summaryrefslogtreecommitdiff
path: root/site/datasets/final/voc.csv
blob: 9400d7d65a5c6c98bfdd0c31df70350f175903d8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
index,dataset_name,key,lat,lng,loc,loc_type,paper_id,paper_type,paper_url,title,year
0,VOC,voc,0.0,0.0,,,abe9f3b91fd26fa1b50cd685c0d20debfb372f73,main,http://homepages.inf.ed.ac.uk/ckiw/postscript/ijcv_voc14.pdf,The Pascal Visual Object Classes Challenge: A Retrospective,2014
1,VOC,voc,40.0044795,116.370238,Chinese Academy of Sciences,edu,ed2f711cf9bcd9d7ab039d746af109ed9573421a,citation,https://pdfs.semanticscholar.org/ed2f/711cf9bcd9d7ab039d746af109ed9573421a.pdf,Pixel-Wise Classification Method for High Resolution Remote Sensing Imagery Using Deep Neural Networks,2018
2,VOC,voc,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,ed2f711cf9bcd9d7ab039d746af109ed9573421a,citation,https://pdfs.semanticscholar.org/ed2f/711cf9bcd9d7ab039d746af109ed9573421a.pdf,Pixel-Wise Classification Method for High Resolution Remote Sensing Imagery Using Deep Neural Networks,2018
3,VOC,voc,13.0222347,77.56718325,Indian Institute of Science Bangalore,edu,a6ac6463b5c89ac9eb013c978f213b309cc6a5c7,citation,https://arxiv.org/pdf/1808.01134.pdf,iSPA-Net: Iterative Semantic Pose Alignment Network,2018
4,VOC,voc,42.3583961,-71.09567788,MIT,edu,aaf4d938f2e66d158d5e635a9c1d279cdc7639c0,citation,http://pdfs.semanticscholar.org/aaf4/d938f2e66d158d5e635a9c1d279cdc7639c0.pdf,Toward visual understanding of everyday object,2015
5,VOC,voc,42.2942142,-83.71003894,University of Michigan,edu,74dbcc09a3456ddacf5cece640b84045ebdf6be1,citation,https://arxiv.org/pdf/1810.05162.pdf,Characterizing Adversarial Examples Based on Spatial Consistency Information for Semantic Segmentation,2018
6,VOC,voc,49.2767454,-122.91777375,Simon Fraser University,edu,74dbcc09a3456ddacf5cece640b84045ebdf6be1,citation,https://arxiv.org/pdf/1810.05162.pdf,Characterizing Adversarial Examples Based on Spatial Consistency Information for Semantic Segmentation,2018
7,VOC,voc,46.109237,7.08453549,IDIAP Research Institute,edu,dedc7b080b8e13d72f8dc33e248e7637d191fdbf,citation,http://pdfs.semanticscholar.org/dedc/7b080b8e13d72f8dc33e248e7637d191fdbf.pdf,Beyond Dataset Bias: Multi-task Unaligned Shared Knowledge Transfer,2012
8,VOC,voc,52.17638955,0.14308882,University of Cambridge,edu,dedc7b080b8e13d72f8dc33e248e7637d191fdbf,citation,http://pdfs.semanticscholar.org/dedc/7b080b8e13d72f8dc33e248e7637d191fdbf.pdf,Beyond Dataset Bias: Multi-task Unaligned Shared Knowledge Transfer,2012
9,VOC,voc,39.00041165,-77.10327775,National Institutes of Health,edu,18c57ddc9c0164ee792661f43a5578f7a00d0330,citation,https://arxiv.org/pdf/1705.02315v2.pdf,ChestX-Ray8: Hospital-Scale Chest X-Ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases,2017
10,VOC,voc,37.40253645,-122.11655107,Toyota Research Institute,edu,a825680aeb853fc34c65b5844c4c4391148f18c3,citation,https://arxiv.org/pdf/1711.10006.pdf,SSD-6D: Making RGB-Based 3D Detection and 6D Pose Estimation Great Again,2017
11,VOC,voc,40.00229045,116.32098908,Tsinghua University,edu,f249c266321d661ae398c26ddb8c7409f6455ba1,citation,https://pdfs.semanticscholar.org/f249/c266321d661ae398c26ddb8c7409f6455ba1.pdf,Revisiting Faster R-CNN: A Deeper Look at Region Proposal Network,2017
12,VOC,voc,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,7fa5ede4a34dbe604ce317d529eed78db6642bc0,citation,https://arxiv.org/pdf/1709.01829.pdf,Soft Proposal Networks for Weakly Supervised Object Localization,2017
13,VOC,voc,35.9990522,-78.9290629,Duke University,edu,7fa5ede4a34dbe604ce317d529eed78db6642bc0,citation,https://arxiv.org/pdf/1709.01829.pdf,Soft Proposal Networks for Weakly Supervised Object Localization,2017
14,VOC,voc,42.3583961,-71.09567788,MIT,edu,05fdd29536d55fe3ad00689b6f60ada8bc761e91,citation,http://people.csail.mit.edu/torralba/publications/ihog_iccv.pdf,HOGgles: Visualizing Object Detection Features,2013
15,VOC,voc,24.7925484,120.9951183,National Tsing Hua University,edu,394bf41cd8578ec10cd34452c688c3e3de1c16a7,citation,https://pdfs.semanticscholar.org/394b/f41cd8578ec10cd34452c688c3e3de1c16a7.pdf,Multi-view to Novel View: Synthesizing Novel Views With Self-learned Confidence,2018
16,VOC,voc,22.42031295,114.20788644,Chinese University of Hong Kong,edu,2453dd38cde21f3248b55d281405f11d58168fa9,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2016.342,Multi-scale Patch Aggregation (MPA) for Simultaneous Detection and Segmentation,2016
17,VOC,voc,50.7791703,6.06728733,RWTH Aachen University,edu,ccb9ffa26b28dffc4f7d613821d1a9f0d60ea3f4,citation,https://arxiv.org/pdf/1706.09364.pdf,Online Adaptation of Convolutional Neural Networks for Video Object Segmentation,2017
18,VOC,voc,39.87549675,32.78553506,Middle East Technical University,edu,d38af10096aa90dfccd7e4cec9757900bf6958bd,citation,https://arxiv.org/pdf/1807.04067.pdf,MultiPoseNet: Fast Multi-Person Pose Estimation Using Pose Residual Network,2018
19,VOC,voc,40.0044795,116.370238,Chinese Academy of Sciences,edu,8c1e828a4826a1fb3eb47ee432f5333b974fa141,citation,http://pdfs.semanticscholar.org/8c1e/828a4826a1fb3eb47ee432f5333b974fa141.pdf,Spatial Graph for Image Classification,2012
20,VOC,voc,38.88140235,121.52281098,Dalian University of Technology,edu,2a31b4bf2a294b6e67956a6cd5ed6d875af548e0,citation,https://arxiv.org/pdf/1710.01020.pdf,Learning Affinity via Spatial Propagation Networks,2017
21,VOC,voc,39.2899685,-76.62196103,University of Maryland,edu,0790c400bfe6fbefe88ef7791476e1abf1952089,citation,https://arxiv.org/pdf/1511.04067v1.pdf,Deep Gaussian Conditional Random Field Network: A Model-Based Deep Network for Discriminative Denoising,2016
22,VOC,voc,41.3868913,2.16352385,University of Barcelona,edu,442cf9b24661c9ea5c2a1dcabd4a5b8af1cd89da,citation,https://arxiv.org/pdf/1806.10805.pdf,Beyond One-hot Encoding: lower dimensional target embedding,2018
23,VOC,voc,55.94951105,-3.19534913,University of Edinburgh,edu,04eda7eee3e0282de50e54554f50870dd17defa1,citation,https://arxiv.org/pdf/1705.08280v1.pdf,How Hard Can It Be? Estimating the Difficulty of Visual Search in an Image,2016
24,VOC,voc,1.2962018,103.77689944,National University of Singapore,edu,90a4125974564a5ab6c2ce2ff685fc36e9cf0680,citation,https://arxiv.org/pdf/1703.08448.pdf,Object Region Mining with Adversarial Erasing: A Simple Classification to Semantic Segmentation Approach,2017
25,VOC,voc,39.94976005,116.33629046,Beijing Jiaotong University,edu,90a4125974564a5ab6c2ce2ff685fc36e9cf0680,citation,https://arxiv.org/pdf/1703.08448.pdf,Object Region Mining with Adversarial Erasing: A Simple Classification to Semantic Segmentation Approach,2017
26,VOC,voc,39.9922379,116.30393816,Peking University,edu,c3dd6c1ddbb9cfcc1bed6383ffaa0b1ce4d13625,citation,https://arxiv.org/pdf/1807.01544.pdf,TextSnake: A Flexible Representation for Detecting Text of Arbitrary Shapes,2018
