercial,morph,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,d492dbfaa42b4f8b8a74786d7343b3be6a3e9a1d,citation,https://pdfs.semanticscholar.org/d492/dbfaa42b4f8b8a74786d7343b3be6a3e9a1d.pdf,Deep Cost-Sensitive and Order-Preserving Feature Learning for Cross-Population Age Estimation,0
211,MORPH Commercial,morph,34.67567405,33.04577648,Cyprus University of Technology,edu,fa518a033b1f6299d1826389bd1520cf52291b56,citation,https://pdfs.semanticscholar.org/fa51/8a033b1f6299d1826389bd1520cf52291b56.pdf,Facial Age Simulation using Age-specific 3D Models and Recursive PCA,2013
212,MORPH Commercial,morph,38.83133325,-77.30798839,George Mason University,edu,1c147261f5ab1b8ee0a54021a3168fa191096df8,citation,http://pdfs.semanticscholar.org/1c14/7261f5ab1b8ee0a54021a3168fa191096df8.pdf,Face Recognition across Time Lapse Using Convolutional Neural Networks,2016
213,MORPH Commercial,morph,32.05765485,118.7550004,HoHai University,edu,b84b7b035c574727e4c30889e973423fe15560d7,citation,http://pdfs.semanticscholar.org/b84b/7b035c574727e4c30889e973423fe15560d7.pdf,Human Age Estimation Using Ranking SVM,2012
214,MORPH Commercial,morph,40.0044795,116.370238,Chinese Academy of Sciences,edu,b84b7b035c574727e4c30889e973423fe15560d7,citation,http://pdfs.semanticscholar.org/b84b/7b035c574727e4c30889e973423fe15560d7.pdf,Human Age Estimation Using Ranking SVM,2012
215,MORPH Commercial,morph,39.6810328,-75.7540184,University of Delaware,edu,19da9f3532c2e525bf92668198b8afec14f9efea,citation,http://pdfs.semanticscholar.org/19da/9f3532c2e525bf92668198b8afec14f9efea.pdf,Challenge: Face verification across age progression using real-world data,2011
216,MORPH Commercial,morph,39.95472495,-75.15346905,Temple University,edu,f24e379e942e134d41c4acec444ecf02b9d0d3a9,citation,http://pdfs.semanticscholar.org/f24e/379e942e134d41c4acec444ecf02b9d0d3a9.pdf,Analysis of Facial Images across Age Progression by Humans,2011
217,MORPH Commercial,morph,39.65404635,-79.96475355,West Virginia University,edu,f24e379e942e134d41c4acec444ecf02b9d0d3a9,citation,http://pdfs.semanticscholar.org/f24e/379e942e134d41c4acec444ecf02b9d0d3a9.pdf,Analysis of Facial Images across Age Progression by Humans,2011
218,MORPH Commercial,morph,40.00229045,116.32098908,Tsinghua University,edu,51f626540860ad75b68206025a45466a6d087aa6,citation,https://doi.org/10.1109/ICIP.2017.8296595,Cluster convolutional neural networks for facial age estimation,2017
219,MORPH Commercial,morph,37.4102193,-122.05965487,Carnegie Mellon University,edu,452ea180cf4d08d7500fc4bc046fd7141fd3d112,citation,https://doi.org/10.1109/BTAS.2012.6374569,A robust approach to facial ethnicity classification on large scale face databases,2012
220,MORPH Commercial,morph,47.3764534,8.54770931,ETH Zürich,edu,2facf3e85240042a02f289a0d40fee376c478d0f,citation,https://doi.org/10.1109/BTAS.2010.5634544,Aging face verification in score-age space using single reference image template,2010
221,MORPH Commercial,morph,38.88140235,121.52281098,Dalian University of Technology,edu,ed70d1a9435c0b32c0c75c1a062f4f07556f7016,citation,https://doi.org/10.1109/ICIP.2015.7350774,Correlated warped Gaussian processes for gender-specific age estimation,2015
222,MORPH Commercial,morph,40.0141905,-83.0309143,University of Electronic Science and Technology of China,edu,ed70d1a9435c0b32c0c75c1a062f4f07556f7016,citation,https://doi.org/10.1109/ICIP.2015.7350774,Correlated warped Gaussian processes for gender-specific age estimation,2015