27,VOC,voc,37.4102193,-122.05965487,Carnegie Mellon University,edu,2976605dc3b73377696537291d45f09f1ab1fbf5,citation,http://www.ri.cmu.edu/pub_files/2016/6/multi-task.pdf,Cross-Stitch Networks for Multi-task Learning,2016
28,VOC,voc,28.54632595,77.27325504,Indian Institute of Technology Delhi,edu,25e9a2ec45c34d4610359196dc505a72c3833336,citation,http://pdfs.semanticscholar.org/25e9/a2ec45c34d4610359196dc505a72c3833336.pdf,Benchmarking KAZE and MCM for Multiclass Classification,2015
29,VOC,voc,39.9808333,116.34101249,Beihang University,edu,935e639bebf905af2e35e8b1e7aa0538d7122185,citation,https://arxiv.org/pdf/1808.00313.pdf,A Network Structure to Explicitly Reduce Confusion Errors in Semantic Segmentation,2018
30,VOC,voc,39.8011499,140.0459116,Akita Prefectural University,edu,211435a4e14d00f4aaed191acfb548185ee800b9,citation,http://pdfs.semanticscholar.org/2114/35a4e14d00f4aaed191acfb548185ee800b9.pdf,Visual Saliency Based Multiple Objects Segmentation and its Parallel Implementation for Real-Time Vision Processing,2015
31,VOC,voc,49.25839375,-123.24658161,University of British Columbia,edu,9fae24003bbedecdb617f9779215d79d06b90dd8,citation,https://arxiv.org/pdf/1807.09856.pdf,Where Are the Blobs: Counting by Localization with Point Supervision,2018
32,VOC,voc,40.72925325,-73.99625394,New York University,edu,c45681fa9d9c36a6a196017ef283ac38904f91bb,citation,https://arxiv.org/pdf/1711.07377.pdf,Pixel-wise object tracking,2017
33,VOC,voc,37.4102193,-122.05965487,Carnegie Mellon University,edu,45f858f9e8d7713f60f52618e54089ba68dfcd6d,citation,http://openaccess.thecvf.com/content_ICCV_2017/papers/Sigurdsson_What_Actions_Are_ICCV_2017_paper.pdf,What Actions are Needed for Understanding Human Actions in Videos?,2017
34,VOC,voc,51.7534538,-1.25400997,University of Oxford,edu,57bd01c042a5f64659b3a9f91c048b8594f762f6,citation,http://pdfs.semanticscholar.org/57bd/01c042a5f64659b3a9f91c048b8594f762f6.pdf,Advances in fine-grained visual categorization,2015
35,VOC,voc,31.30104395,121.50045497,Fudan University,edu,9716416a15e79a36e3481bcdad79cdc905603e6d,citation,https://arxiv.org/pdf/1808.07016.pdf,Gaussian Word Embedding with a Wasserstein Distance Loss,2017
36,VOC,voc,32.0565957,118.77408833,Nanjing University,edu,97265d64859e06900c11ae5bb5f03f3bd265f858,citation,https://arxiv.org/pdf/1612.01082.pdf,Multilabel Image Classification With Regional Latent Semantic Dependencies,2018
37,VOC,voc,-34.9189226,138.60423668,University of Adelaide,edu,97265d64859e06900c11ae5bb5f03f3bd265f858,citation,https://arxiv.org/pdf/1612.01082.pdf,Multilabel Image Classification With Regional Latent Semantic Dependencies,2018
38,VOC,voc,-33.8809651,151.20107299,University of Technology Sydney,edu,97265d64859e06900c11ae5bb5f03f3bd265f858,citation,https://arxiv.org/pdf/1612.01082.pdf,Multilabel Image Classification With Regional Latent Semantic Dependencies,2018
39,VOC,voc,42.3583961,-71.09567788,MIT,edu,a19904e76b5ded44e6aeb9af85997d160de6bb22,citation,http://pdfs.semanticscholar.org/a199/04e76b5ded44e6aeb9af85997d160de6bb22.pdf,TernausNet: U-Net with VGG11 Encoder Pre-Trained on ImageNet for Image Segmentation,2018
40,VOC,voc,47.05821,15.46019568,Graz University of Technology,edu,96a9ca7a8366ae0efe6b58a515d15b44776faf6e,citation,https://arxiv.org/pdf/1609.00129.pdf,Grid Loss: Detecting Occluded Faces,2016
41,VOC,voc,47.05821,15.46019568,Graz University of Technology,edu,513b8dc73a9fbc467e1ac130fe8c842b5839ca51,citation,http://pdfs.semanticscholar.org/513b/8dc73a9fbc467e1ac130fe8c842b5839ca51.pdf,Dissertation Scalable Visual Navigation for Micro Aerial Vehicles using Geometric Prior Knowledge,2013
42,VOC,voc,37.8687126,-122.25586815,"University of California, Berkeley",edu,0ee3aa2a78f9680bb65a823bd9195c879572ec1c,citation,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Dubey_What_Makes_an_ICCV_2015_paper.pdf,What Makes an Object Memorable?,2015
43,VOC,voc,42.3583961,-71.09567788,MIT,edu,0ee3aa2a78f9680bb65a823bd9195c879572ec1c,citation,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Dubey_What_Makes_an_ICCV_2015_paper.pdf,What Makes an Object Memorable?,2015
44,VOC,voc,37.36566745,-120.42158888,"University of California, Merced",edu,0ee3aa2a78f9680bb65a823bd9195c879572ec1c,citation,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Dubey_What_Makes_an_ICCV_2015_paper.pdf,What Makes an Object Memorable?,2015
45,VOC,voc,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,a776acc53591c3eb0b53501d9758d984e2e52a97,citation,https://arxiv.org/pdf/1804.00880.pdf,Weakly Supervised Instance Segmentation using Class Peak Response,2018
46,VOC,voc,35.9990522,-78.9290629,Duke University,edu,a776acc53591c3eb0b53501d9758d984e2e52a97,citation,https://arxiv.org/pdf/1804.00880.pdf,Weakly Supervised Instance Segmentation using Class Peak Response,2018
47,VOC,voc,1.2962018,103.77689944,National University of Singapore,edu,423b941641728a21e37f41359a691815cdd84ceb,citation,http://arxiv.org/abs/1511.04517,Reversible Recursive Instance-Level Object Segmentation,2016
48,VOC,voc,47.6423318,-122.1369302,Microsoft,company,666939690c564641b864eed0d60a410b31e49f80,citation,http://pdfs.semanticscholar.org/6669/39690c564641b864eed0d60a410b31e49f80.pdf,What Visual Attributes Characterize an Object Class?,2014
49,VOC,voc,43.7776426,11.259765,University of Florence,edu,51e8e8c4cac8260ef21c25f9f2a0a68aedbc6d58,citation,https://arxiv.org/pdf/1704.02518.pdf,Deep Generative Adversarial Compression Artifact Removal,2017
50,VOC,voc,-34.9189226,138.60423668,University of Adelaide,edu,3b01a839d174dad6f2635cff7ebe7e1aaad701a4,citation,http://pdfs.semanticscholar.org/3b01/a839d174dad6f2635cff7ebe7e1aaad701a4.pdf,Image Co-localization by Mimicking a Good Detector's Confidence Score Distribution,2016
51,VOC,voc,31.83907195,117.26420748,University of Science and Technology of China,edu,d467035d83fb4e86c4a47b2ca87894388deb8c44,citation,https://pdfs.semanticscholar.org/d467/035d83fb4e86c4a47b2ca87894388deb8c44.pdf,Relief R-CNN : Utilizing Convolutional Feature Interrelationship for Object Detection,2016
52,VOC,voc,30.284151,-97.73195598,University of Texas at Austin,edu,264a2b946fae4af23c646cc08fc56947b5be82cf,citation,http://doi.ieeecomputersociety.org/10.1109/CVPRW.2015.7301302,Robust object recognition in RGB-D egocentric videos based on Sparse Affine Hull Kernel,2015
53,VOC,voc,34.0687788,-118.4450094,"University of California, Los Angeles",edu,480888bad59b314236f2d947ebf308ae146c98e4,citation,https://arxiv.org/pdf/1511.06881.pdf,Zoom Better to See Clearer: Human and Object Parsing with Hierarchical Auto-Zoom Net,2016
54,VOC,voc,25.01682835,121.53846924,National Taiwan University,edu,a1ee55d529e04a80f4eae3b30d0961a985a64fa4,citation,http://www.cs.utexas.edu/~ycsu/publications/mm029-su.pdf,Enabling low bitrate mobile visual recognition: a performance versus bandwidth evaluation,2013
55,VOC,voc,-34.9189226,138.60423668,University of Adelaide,edu,0cd736baf31dceea1cc39ac72e00b65587f5fb9e,citation,http://pdfs.semanticscholar.org/4ad0/b6f189718a7287c6e7b90eb05331e56db334.pdf,Learning Hash Functions Using Column Generation,2013