223,MORPH Commercial,morph,1.2962018,103.77689944,National University of Singapore,edu,0e5557a0cc58194ad53fab5dd6f4d4195d19ce4e,citation,https://doi.org/10.1109/TMM.2015.2500730,Deep Aging Face Verification With Large Gaps,2016
224,MORPH Commercial,morph,51.52344665,-0.25973535,"North Acton, London",edu,0e5557a0cc58194ad53fab5dd6f4d4195d19ce4e,citation,https://doi.org/10.1109/TMM.2015.2500730,Deep Aging Face Verification With Large Gaps,2016
225,MORPH Commercial,morph,31.846918,117.29053367,Hefei University of Technology,edu,0e5557a0cc58194ad53fab5dd6f4d4195d19ce4e,citation,https://doi.org/10.1109/TMM.2015.2500730,Deep Aging Face Verification With Large Gaps,2016
226,MORPH Commercial,morph,29.58333105,-98.61944505,University of Texas at San Antonio,edu,f2896dd2701fbb3564492a12c64f11a5ad456a67,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5495414,Cross-database age estimation based on transfer learning,2010
227,MORPH Commercial,morph,34.1235825,108.83546,Xidian University,edu,f2896dd2701fbb3564492a12c64f11a5ad456a67,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5495414,Cross-database age estimation based on transfer learning,2010
228,MORPH Commercial,morph,56.66340325,12.87929727,Halmstad University,edu,9cda3e56cec21bd8f91f7acfcefc04ac10973966,citation,https://doi.org/10.1109/IWBF.2016.7449688,"Periocular biometrics: databases, algorithms and directions",2016
229,MORPH Commercial,morph,34.2375581,-77.9270129,University of North Carolina Wilmington,edu,13aef395f426ca8bd93640c9c3f848398b189874,citation,https://pdfs.semanticscholar.org/13ae/f395f426ca8bd93640c9c3f848398b189874.pdf,1 Image Preprocessing and Complete 2 DPCA with Feature Extraction for Gender Recognition NSF REU 2017 : Statistical Learning and Data Mining,2017
230,MORPH Commercial,morph,24.7925484,120.9951183,National Tsing Hua University,edu,cfa40560fa74b2fb5c26bdd6ea7c610ba5130e2f,citation,https://doi.org/10.1109/TIFS.2013.2286265,Subspace Learning for Facial Age Estimation Via Pairwise Age Ranking,2013
231,MORPH Commercial,morph,58.38131405,26.72078081,University of Tartu,edu,1b248ed8e7c9514648cd598960fadf9ab17e7fe8,citation,https://pdfs.semanticscholar.org/1b24/8ed8e7c9514648cd598960fadf9ab17e7fe8.pdf,"From apparent to real age: gender, age, ethnic, makeup, and expression bias analysis in real age estimation",0
232,MORPH Commercial,morph,41.3868913,2.16352385,University of Barcelona,edu,1b248ed8e7c9514648cd598960fadf9ab17e7fe8,citation,https://pdfs.semanticscholar.org/1b24/8ed8e7c9514648cd598960fadf9ab17e7fe8.pdf,"From apparent to real age: gender, age, ethnic, makeup, and expression bias analysis in real age estimation",0
233,MORPH Commercial,morph,39.65404635,-79.96475355,West Virginia University,edu,86a8b3d0f753cb49ac3250fa14d277983e30a4b7,citation,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2013.75,Exploiting Unlabeled Ages for Aging Pattern Analysis on a Large Database,2013
234,MORPH Commercial,morph,34.2239869,-77.8701325,"UNCW, USA",edu,2b5cb5466eecb131f06a8100dcaf0c7a0e30d391,citation,http://doi.acm.org/10.1145/1924559.1924608,A comparative study of active appearance model annotation schemes for the face,2010