56,VOC,voc,39.2899685,-76.62196103,University of Maryland,edu,6424574cb92b316928c37232869bfadcb5b4c20f,citation,https://arxiv.org/pdf/1711.05282.pdf,C-WSL: Count-Guided Weakly Supervised Localization,2018
57,VOC,voc,47.6543238,-122.30800894,University of Washington,edu,51eba481dac6b229a7490f650dff7b17ce05df73,citation,http://grail.cs.washington.edu/wp-content/uploads/2016/09/yatskar2016srv.pdf,Situation Recognition: Visual Semantic Role Labeling for Image Understanding,2016
58,VOC,voc,47.3764534,8.54770931,ETH Zürich,edu,961a5d5750f18e91e28a767b3cb234a77aac8305,citation,http://pdfs.semanticscholar.org/961a/5d5750f18e91e28a767b3cb234a77aac8305.pdf,Face Detection without Bells and Whistles,2014
59,VOC,voc,40.11116745,-88.22587665,"University of Illinois, Urbana-Champaign",edu,0c05f60998628884a9ac60116453f1a91bcd9dda,citation,http://pdfs.semanticscholar.org/7b19/80d4ac1730fd0145202a8cb125bf05d96f01.pdf,Optimizing Open-Ended Crowdsourcing: The Next Frontier in Crowdsourced Data Management,2016
60,VOC,voc,40.11116745,-88.22587665,"University of Illinois, Urbana-Champaign",edu,efa2aacb0fbee857015fad1dba72767f56be6f39,citation,https://pdfs.semanticscholar.org/efa2/aacb0fbee857015fad1dba72767f56be6f39.pdf,Aggregating Crowdsourced Image Segmentations,2018
61,VOC,voc,37.3936717,-122.0807262,Facebook,company,efa2aacb0fbee857015fad1dba72767f56be6f39,citation,https://pdfs.semanticscholar.org/efa2/aacb0fbee857015fad1dba72767f56be6f39.pdf,Aggregating Crowdsourced Image Segmentations,2018
62,VOC,voc,34.0687788,-118.4450094,"University of California, Los Angeles",edu,17113b0f647ce05b2e50d1d40c856370f94da7de,citation,http://pdfs.semanticscholar.org/1711/3b0f647ce05b2e50d1d40c856370f94da7de.pdf,Zoom Better to See Clearer: Human Part Segmentation with Auto Zoom Net,2015
63,VOC,voc,40.11116745,-88.22587665,"University of Illinois, Urbana-Champaign",edu,549d55a06c5402696e063ce36b411f341a64f8a9,citation,http://arxiv.org/pdf/1511.06078v1.pdf,Learning Deep Structure-Preserving Image-Text Embeddings,2016
64,VOC,voc,33.776033,-84.39884086,Georgia Institute of Technology,edu,549d55a06c5402696e063ce36b411f341a64f8a9,citation,http://arxiv.org/pdf/1511.06078v1.pdf,Learning Deep Structure-Preserving Image-Text Embeddings,2016
65,VOC,voc,35.9020448,139.93622009,University of Tokyo,edu,44bfa5311f0921664e9036f63cadd71049a35f35,citation,https://pdfs.semanticscholar.org/44bf/a5311f0921664e9036f63cadd71049a35f35.pdf,Faster R-CNN-Based Glomerular Detection in Multistained Human Whole Slide Images,2018
66,VOC,voc,49.2579566,7.04577417,Max Planck Institute for Informatics,edu,133f1f2679892d408420d8092283539010723359,citation,http://arxiv.org/pdf/1502.05082v3.pdf,What Makes for Effective Detection Proposals?,2016
67,VOC,voc,60.18558755,24.8242733,Aalto University,edu,98d04187f091f402a90a6a9a2108393ca5f91563,citation,https://arxiv.org/pdf/1807.09828.pdf,ADVIO: An Authentic Dataset for Visual-Inertial Odometry,2018
68,VOC,voc,61.44964205,23.85877462,Tampere University of Technology,edu,98d04187f091f402a90a6a9a2108393ca5f91563,citation,https://arxiv.org/pdf/1807.09828.pdf,ADVIO: An Authentic Dataset for Visual-Inertial Odometry,2018
69,VOC,voc,37.4102193,-122.05965487,Carnegie Mellon University,edu,f8015e31d1421f6aee5e17fc3907070b8e0a5e59,citation,http://pdfs.semanticscholar.org/f801/5e31d1421f6aee5e17fc3907070b8e0a5e59.pdf,Towards Usable Multimedia Event Detection from Web Videos,2016
70,VOC,voc,34.0224149,-118.28634407,University of Southern California,edu,6b9e8acef979c13fa9ecc8fe9b635b312fedbcbe,citation,https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Chang_Multiple_Structured-Instance_Learning_2014_CVPR_paper.pdf,Multiple Structured-Instance Learning for Semantic Segmentation with Uncertain Training Data,2014
71,VOC,voc,51.4584837,-2.6097752,University of Bristol,edu,72fd97d21d6465d4bb407b6f8f3accd4419a2fb4,citation,https://pdfs.semanticscholar.org/384a/ea88ffd79295c99bcb80552f8655dbb87509.pdf,Automated Identification of Individual Great White Sharks from Unrestricted Fin Imagery,2015
72,VOC,voc,40.0044795,116.370238,Chinese Academy of Sciences,edu,62b83bf64f200ebb9fa16dfb7108b85e390b2207,citation,https://arxiv.org/pdf/1807.11236.pdf,Semantic Labeling in Very High Resolution Images via a Self-Cascaded Convolutional Neural Network,2018
73,VOC,voc,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,62b83bf64f200ebb9fa16dfb7108b85e390b2207,citation,https://arxiv.org/pdf/1807.11236.pdf,Semantic Labeling in Very High Resolution Images via a Self-Cascaded Convolutional Neural Network,2018
74,VOC,voc,37.4102193,-122.05965487,Carnegie Mellon University,edu,2577211aeaaa1f2245ddc379564813bee3d46c06,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Misra_Seeing_Through_the_CVPR_2016_paper.pdf,Seeing through the Human Reporting Bias: Visual Classifiers from Noisy Human-Centric Labels,2016
75,VOC,voc,47.6423318,-122.1369302,Microsoft,company,2577211aeaaa1f2245ddc379564813bee3d46c06,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Misra_Seeing_Through_the_CVPR_2016_paper.pdf,Seeing through the Human Reporting Bias: Visual Classifiers from Noisy Human-Centric Labels,2016
76,VOC,voc,51.7534538,-1.25400997,University of Oxford,edu,3900fb44902396f94fb070be41199b4beecc9081,citation,https://arxiv.org/pdf/1612.02101.pdf,Bottom-Up Top-Down Cues for Weakly-Supervised Semantic Segmentation,2017
77,VOC,voc,34.0687788,-118.4450094,"University of California, Los Angeles",edu,32c45df9e11e6751bcea1b928f398f6c134d22c6,citation,http://pdfs.semanticscholar.org/32c4/5df9e11e6751bcea1b928f398f6c134d22c6.pdf,Towards Unified Object Detection and Semantic Segmentation,2014
78,VOC,voc,42.36782045,-71.12666653,Harvard University,edu,2bcd59835528c583bb5b310522a5ba6e99c58b15,citation,http://pdfs.semanticscholar.org/c0ef/596a212d0e40c79c6760673fe122e517b43c.pdf,Multi-class Open Set Recognition Using Probability of Inclusion,2014
79,VOC,voc,55.94951105,-3.19534913,University of Edinburgh,edu,3920a205990abc7883c70cc96a0410a2d056c2a8,citation,http://groups.inf.ed.ac.uk/calvin/Publications/papazoglouICCV2013-camera-ready.pdf,Fast Object Segmentation in Unconstrained Video,2013
80,VOC,voc,1.2962018,103.77689944,National University of Singapore,edu,b6810adcfd507b2e019ebc8afe4f44f953faf946,citation,https://pdfs.semanticscholar.org/b681/0adcfd507b2e019ebc8afe4f44f953faf946.pdf,ML-LocNet: Improving Object Localization with Multi-view Learning Network,2018
81,VOC,voc,40.0141905,-83.0309143,University of Electronic Science and Technology of China,edu,b6810adcfd507b2e019ebc8afe4f44f953faf946,citation,https://pdfs.semanticscholar.org/b681/0adcfd507b2e019ebc8afe4f44f953faf946.pdf,ML-LocNet: Improving Object Localization with Multi-view Learning Network,2018