235,MORPH Commercial,morph,42.718568,-84.47791571,Michigan State University,edu,fc798314994bf94d1cde8d615ba4d5e61b6268b6,citation,http://pdfs.semanticscholar.org/fc79/8314994bf94d1cde8d615ba4d5e61b6268b6.pdf,"Face Recognition : face in video , age invariance , and facial marks",2009
236,MORPH Commercial,morph,24.12084345,120.67571165,National Chung Hsing University,edu,635d2696aa597a278dd6563f079be06aa76a33c0,citation,https://doi.org/10.1109/ICIP.2016.7532429,Age estimation via fusion of multiple binary age grouping systems,2016
237,MORPH Commercial,morph,25.01682835,121.53846924,National Taiwan University,edu,635d2696aa597a278dd6563f079be06aa76a33c0,citation,https://doi.org/10.1109/ICIP.2016.7532429,Age estimation via fusion of multiple binary age grouping systems,2016
238,MORPH Commercial,morph,25.0411727,121.6146518,"Academia Sinica, Taiwan",edu,635d2696aa597a278dd6563f079be06aa76a33c0,citation,https://doi.org/10.1109/ICIP.2016.7532429,Age estimation via fusion of multiple binary age grouping systems,2016
239,MORPH Commercial,morph,31.20081505,121.42840681,Shanghai Jiao Tong University,edu,36486944b4feeb88c0499fecd253c5a53034a23f,citation,https://doi.org/10.1109/CISP-BMEI.2017.8301986,Deep feature selection and projection for cross-age face retrieval,2017
240,MORPH Commercial,morph,1.2988926,103.7873107,"Institute for Infocomm Research, Singapore",edu,85f7f03b79d03da5fae3a7f79d9aac228a635166,citation,https://doi.org/10.1109/WACV.2009.5403085,Age categorization via ECOC with fused gabor and LBP features,2009
241,MORPH Commercial,morph,39.6810328,-75.7540184,University of Delaware,edu,aee3427d0814d8a398fd31f4f46941e9e5488d83,citation,http://dl.acm.org/citation.cfm?id=1924573,Face verification with aging using AdaBoost and local binary patterns,2010
242,MORPH Commercial,morph,23.09461185,113.28788994,Sun Yat-Sen University,edu,d1b5b3e4b803dc4e50c5b80c1bc69c6d98751698,citation,https://doi.org/10.1109/LSP.2017.2661983,Modified Hidden Factor Analysis for Cross-Age Face Recognition,2017
243,MORPH Commercial,morph,39.65404635,-79.96475355,West Virginia University,edu,55bc7abcef8266d76667896bbc652d081d00f797,citation,http://www.cse.msu.edu/~rossarun/pubs/ChenCosmeticsGenderAge_VISAPP2014.pdf,Impact of facial cosmetics on automatic gender and age estimation algorithms,2014
244,MORPH Commercial,morph,42.718568,-84.47791571,Michigan State University,edu,55bc7abcef8266d76667896bbc652d081d00f797,citation,http://www.cse.msu.edu/~rossarun/pubs/ChenCosmeticsGenderAge_VISAPP2014.pdf,Impact of facial cosmetics on automatic gender and age estimation algorithms,2014
245,MORPH Commercial,morph,39.65404635,-79.96475355,West Virginia University,edu,7a65fc9e78eff3ab6062707deaadde024d2fad40,citation,http://www.cv-foundation.org/openaccess/content_iccv_2015_workshops/w11/papers/Zhu_A_Study_on_ICCV_2015_paper.pdf,A Study on Apparent Age Estimation,2015
246,MORPH Commercial,morph,42.357757,-83.06286711,Wayne State University,edu,28d99dc2d673d62118658f8375b414e5192eac6f,citation,http://www.cs.wayne.edu/~mdong/cvpr17.pdf,Using Ranking-CNN for Age Estimation,2017
247,MORPH Commercial,morph,37.4102193,-122.05965487,Carnegie Mellon University,edu,ec05078be14a11157ac0e1c6b430ac886124589b,citation,http://pdfs.semanticscholar.org/ec05/078be14a11157ac0e1c6b430ac886124589b.pdf,Longitudinal Face Aging in the Wild - Recent Deep Learning Approaches,2018