82,VOC,voc,33.776033,-84.39884086,Georgia Institute of Technology,edu,0e08cf0b19f0600dadce0f6694420d643ea9828b,citation,http://openaccess.thecvf.com/content_iccv_2015/papers/Humayun_The_Middle_Child_ICCV_2015_paper.pdf,The Middle Child Problem: Revisiting Parametric Min-Cut and Seeds for Object Proposals,2015
83,VOC,voc,45.5198289,-122.67797964,Oregon State University,edu,0e08cf0b19f0600dadce0f6694420d643ea9828b,citation,http://openaccess.thecvf.com/content_iccv_2015/papers/Humayun_The_Middle_Child_ICCV_2015_paper.pdf,The Middle Child Problem: Revisiting Parametric Min-Cut and Seeds for Object Proposals,2015
84,VOC,voc,30.19331415,120.11930822,Zhejiang University,edu,81bf7a4b8b3c21d42cb82f946f762c94031e11b8,citation,https://pdfs.semanticscholar.org/81bf/7a4b8b3c21d42cb82f946f762c94031e11b8.pdf,Segmentation of Nerve on Ultrasound Images Using Deep Adversarial Network,2017
85,VOC,voc,52.4107358,-4.05295501,Aberystwyth University,edu,30d8fbb9345cdf1096635af7d39a9b04af9b72f9,citation,https://pdfs.semanticscholar.org/30d8/fbb9345cdf1096635af7d39a9b04af9b72f9.pdf,Watching plants grow - a position paper on computer vision and Arabidopsis thaliana,2017
86,VOC,voc,43.66333345,-79.39769975,University of Toronto,edu,87204e4e1a96b8f59cb91828199dacd192292231,citation,http://pdfs.semanticscholar.org/8720/4e4e1a96b8f59cb91828199dacd192292231.pdf,Towards Real-Time Detection and Tracking of Basketball Players using Deep Neural Networks,2017
87,VOC,voc,40.00229045,116.32098908,Tsinghua University,edu,30a4637cbc461838c151073b265fb08e00492ff4,citation,http://faculty.ucmerced.edu/mhyang/papers/cvpr16_object_localization.pdf,Weakly Supervised Object Localization with Progressive Domain Adaptation,2016
88,VOC,voc,50.7338124,7.1022465,University of Bonn,edu,606cfdcc43203351dbb944a3bb3719695e557e37,citation,https://pdfs.semanticscholar.org/606c/fdcc43203351dbb944a3bb3719695e557e37.pdf,Ex Paucis Plura : Learning Affordance Segmentation from Very Few Examples,2018
89,VOC,voc,39.2899685,-76.62196103,University of Maryland,edu,47b6cd69c0746688f6e17b37d73fa12422826dbc,citation,http://pdfs.semanticscholar.org/47b6/cd69c0746688f6e17b37d73fa12422826dbc.pdf,Self corrective Perturbations for Semantic Segmentation and Classification,2017
90,VOC,voc,38.99203005,-76.9461029,University of Maryland College Park,edu,47b6cd69c0746688f6e17b37d73fa12422826dbc,citation,http://pdfs.semanticscholar.org/47b6/cd69c0746688f6e17b37d73fa12422826dbc.pdf,Self corrective Perturbations for Semantic Segmentation and Classification,2017
91,VOC,voc,42.8298248,-73.87719385,GE Global Research Center,edu,47b6cd69c0746688f6e17b37d73fa12422826dbc,citation,http://pdfs.semanticscholar.org/47b6/cd69c0746688f6e17b37d73fa12422826dbc.pdf,Self corrective Perturbations for Semantic Segmentation and Classification,2017
92,VOC,voc,51.7534538,-1.25400997,University of Oxford,edu,14421119527aa5882e1552a651fbd2d73bc94637,citation,http://pdfs.semanticscholar.org/9b81/86b6bc1e05d7a473d2afebc8a12698d88691.pdf,Searching for objects driven by context,2012
93,VOC,voc,55.94951105,-3.19534913,University of Edinburgh,edu,14421119527aa5882e1552a651fbd2d73bc94637,citation,http://pdfs.semanticscholar.org/9b81/86b6bc1e05d7a473d2afebc8a12698d88691.pdf,Searching for objects driven by context,2012
94,VOC,voc,40.11116745,-88.22587665,"University of Illinois, Urbana-Champaign",edu,3410a1489d04ec6fcfbb3d76d39055117931ccf0,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2013.126,Learning Collections of Part Models for Object Recognition,2013
95,VOC,voc,40.00229045,116.32098908,Tsinghua University,edu,69b647afe6526256a93033eac14ce470204e7bae,citation,http://pdfs.semanticscholar.org/d7dd/4fb9074db71ebf9155d64b439102d4c7b0c5.pdf,Training Deep Neural Networks via Direct Loss Minimization,2016
96,VOC,voc,43.66333345,-79.39769975,University of Toronto,edu,69b647afe6526256a93033eac14ce470204e7bae,citation,http://pdfs.semanticscholar.org/d7dd/4fb9074db71ebf9155d64b439102d4c7b0c5.pdf,Training Deep Neural Networks via Direct Loss Minimization,2016
97,VOC,voc,55.94951105,-3.19534913,University of Edinburgh,edu,81825711c2aaa1b9d3ead1a300e71c4353a41382,citation,https://arxiv.org/pdf/1607.03476.pdf,End-to-end training of object class detectors for mean average precision,2016
98,VOC,voc,39.993008,116.329882,SenseTime,company,2ce073da76e6ed87eda2da08da0e00f4f060f1a6,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2016.78,Deep Saliency with Encoded Low Level Distance Map and High Level Features,2016
99,VOC,voc,51.7534538,-1.25400997,University of Oxford,edu,2313c827d3cb9a291b6a00d015c29580862bbdcc,citation,https://arxiv.org/pdf/1808.03575.pdf,Weakly- and Semi-supervised Panoptic Segmentation,2018
100,VOC,voc,37.4102193,-122.05965487,Carnegie Mellon University,edu,839a2155995acc0a053a326e283be12068b35cb8,citation,http://pdfs.semanticscholar.org/839a/2155995acc0a053a326e283be12068b35cb8.pdf,Handcrafted Local Features are Convolutional Neural Networks,2015
101,VOC,voc,32.0565957,118.77408833,Nanjing University,edu,634e02d6107529d672cbbdf5b97990966e289829,citation,https://arxiv.org/pdf/1802.05394.pdf,Cost-Effective Training of Deep CNNs with Active Model Adaptation,2018
102,VOC,voc,56.45796755,-2.98214831,University of Dundee,edu,d0137881f6c791997337b9cc7f1efbd61977270d,citation,http://pdfs.semanticscholar.org/d013/7881f6c791997337b9cc7f1efbd61977270d.pdf,"University of Dundee An automated pattern recognition system for classifying indirect immunofluorescence images for HEp-2 cells and specimens Manivannan,",2016
103,VOC,voc,42.2942142,-83.71003894,University of Michigan,edu,ed173a39f4cd980eef319116b6ba39cec1b37c42,citation,https://arxiv.org/pdf/1611.05424.pdf,Associative Embedding: End-to-End Learning for Joint Detection and Grouping,2017
104,VOC,voc,40.00229045,116.32098908,Tsinghua University,edu,ed173a39f4cd980eef319116b6ba39cec1b37c42,citation,https://arxiv.org/pdf/1611.05424.pdf,Associative Embedding: End-to-End Learning for Joint Detection and Grouping,2017
105,VOC,voc,37.43131385,-122.16936535,Stanford University,edu,84cf838be40e2ab05732fbefbb93ccb2afb0cb48,citation,http://pdfs.semanticscholar.org/84cf/838be40e2ab05732fbefbb93ccb2afb0cb48.pdf,Recognizing Handwritten Characters,2016
106,VOC,voc,37.26728,126.9841151,Seoul National University,edu,b082f440ee91e2751701401919584203b37e1e1a,citation,https://pdfs.semanticscholar.org/303c/28f1ba643a7cd88255cc379e79052fb7e7b1.pdf,SeedNet : Automatic Seed Generation with Deep Reinforcement Learning for Robust Interactive Segmentation,2018
107,VOC,voc,22.2081469,114.25964115,University of Hong Kong,edu,6008213e4270e88cb414459de759c961469b92dd,citation,https://arxiv.org/pdf/1802.09129.pdf,"Multi-Evidence Filtering and Fusion for Multi-Label Classification, Object Detection and Semantic Segmentation Based on Weakly Supervised Learning",2018
108,VOC,voc,33.776033,-84.39884086,Georgia Institute of Technology,edu,90b4470032f2796a347a0080bcd833c2db0e8bf0,citation,https://arxiv.org/pdf/1807.07760.pdf,Improving Image Clustering With Multiple Pretrained CNN Feature Extractors,2018