248,MORPH Commercial,morph,45.57022705,-122.63709346,Concordia University,edu,ec05078be14a11157ac0e1c6b430ac886124589b,citation,http://pdfs.semanticscholar.org/ec05/078be14a11157ac0e1c6b430ac886124589b.pdf,Longitudinal Face Aging in the Wild - Recent Deep Learning Approaches,2018
249,MORPH Commercial,morph,46.5190557,6.5667576,"Swiss Federal Institute of Technology Lausanne, Switzerland",edu,d7a84db2a1bf7b97657b0250f354f249394dd700,citation,https://doi.org/10.1109/ICIP.2010.5653518,Global and local feature based multi-classifier A-stack model for aging face identification,2010
250,MORPH Commercial,morph,39.65404635,-79.96475355,West Virginia University,edu,d3c004125c71942846a9b32ae565c5216c068d1e,citation,http://pdfs.semanticscholar.org/d3c0/04125c71942846a9b32ae565c5216c068d1e.pdf,Recognizing Age-Separated Face Images: Humans and Machines,2014
251,MORPH Commercial,morph,52.3553655,4.9501644,University of Amsterdam,edu,999289b0ef76c4c6daa16a4f42df056bf3d68377,citation,http://pdfs.semanticscholar.org/9992/89b0ef76c4c6daa16a4f42df056bf3d68377.pdf,The Role of Color and Contrast in Facial Age Estimation,2014
252,MORPH Commercial,morph,51.99882735,4.37396037,Delft University of Technology,edu,999289b0ef76c4c6daa16a4f42df056bf3d68377,citation,http://pdfs.semanticscholar.org/9992/89b0ef76c4c6daa16a4f42df056bf3d68377.pdf,The Role of Color and Contrast in Facial Age Estimation,2014
253,MORPH Commercial,morph,28.5456282,77.2731505,"IIIT Delhi, India",edu,f726738954e7055bb3615fa7e8f59f136d3e0bdc,citation,https://arxiv.org/pdf/1803.07385.pdf,Are you eligible? Predicting adulthood from face images via class specific mean autoencoder,2018
254,MORPH Commercial,morph,1.2962018,103.77689944,National University of Singapore,edu,b9d68dbeb8e5fdc5984b49a317ea6798b378e5ae,citation,http://doi.acm.org/10.1145/2733373.2807962,What Shall I Look Like after N Years?,2015
255,MORPH Commercial,morph,32.0565957,118.77408833,Nanjing University,edu,b9d68dbeb8e5fdc5984b49a317ea6798b378e5ae,citation,http://doi.acm.org/10.1145/2733373.2807962,What Shall I Look Like after N Years?,2015
256,MORPH Commercial,morph,45.42580475,-75.68740118,University of Ottawa,edu,16820ccfb626dcdc893cc7735784aed9f63cbb70,citation,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W12/papers/Azarmehr_Real-Time_Embedded_Age_2015_CVPR_paper.pdf,Real-time embedded age and gender classification in unconstrained video,2015
257,MORPH Commercial,morph,35.0274996,135.78154513,University of Caen,edu,0ad8149318912b5449085187eb3521786a37bc78,citation,http://arxiv.org/abs/1604.02975,CP-mtML: Coupled Projection Multi-Task Metric Learning for Large Scale Face Retrieval,2016
258,MORPH Commercial,morph,51.44415765,7.26096541,Ruhr-University Bochum,edu,7e1ea2679a110241ed0dd38ff45cd4dfeb7a8e83,citation,http://pdfs.semanticscholar.org/7e1e/a2679a110241ed0dd38ff45cd4dfeb7a8e83.pdf,Extensions of Hierarchical Slow Feature Analysis for Efficient Classification and Regression on High-Dimensional Data,2017
259,MORPH Commercial,morph,30.5097537,114.4062881,Huazhong University of Science and Technology,edu,2e27667421a7eeab278e0b761db4d2c725683c3f,citation,https://doi.org/10.1007/s11042-013-1815-z,Effective human age estimation using a two-stage approach based on Lie Algebrized Gaussians feature,2013