109,VOC,voc,40.0044795,116.370238,Chinese Academy of Sciences,edu,beecaf2d6e9d102b6b2459ea38e15179a4b55ffd,citation,https://arxiv.org/pdf/1611.09587.pdf,Surveillance Video Parsing with Single Frame Supervision,2017
110,VOC,voc,41.3868913,2.16352385,University of Barcelona,edu,0fb8317a8bf5feaf297af8e9b94c50c5ed0e8277,citation,http://pdfs.semanticscholar.org/0fb8/317a8bf5feaf297af8e9b94c50c5ed0e8277.pdf,Detecting Hands in Egocentric Videos: Towards Action Recognition,2017
111,VOC,voc,51.7534538,-1.25400997,University of Oxford,edu,0e0179eb4b43016691f0f1473a08089dda21f8f0,citation,http://pdfs.semanticscholar.org/0e01/79eb4b43016691f0f1473a08089dda21f8f0.pdf,The Art of Detection,2016
112,VOC,voc,49.2579566,7.04577417,Max Planck Institute for Informatics,edu,135c957f6a80f250507c7707479e584c288f430f,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2014.498,Image-Based Synthesis and Re-synthesis of Viewpoints Guided by 3D Models,2014
113,VOC,voc,39.00041165,-77.10327775,National Institutes of Health,edu,c72b063e23b8b45b57a42ebc2f9714297c539a6f,citation,https://arxiv.org/pdf/1801.04334.pdf,TieNet: Text-Image Embedding Network for Common Thorax Disease Classification and Reporting in Chest X-rays,2018
114,VOC,voc,36.05238585,140.11852361,National Institute of Advanced Industrial Science and Technology,edu,061ffd3967540424ac4e4066f4a605d8318bab90,citation,https://staff.aist.go.jp/takumi.kobayashi/publication/2014/CVPR2014.pdf,Dirichlet-Based Histogram Feature Transform for Image Classification,2014
115,VOC,voc,42.3583961,-71.09567788,MIT,edu,1a2e9a56e5f71bf95a2f68b6e67e2aaa1c6bf91e,citation,http://pdfs.semanticscholar.org/1a2e/9a56e5f71bf95a2f68b6e67e2aaa1c6bf91e.pdf,FPM: Fine Pose Parts-Based Model with 3D CAD Models,2014
116,VOC,voc,51.7534538,-1.25400997,University of Oxford,edu,c6f58adf4a5ee8499cbc9b9bc1e6f1c39f1f8eae,citation,https://pdfs.semanticscholar.org/c6f5/8adf4a5ee8499cbc9b9bc1e6f1c39f1f8eae.pdf,Earn to P Ay a Ttention,2018
117,VOC,voc,32.87935255,-117.23110049,"University of California, San Diego",edu,3c8db2ca155ce4e15ec8a2c4c4b979de654fb296,citation,http://pages.ucsd.edu/~ztu/publication/iccv15_hed.pdf,Holistically-Nested Edge Detection,2015
118,VOC,voc,59.34986645,18.07063213,"KTH Royal Institute of Technology, Stockholm",edu,8ccd6aaf1ee4b66c13fffbf560e3920f9bdf5f10,citation,http://pdfs.semanticscholar.org/8ccd/6aaf1ee4b66c13fffbf560e3920f9bdf5f10.pdf,A multitask deep learning model for real-time deployment in embedded systems,2017
119,VOC,voc,53.5238572,-113.52282665,University of Alberta,edu,b4f5cf797a1c857f32e5740d53d9990bc925af2b,citation,https://pdfs.semanticscholar.org/b4f5/cf797a1c857f32e5740d53d9990bc925af2b.pdf,Review of Segmentation with Deep Learning and Discover Its Application in Ultrasound Images,2018
120,VOC,voc,49.2579566,7.04577417,Max Planck Institute for Informatics,edu,3bad18554678ab46bbbf9de41d36423bc8083c83,citation,http://arxiv.org/pdf/1511.07803v1.pdf,Weakly Supervised Object Boundaries,2016
121,VOC,voc,24.7925484,120.9951183,National Tsing Hua University,edu,07191c2047b5b643dd72a0583c1d537ba59f977a,citation,http://pdfs.semanticscholar.org/0719/1c2047b5b643dd72a0583c1d537ba59f977a.pdf,Interactive Segmentation from 1-Bit Feedback,2016
122,VOC,voc,37.26728,126.9841151,Seoul National University,edu,ae6e8851dfd9c97e37e1cbd61b21cc54d5e2b9c7,citation,https://arxiv.org/pdf/1802.04977.pdf,Paraphrasing Complex Network: Network Compression via Factor Transfer,2018
123,VOC,voc,37.26728,126.9841151,Seoul National University,edu,5375a3344017d9502ebb4170325435de3da1fa16,citation,https://doi.org/10.1007/978-3-642-37447-0,Computer Vision – ACCV 2012,2012
124,VOC,voc,40.0044795,116.370238,Chinese Academy of Sciences,edu,5375a3344017d9502ebb4170325435de3da1fa16,citation,https://doi.org/10.1007/978-3-642-37447-0,Computer Vision – ACCV 2012,2012
125,VOC,voc,33.776033,-84.39884086,Georgia Institute of Technology,edu,5375a3344017d9502ebb4170325435de3da1fa16,citation,https://doi.org/10.1007/978-3-642-37447-0,Computer Vision – ACCV 2012,2012
126,VOC,voc,55.94951105,-3.19534913,University of Edinburgh,edu,fdfd57d4721174eba288e501c0c120ad076cdca8,citation,https://arxiv.org/pdf/1704.07129.pdf,An Analysis of Action Recognition Datasets for Language and Vision Tasks,2017
127,VOC,voc,32.0565957,118.77408833,Nanjing University,edu,ec83c63e28ae2a658bc76a6750e078c3a54b9760,citation,https://arxiv.org/pdf/1705.02758.pdf,Deep Descriptor Transforming for Image Co-Localization,2017
128,VOC,voc,-34.9189226,138.60423668,University of Adelaide,edu,ec83c63e28ae2a658bc76a6750e078c3a54b9760,citation,https://arxiv.org/pdf/1705.02758.pdf,Deep Descriptor Transforming for Image Co-Localization,2017
129,VOC,voc,59.34986645,18.07063213,"KTH Royal Institute of Technology, Stockholm",edu,b1177aad0db8bd6b605ffe0d68addaf97b1f9a6b,citation,https://pdfs.semanticscholar.org/5035/733022916db7e5965c565327e169da1e2f39.pdf,Visual Representations and Models: From Latent SVM to Deep Learning,2016
130,VOC,voc,31.83907195,117.26420748,University of Science and Technology of China,edu,a5ae7d662ed086bc5b0c9a2c1dc54fcb23635000,citation,https://pdfs.semanticscholar.org/a5ae/7d662ed086bc5b0c9a2c1dc54fcb23635000.pdf,Relief R-CNN : Utilizing Convolutional Feature Interrelationship for Fast Object Detection Deployment,2016
131,VOC,voc,22.53521465,113.9315911,Shenzhen University,edu,a5ae7d662ed086bc5b0c9a2c1dc54fcb23635000,citation,https://pdfs.semanticscholar.org/a5ae/7d662ed086bc5b0c9a2c1dc54fcb23635000.pdf,Relief R-CNN : Utilizing Convolutional Feature Interrelationship for Fast Object Detection Deployment,2016
132,VOC,voc,53.38522185,-6.25740874,Dublin City University,edu,9528e2e8c20517ab916f803c0371abb4f0ed488b,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Pan_Shallow_and_Deep_CVPR_2016_paper.pdf,Shallow and Deep Convolutional Networks for Saliency Prediction,2016
133,VOC,voc,55.94951105,-3.19534913,University of Edinburgh,edu,e2272f50ffa33b8e41509e4b795ad5a4eb27bb46,citation,https://arxiv.org/pdf/1607.07671.pdf,Region-based semantic segmentation with end-to-end training,2016
134,VOC,voc,51.7534538,-1.25400997,University of Oxford,edu,b8d61dc56a4112e0317c6a7323417ee649476148,citation,https://arxiv.org/pdf/1807.05636.pdf,Cross Pixel Optical Flow Similarity for Self-Supervised Learning,2018
135,VOC,voc,40.0044795,116.370238,Chinese Academy of Sciences,edu,db0a4af734dab1854c2e8dfe499fe0e353226e45,citation,https://pdfs.semanticscholar.org/db0a/4af734dab1854c2e8dfe499fe0e353226e45.pdf,Hot Anchors: A Heuristic Anchors Sampling Method in RCNN-Based Object Detection,2018
136,VOC,voc,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,db0a4af734dab1854c2e8dfe499fe0e353226e45,citation,https://pdfs.semanticscholar.org/db0a/4af734dab1854c2e8dfe499fe0e353226e45.pdf,Hot Anchors: A Heuristic Anchors Sampling Method in RCNN-Based Object Detection,2018
137,VOC,voc,33.776033,-84.39884086,Georgia Institute of Technology,edu,ffe0f43206169deef3a2bf64cec90fe35bb1a8e5,citation,http://pdfs.semanticscholar.org/ffe0/f43206169deef3a2bf64cec90fe35bb1a8e5.pdf,"Automated Processing of Imaging Data through Multi-tiered Classification of Biological Structures Illustrated Using Caenorhabditis elegans
",2015
138,VOC,voc,55.94951105,-3.19534913,University of Edinburgh,edu,ffe0f43206169deef3a2bf64cec90fe35bb1a8e5,citation,http://pdfs.semanticscholar.org/ffe0/f43206169deef3a2bf64cec90fe35bb1a8e5.pdf,"Automated Processing of Imaging Data through Multi-tiered Classification of Biological Structures Illustrated Using Caenorhabditis elegans
",2015
139,VOC,voc,45.77445695,126.67684917,Harbin Engineering University,edu,479eb6579194d4d944671dfe5e90b122ca4b58fd,citation,https://pdfs.semanticscholar.org/479e/b6579194d4d944671dfe5e90b122ca4b58fd.pdf,Structural inference embedded adversarial networks for scene parsing,2018
140,VOC,voc,34.2469152,108.91061982,Northwestern Polytechnical University,edu,479eb6579194d4d944671dfe5e90b122ca4b58fd,citation,https://pdfs.semanticscholar.org/479e/b6579194d4d944671dfe5e90b122ca4b58fd.pdf,Structural inference embedded adversarial networks for scene parsing,2018
141,VOC,voc,1.29500195,103.84909214,Singapore Management University,edu,d289ce63055c10937e5715e940a4bb9d0af7a8c5,citation,http://dl.acm.org/citation.cfm?id=3081360,DeepMon: Mobile GPU-based Deep Learning Framework for Continuous Vision Applications,2017
142,VOC,voc,60.18558755,24.8242733,Aalto University,edu,061bba574c7c2ef0ba9de91afc4fcab70feddd4f,citation,http://doi.ieeecomputersociety.org/10.1109/ICCV.2017.272,Paying Attention to Descriptions Generated by Image Captioning Models,2017
143,VOC,voc,28.59899755,-81.19712501,University of Central Florida,edu,061bba574c7c2ef0ba9de91afc4fcab70feddd4f,citation,http://doi.ieeecomputersociety.org/10.1109/ICCV.2017.272,Paying Attention to Descriptions Generated by Image Captioning Models,2017
144,VOC,voc,34.7275714,135.2371,Kobe University,edu,ee2217f9d22d6a18aaf97f05768035c38305d1fa,citation,https://doi.org/10.1109/APSIPA.2015.7415501,Detection of facial parts via deformable part model using part annotation,2015
145,VOC,voc,50.7791703,6.06728733,RWTH Aachen University,edu,18219d85bb14f851fc4714df19cc7f38dff8ddc3,citation,http://pdfs.semanticscholar.org/1821/9d85bb14f851fc4714df19cc7f38dff8ddc3.pdf,Online Adaptation of Convolutional Neural Networks for the 2017 DAVIS Challenge on Video Object Segmentation,2017
146,VOC,voc,31.20081505,121.42840681,Shanghai Jiao Tong University,edu,da44881db32c132eb9cdef524618e3c8ed340b47,citation,https://arxiv.org/pdf/1802.00383.pdf,Annotation-Free and One-Shot Learning for Instance Segmentation of Homogeneous Object Clusters,2018
147,VOC,voc,50.7338124,7.1022465,University of Bonn,edu,cc94b423c298003f0f164e63e63177d443291a77,citation,https://arxiv.org/pdf/1805.03994.pdf,Multi-View Semantic Labeling of 3D Point Clouds for Automated Plant Phenotyping,2018
148,VOC,voc,39.9922379,116.30393816,Peking University,edu,83a811fd947415df2413d15386dbc558f07595cb,citation,https://arxiv.org/pdf/1709.08295.pdf,Fine-grained Discriminative Localization via Saliency-guided Faster R-CNN,2017
149,VOC,voc,-33.8809651,151.20107299,University of Technology Sydney,edu,3a5f5aca6138abcf22ede1af5572e01eb0f761d1,citation,https://pdfs.semanticscholar.org/3a5f/5aca6138abcf22ede1af5572e01eb0f761d1.pdf,Optimizing Multivariate Performance Measures from Multi-View Data,2016
150,VOC,voc,34.2469152,108.91061982,Northwestern Polytechnical University,edu,ce300b006f42c1b64ca0e53d1cf28d11a98ece8f,citation,https://pdfs.semanticscholar.org/ce30/0b006f42c1b64ca0e53d1cf28d11a98ece8f.pdf,Learning Multi-Instance Enriched Image Representations via Non-Greedy Ratio Maximization of the l 1-Norm Distances,0
151,VOC,voc,34.0224149,-118.28634407,University of Southern California,edu,71b038958df0b7855fc7b8b8e7dcde8537a7c1ad,citation,http://pdfs.semanticscholar.org/71b0/38958df0b7855fc7b8b8e7dcde8537a7c1ad.pdf,Kernel Methods for Unsupervised Domain Adaptation by Boqing Gong,2015
152,VOC,voc,34.2469152,108.91061982,Northwestern Polytechnical University,edu,af7cab9b4a2a2a565a3efe0a226c517f47289077,citation,https://arxiv.org/pdf/1803.10910.pdf,Deep Unsupervised Saliency Detection: A Multiple Noisy Labeling Perspective,2018
153,VOC,voc,-35.2776999,149.118527,Australian National University,edu,af7cab9b4a2a2a565a3efe0a226c517f47289077,citation,https://arxiv.org/pdf/1803.10910.pdf,Deep Unsupervised Saliency Detection: A Multiple Noisy Labeling Perspective,2018
154,VOC,voc,-34.9189226,138.60423668,University of Adelaide,edu,3a6ebdfb6375093885e846153a48139ef1ecfae6,citation,http://arxiv.org/abs/1411.7466,The treasure beneath convolutional layers: Cross-convolutional-layer pooling for image classification,2015
155,VOC,voc,51.24303255,-0.59001382,University of Surrey,edu,a7e9d230bc44dfbe56757f3025d5b4caa49032f3,citation,http://pdfs.semanticscholar.org/a7e9/d230bc44dfbe56757f3025d5b4caa49032f3.pdf,Unity in Diversity: Discovering Topics from Words - Information Theoretic Co-clustering for Visual Categorization,2012
156,VOC,voc,37.5557271,127.0436642,Hanyang University,edu,50137d663802224e683951c48970496b38b02141,citation,http://pdfs.semanticscholar.org/5013/7d663802224e683951c48970496b38b02141.pdf,DETRAC: A New Benchmark and Protocol for Multi-Object Tracking,2015
157,VOC,voc,37.4102193,-122.05965487,Carnegie Mellon University,edu,07de8371ad4901356145722aa29abaeafd0986b9,citation,http://pdfs.semanticscholar.org/07de/8371ad4901356145722aa29abaeafd0986b9.pdf,Towards Usable Multimedia Event Detection,2017
158,VOC,voc,41.21002475,-73.80407056,IBM Thomas J. Watson Research Center,company,af386bb1b5e8c9f65b3ae836198a93aa860d6331,citation,https://arxiv.org/pdf/1805.04574.pdf,Revisiting Dilated Convolution: A Simple Approach for Weakly- and Semi- Supervised Semantic Segmentation,2018
159,VOC,voc,17.4454957,78.34854698,International Institute of Information Technology,edu,d6b1b0e60e1764982ef95d4ade8fcaa10bfb156a,citation,http://pdfs.semanticscholar.org/d6b1/b0e60e1764982ef95d4ade8fcaa10bfb156a.pdf,A Sketch-based Approach for Multimedia Retrieval,2016
160,VOC,voc,51.49887085,-0.17560797,Imperial College London,edu,37b3637dab65b91a5c91bb6a583e69c448823cc1,citation,https://arxiv.org/pdf/1705.05994.pdf,Learning a Hierarchical Latent-Variable Model of 3D Shapes,2018
161,VOC,voc,39.9574,-75.19026706,Drexel University,edu,83d16fb8f53156c9e2b28d75abb6532af515440f,citation,http://pdfs.semanticscholar.org/83d1/6fb8f53156c9e2b28d75abb6532af515440f.pdf,Large-scale Document Labeling using Supervised Sequence Embedding,2012
162,VOC,voc,45.51181205,-122.68492999,Portland State University,edu,05e45f61dc7577c50114a382abc6e952ae24cdac,citation,https://pdfs.semanticscholar.org/05e4/5f61dc7577c50114a382abc6e952ae24cdac.pdf,"Object Detection and Recognition in Natural Settings by George William Dittmar A thesis submitted in partial fulfilment of the requirements of the degree Master of Science in Computer Science Thesis Committee: Melanie Mitchell, Chair",2012