260,MORPH Commercial,morph,32.0565957,118.77408833,Nanjing University,edu,0c741fa0966ba3ee4fc326e919bf2f9456d0cd74,citation,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2013.51,Facial Age Estimation by Learning from Label Distributions,2010
261,MORPH Commercial,morph,32.0575279,118.78682252,Southeast University,edu,0c741fa0966ba3ee4fc326e919bf2f9456d0cd74,citation,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2013.51,Facial Age Estimation by Learning from Label Distributions,2010
262,MORPH Commercial,morph,-37.78397455,144.95867433,Monash University,edu,0c741fa0966ba3ee4fc326e919bf2f9456d0cd74,citation,http://doi.ieeecomputersociety.org/10.1109/TPAMI.2013.51,Facial Age Estimation by Learning from Label Distributions,2010
263,MORPH Commercial,morph,1.2962018,103.77689944,National University of Singapore,edu,fca9ebaa30d69ccec8bb577c31693c936c869e72,citation,https://arxiv.org/pdf/1809.00338.pdf,Look Across Elapse: Disentangled Representation Learning and Photorealistic Cross-Age Face Synthesis for Age-Invariant Face Recognition,2018
264,MORPH Commercial,morph,40.0044795,116.370238,Chinese Academy of Sciences,edu,fca9ebaa30d69ccec8bb577c31693c936c869e72,citation,https://arxiv.org/pdf/1809.00338.pdf,Look Across Elapse: Disentangled Representation Learning and Photorealistic Cross-Age Face Synthesis for Age-Invariant Face Recognition,2018
265,MORPH Commercial,morph,49.10184375,8.4331256,Karlsruhe Institute of Technology,edu,cfdc4d0f8e1b4b9ced35317d12b4229f2e3311ab,citation,https://pdfs.semanticscholar.org/cfdc/4d0f8e1b4b9ced35317d12b4229f2e3311ab.pdf,Quaero at TRECVID 2010: Semantic Indexing,2010
266,MORPH Commercial,morph,42.718568,-84.47791571,Michigan State University,edu,02d650d8a3a9daaba523433fbe93705df0a7f4b1,citation,http://pdfs.semanticscholar.org/02d6/50d8a3a9daaba523433fbe93705df0a7f4b1.pdf,How Does Aging Affect Facial Components?,2012
267,MORPH Commercial,morph,34.67567405,33.04577648,Cyprus University of Technology,edu,70db3a0d2ca8a797153cc68506b8650908cb0ada,citation,http://pdfs.semanticscholar.org/70db/3a0d2ca8a797153cc68506b8650908cb0ada.pdf,An Overview of Research Activities in Facial Age Estimation Using the FG-NET Aging Database,2014
268,MORPH Commercial,morph,22.5447154,113.9357164,Tencent,company,a2d1818eb461564a5153c74028e53856cf0b40fd,citation,https://arxiv.org/pdf/1810.07599.pdf,Orthogonal Deep Features Decomposition for Age-Invariant Face Recognition,2018
269,MORPH Commercial,morph,57.6252103,39.8845656,Yaroslavl State University,edu,05318a267226f6d855d83e9338eaa9e718b2a8dd,citation,https://fruct.org/publications/fruct16/files/Khr.pdf,Age estimation from face images: challenging problem for audience measurement systems,2014
270,MORPH Commercial,morph,41.5381124,2.4447406,"EUP Mataró, Spain",edu,1f5725a4a2eb6cdaefccbc20dccadf893936df12,citation,https://doi.org/10.1109/CCST.2012.6393544,On the relevance of age in handwritten biometric recognition,2012
271,MORPH Commercial,morph,34.67567405,33.04577648,Cyprus University of Technology,edu,876583a059154def7a4bc503b21542f80859affd,citation,https://doi.org/10.1109/IWBF.2016.7449697,On the analysis of factors influencing the performance of facial age progression,2016
272,MORPH Commercial,morph,-35.0636071,147.3552234,Charles Sturt University,edu,2e231f1e7e641dd3619bec59e14d02e91360ac01,citation,https://arxiv.org/pdf/1807.10421.pdf,Fusion Network for Face-Based Age Estimation,2018