163,VOC,voc,37.4102193,-122.05965487,Carnegie Mellon University,edu,192235f5a9e4c9d6a28ec0d333e36f294b32f764,citation,http://www.andrew.cmu.edu/user/sjayasur/iccv.pdf,Reconfiguring the Imaging Pipeline for Computer Vision,2017
164,VOC,voc,42.4505507,-76.4783513,Cornell University,edu,192235f5a9e4c9d6a28ec0d333e36f294b32f764,citation,http://www.andrew.cmu.edu/user/sjayasur/iccv.pdf,Reconfiguring the Imaging Pipeline for Computer Vision,2017
165,VOC,voc,50.0764296,14.41802312,Czech Technical University,edu,bd4f2e7a196c0d6033a49390ee8836f4f551b7c8,citation,http://rrc.cvc.uab.es/files/Robust-Reading-Competition-Karatzas.pdf,ICDAR 2015 competition on Robust Reading,2015
166,VOC,voc,33.59914655,130.22359848,Kyushu University,edu,bd4f2e7a196c0d6033a49390ee8836f4f551b7c8,citation,http://rrc.cvc.uab.es/files/Robust-Reading-Competition-Karatzas.pdf,ICDAR 2015 competition on Robust Reading,2015
167,VOC,voc,49.2579566,7.04577417,Max Planck Institute for Informatics,edu,3d5575e9ba02128d94c20330f4525fc816411ec2,citation,https://arxiv.org/pdf/1612.02646.pdf,Learning Video Object Segmentation from Static Images,2017
168,VOC,voc,51.7534538,-1.25400997,University of Oxford,edu,78f62042bfb3bb49ba10e142d118a9bb058b2a19,citation,http://pdfs.semanticscholar.org/78f6/2042bfb3bb49ba10e142d118a9bb058b2a19.pdf,WebSeg: Learning Semantic Segmentation from Web Searches,2018
169,VOC,voc,40.11116745,-88.22587665,"University of Illinois, Urbana-Champaign",edu,0c7aac75ccd17d696cff2e1ce95db0493f5c18a2,citation,https://arxiv.org/pdf/1809.01123.pdf,VideoMatch: Matching Based Video Object Segmentation,2018
170,VOC,voc,3.12267405,101.65356103,University of Malaya,edu,6c78add400f749c897dc3eb93996eda1c796e91c,citation,https://arxiv.org/pdf/1410.3752.pdf,Enhanced Random Forest with Image/Patch-Level Learning for Image Understanding,2014
171,VOC,voc,51.49887085,-0.17560797,Imperial College London,edu,6c78add400f749c897dc3eb93996eda1c796e91c,citation,https://arxiv.org/pdf/1410.3752.pdf,Enhanced Random Forest with Image/Patch-Level Learning for Image Understanding,2014
172,VOC,voc,39.9922379,116.30393816,Peking University,edu,6c78add400f749c897dc3eb93996eda1c796e91c,citation,https://arxiv.org/pdf/1410.3752.pdf,Enhanced Random Forest with Image/Patch-Level Learning for Image Understanding,2014
173,VOC,voc,-34.9189226,138.60423668,University of Adelaide,edu,b61c0b11b1c25958d202b4f7ca772e1d95ee1037,citation,http://pdfs.semanticscholar.org/b61c/0b11b1c25958d202b4f7ca772e1d95ee1037.pdf,Bridging Category-level and Instance-level Semantic Image Segmentation,2016
174,VOC,voc,34.0224149,-118.28634407,University of Southern California,edu,79894ddf290d3c7a768d634eceb7888564b5cf19,citation,https://arxiv.org/pdf/1708.01676.pdf,Query-Guided Regression Network with Context Policy for Phrase Grounding,2017
175,VOC,voc,37.43131385,-122.16936535,Stanford University,edu,fec2a5a06a3aab5efe923a78d208ec747d5e4894,citation,https://arxiv.org/pdf/1805.12018.pdf,Generalizing to Unseen Domains via Adversarial Data Augmentation,2018
176,VOC,voc,31.30104395,121.50045497,Fudan University,edu,5ac63895a7d3371a739d066bb1631fc178d8276a,citation,http://doi.acm.org/10.1145/3123266.3123379,Learning Semantic Feature Map for Visual Content Recognition,2017
177,VOC,voc,39.2899685,-76.62196103,University of Maryland,edu,5ac63895a7d3371a739d066bb1631fc178d8276a,citation,http://doi.acm.org/10.1145/3123266.3123379,Learning Semantic Feature Map for Visual Content Recognition,2017
178,VOC,voc,-34.40505545,150.87834655,University of Wollongong,edu,4e559f23bcf502c752f2938ad7f0182047b8d1e4,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Wang_A_Fast_Approximate_2013_CVPR_paper.pdf,A Fast Approximate AIB Algorithm for Distributional Word Clustering,2013
179,VOC,voc,-35.2776999,149.118527,Australian National University,edu,7536b6a9f3cb4ae810e2ef6d0219134b4e546dd0,citation,http://pdfs.semanticscholar.org/7536/b6a9f3cb4ae810e2ef6d0219134b4e546dd0.pdf,Semi-Automatic Image Labelling Using Depth Information,2015
180,VOC,voc,42.7298459,-73.67950216,Rensselaer Polytechnic Institute,edu,11b89011298e193d9e6a1d99302221c1d8645bda,citation,http://openaccess.thecvf.com/content_iccv_2015/papers/Gao_Structured_Feature_Selection_ICCV_2015_paper.pdf,Structured Feature Selection,2015
181,VOC,voc,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,de3245c795bc50ebdb5d929c8da664341238264a,citation,https://arxiv.org/pdf/1705.08590.pdf,Generative Model With Coordinate Metric Learning for Object Recognition Based on 3D Models,2018
182,VOC,voc,37.43131385,-122.16936535,Stanford University,edu,cc2eaa182f33defbb33d69e9547630aab7ed9c9c,citation,http://pdfs.semanticscholar.org/ce2e/e807a63bbdffa530c80915b04d11a7f29a21.pdf,Surpassing Humans and Computers with JELLYBEAN: Crowd-Vision-Hybrid Counting Algorithms,2015
183,VOC,voc,40.00471095,-83.02859368,Ohio State University,edu,cc2eaa182f33defbb33d69e9547630aab7ed9c9c,citation,http://pdfs.semanticscholar.org/ce2e/e807a63bbdffa530c80915b04d11a7f29a21.pdf,Surpassing Humans and Computers with JELLYBEAN: Crowd-Vision-Hybrid Counting Algorithms,2015
184,VOC,voc,40.11116745,-88.22587665,"University of Illinois, Urbana-Champaign",edu,cc2eaa182f33defbb33d69e9547630aab7ed9c9c,citation,http://pdfs.semanticscholar.org/ce2e/e807a63bbdffa530c80915b04d11a7f29a21.pdf,Surpassing Humans and Computers with JELLYBEAN: Crowd-Vision-Hybrid Counting Algorithms,2015
185,VOC,voc,32.0565957,118.77408833,Nanjing University,edu,9c71e6f4e27b3a6f0f872ec683b0f6dfe0966c05,citation,http://pdfs.semanticscholar.org/9c71/e6f4e27b3a6f0f872ec683b0f6dfe0966c05.pdf,"Latent Dirichlet Allocation (LDA) and Topic modeling: models, applications, a survey",2017
186,VOC,voc,1.2962018,103.77689944,National University of Singapore,edu,b88b83d2ffd30bf3bc3be3fb7492fd88f633b2fe,citation,http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR2013/data/Papers/4989a827.pdf,Subcategory-Aware Object Classification,2013
187,VOC,voc,1.2962018,103.77689944,National University of Singapore,edu,b6a3802075d460093977f8566c451f950edf7a47,citation,https://pdfs.semanticscholar.org/0999/e5baf505eed0df8e2661c29354f3757b3399.pdf,Facilitating and Exploring Planar Homogeneous Texture for Indoor Scene Understanding,2016
188,VOC,voc,51.7555205,-1.2261597,Oxford Brookes University,edu,cd6cab9357f333ad9966abc76f830c190a1b7911,citation,https://pdfs.semanticscholar.org/cd6c/ab9357f333ad9966abc76f830c190a1b7911.pdf,"Recognition, reorganisation, reconstruction and reinteraction for scene understanding",2014
189,VOC,voc,47.3764534,8.54770931,ETH Zürich,edu,0fe8b5503681128da84a8454a4cc94470adc09ea,citation,http://pdfs.semanticscholar.org/b96a/0ccae1d15cffe3b479b2c56d9132b05cd846.pdf,Sparsity Potentials for Detecting Objects with the Hough Transform,2012