273,MORPH Commercial,morph,51.3791442,-2.3252332,University of Bath,edu,2e231f1e7e641dd3619bec59e14d02e91360ac01,citation,https://arxiv.org/pdf/1807.10421.pdf,Fusion Network for Face-Based Age Estimation,2018
274,MORPH Commercial,morph,40.0044795,116.370238,Chinese Academy of Sciences,edu,56359d2b4508cc267d185c1d6d310a1c4c2cc8c2,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2015.7298618,Shape driven kernel adaptation in Convolutional Neural Network for robust facial trait recognition,2015
275,MORPH Commercial,morph,39.9041999,116.4073963,Chinese Academy of Science,edu,56359d2b4508cc267d185c1d6d310a1c4c2cc8c2,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2015.7298618,Shape driven kernel adaptation in Convolutional Neural Network for robust facial trait recognition,2015
276,MORPH Commercial,morph,1.2962018,103.77689944,National University of Singapore,edu,56359d2b4508cc267d185c1d6d310a1c4c2cc8c2,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2015.7298618,Shape driven kernel adaptation in Convolutional Neural Network for robust facial trait recognition,2015
277,MORPH Commercial,morph,32.0565957,118.77408833,Nanjing University,edu,a6e43b73f9f87588783988333997a81b4487e2d5,citation,http://pdfs.semanticscholar.org/a6e4/3b73f9f87588783988333997a81b4487e2d5.pdf,Facial Age Estimation by Total Ordering Preserving Projection,2016
278,MORPH Commercial,morph,1.2988926,103.7873107,"Institution for Infocomm Research, Singapore",edu,8229f2735a0db0ad41f4d7252129311f06959907,citation,https://doi.org/10.1109/TIP.2011.2106794,Active Learning for Solving the Incomplete Data Problem in Facial Age Classification by the Furthest Nearest-Neighbor Criterion,2011
279,MORPH Commercial,morph,1.3484104,103.68297965,Nanyang Technological University,edu,8229f2735a0db0ad41f4d7252129311f06959907,citation,https://doi.org/10.1109/TIP.2011.2106794,Active Learning for Solving the Incomplete Data Problem in Facial Age Classification by the Furthest Nearest-Neighbor Criterion,2011
280,MORPH Commercial,morph,39.2899685,-76.62196103,University of Maryland,edu,963a004e208ce4bd26fa79a570af61d31651b3c3,citation,https://doi.org/10.1016/j.jvlc.2009.01.011,Computational methods for modeling facial aging: A survey,2009
281,MORPH Commercial,morph,40.48256135,-3.6906079,Universidad Autonoma de Madrid,edu,4b5ff8c67f3496a414f94e35cb35a601ec98e5cf,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6547306,Understanding the discrimination power of facial regions in forensic casework,2013
282,MORPH Commercial,morph,40.4445565,-3.7122785,"Dirección General de la Guardia Civil, Madrid, Spain",edu,4b5ff8c67f3496a414f94e35cb35a601ec98e5cf,citation,http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6547306,Understanding the discrimination power of facial regions in forensic casework,2013
283,MORPH Commercial,morph,-37.8087465,144.9638875,RMIT University,edu,c49075ead6eb07ede5ada4fe372899bd0cfb83ac,citation,https://doi.org/10.1109/ICSPCS.2015.7391782,Multi-stage classification network for automatic age estimation from facial images,2015
284,MORPH Commercial,morph,34.2375581,-77.9270129,University of North Carolina Wilmington,edu,00301c250d667700276b1e573640ff2fd7be574d,citation,https://doi.org/10.1109/BTAS.2014.6996242,Establishing a test set and initial comparisons for quantitatively evaluating synthetic age progression for adult aging,2014
|