190,VOC,voc,35.7036227,51.35125097,Sharif University of Technology,edu,0fe8b5503681128da84a8454a4cc94470adc09ea,citation,http://pdfs.semanticscholar.org/b96a/0ccae1d15cffe3b479b2c56d9132b05cd846.pdf,Sparsity Potentials for Detecting Objects with the Hough Transform,2012
191,VOC,voc,47.6423318,-122.1369302,Microsoft,company,9bbc952adb3e3c6091d45d800e806d3373a52bac,citation,https://pdfs.semanticscholar.org/9bbc/952adb3e3c6091d45d800e806d3373a52bac.pdf,Learning Visual Classifiers using Human-centric Annotations,2015
192,VOC,voc,35.6572957,139.54255868,University of Electro-Communications,edu,6e209d7d33c0be8afae863f4e4e9c3e86826711f,citation,http://img.cs.uec.ac.jp/pub/conf16/161204shimok_1_ppt.pdf,Weakly-supervised segmentation by combining CNN feature maps and object saliency maps,2016
193,VOC,voc,40.00229045,116.32098908,Tsinghua University,edu,46d85e1dc7057bef62647bd9241601e9896a1b02,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/2A_040_ext.pdf,Improving object proposals with multi-thresholding straddling expansion,2015
194,VOC,voc,35.2742655,137.01327841,Chubu University,edu,67e3fac91c699c085d47774990572d8ccdc36f15,citation,http://pdfs.semanticscholar.org/67e3/fac91c699c085d47774990572d8ccdc36f15.pdf,Multiple Skip Connections and Dilated Convolutions for Semantic Segmentation,2017
195,VOC,voc,34.0224149,-118.28634407,University of Southern California,edu,a4f29217d2120ed1490aea7e1c5b78c3b76e972f,citation,https://arxiv.org/pdf/1610.06907.pdf,Enhanced object detection via fusion with prior beliefs from image classification,2017
196,VOC,voc,33.776033,-84.39884086,Georgia Institute of Technology,edu,f2d07a77711a8d74bbfa48a0436dae18a698b05a,citation,http://pdfs.semanticscholar.org/f2d0/7a77711a8d74bbfa48a0436dae18a698b05a.pdf,Composite Statistical Learning and Inference for Semantic Segmentation,2014
197,VOC,voc,40.2075951,-8.42566148,University of Coimbra,edu,f2d07a77711a8d74bbfa48a0436dae18a698b05a,citation,http://pdfs.semanticscholar.org/f2d0/7a77711a8d74bbfa48a0436dae18a698b05a.pdf,Composite Statistical Learning and Inference for Semantic Segmentation,2014
198,VOC,voc,55.7039571,13.1902011,Lund University,edu,f2d07a77711a8d74bbfa48a0436dae18a698b05a,citation,http://pdfs.semanticscholar.org/f2d0/7a77711a8d74bbfa48a0436dae18a698b05a.pdf,Composite Statistical Learning and Inference for Semantic Segmentation,2014
199,VOC,voc,61.44964205,23.85877462,Tampere University of Technology,edu,ff11cb09e409996020a2dc3a8afc3b535e6b2482,citation,https://arxiv.org/pdf/1807.03142.pdf,Faster Bounding Box Annotation for Object Detection in Indoor Scenes,2018
200,VOC,voc,35.84658875,127.1350133,Chonbuk National University,edu,e103fa24d7fa297cd206b22b3bf670bfda6c65c4,citation,https://pdfs.semanticscholar.org/e103/fa24d7fa297cd206b22b3bf670bfda6c65c4.pdf,Object Detection in Very High-Resolution Aerial Images Using One-Stage Densely Connected Feature Pyramid Network,2018
201,VOC,voc,41.8268682,-71.40123146,Brown University,edu,9a781a01b5a9c210dd2d27db8b73b7d62bc64837,citation,http://pdfs.semanticscholar.org/9a78/1a01b5a9c210dd2d27db8b73b7d62bc64837.pdf,An Attempt to Build Object Detection Models by Reusing Parts,2013
202,VOC,voc,1.2962018,103.77689944,National University of Singapore,edu,ac559888f996923c06b1cf90db6b57b12e582289,citation,http://pdfs.semanticscholar.org/ac55/9888f996923c06b1cf90db6b57b12e582289.pdf,Benchmarking neuromorphic vision: lessons learnt from computer vision,2015
203,VOC,voc,47.3764534,8.54770931,ETH Zürich,edu,ac559888f996923c06b1cf90db6b57b12e582289,citation,http://pdfs.semanticscholar.org/ac55/9888f996923c06b1cf90db6b57b12e582289.pdf,Benchmarking neuromorphic vision: lessons learnt from computer vision,2015
204,VOC,voc,39.2899685,-76.62196103,University of Maryland,edu,ac559888f996923c06b1cf90db6b57b12e582289,citation,http://pdfs.semanticscholar.org/ac55/9888f996923c06b1cf90db6b57b12e582289.pdf,Benchmarking neuromorphic vision: lessons learnt from computer vision,2015
205,VOC,voc,55.94951105,-3.19534913,University of Edinburgh,edu,2a4fc35acaf09517e9c63821cadd428a84832416,citation,http://www.vision.ee.ethz.ch/en/publications/papers/proceedings/eth_biwi_00905.pdf,Learning object class detectors from weakly annotated video,2012
206,VOC,voc,22.053565,113.39913285,Jilin University,edu,cd4850de71e4e858be5f5e6ef7f48d5bf7decea6,citation,http://pdfs.semanticscholar.org/cd48/50de71e4e858be5f5e6ef7f48d5bf7decea6.pdf,Distribution Entropy Boosted VLAD for Image Retrieval,2016
207,VOC,voc,40.4319722,-86.92389368,Purdue University,edu,34b925a111ba29f73f5c0d1b363f357958d563c1,citation,https://www.microsoft.com/en-us/research/wp-content/uploads/2015/03/Shoaib_DATE_2015.pdf,SAPPHIRE: An always-on context-aware computer vision system for portable devices,2015
208,VOC,voc,47.6423318,-122.1369302,Microsoft,company,34b925a111ba29f73f5c0d1b363f357958d563c1,citation,https://www.microsoft.com/en-us/research/wp-content/uploads/2015/03/Shoaib_DATE_2015.pdf,SAPPHIRE: An always-on context-aware computer vision system for portable devices,2015
209,VOC,voc,24.7925484,120.9951183,National Tsing Hua University,edu,c76b611a986a2e09df22603d93b2d9125aaff369,citation,https://arxiv.org/pdf/1810.07050.pdf,Generating Self-Guided Dense Annotations for Weakly Supervised Semantic Segmentation,2018
210,VOC,voc,22.053565,113.39913285,Jilin University,edu,1927d01b6b9acf865401b544e25b62a7ddbac5fa,citation,https://pdfs.semanticscholar.org/1927/d01b6b9acf865401b544e25b62a7ddbac5fa.pdf,An Enhanced Region Proposal Network for object detection using deep learning method,2018
211,VOC,voc,-33.8809651,151.20107299,University of Technology Sydney,edu,1ecd20f7fc34344e396825d27bc5a9871ab0d0c2,citation,https://arxiv.org/pdf/1810.09091.pdf,SG-One: Similarity Guidance Network for One-Shot Semantic Segmentation,2018
212,VOC,voc,42.3583961,-71.09567788,MIT,edu,26aa0aff1ea1baf848a521363cc455044690e090,citation,http://pdfs.semanticscholar.org/26aa/0aff1ea1baf848a521363cc455044690e090.pdf,A 2D + 3D Rich Data Approach to Scene Understanding,2013
213,VOC,voc,46.0658836,11.1159894,University of Trento,edu,3548cb9ee54bd4c8b3421f1edd393da9038da293,citation,http://www.huppelen.nl/publications/2012cvprUnseenEventCompositionality.pdf,(Unseen) event recognition via semantic compositionality,2012
214,VOC,voc,40.00229045,116.32098908,Tsinghua University,edu,25ee08db14dca641d085584909b551042618b8bf,citation,http://pdfs.semanticscholar.org/25ee/08db14dca641d085584909b551042618b8bf.pdf,Learning to Segment Instances in Videos with Spatial Propagation Network,2017
215,VOC,voc,37.36566745,-120.42158888,"University of California, Merced",edu,25ee08db14dca641d085584909b551042618b8bf,citation,http://pdfs.semanticscholar.org/25ee/08db14dca641d085584909b551042618b8bf.pdf,Learning to Segment Instances in Videos with Spatial Propagation Network,2017
216,VOC,voc,48.9095338,9.1831892,University of Stuttgart,edu,d0f81c31e11af1783644704321903a3d2bd83fd6,citation,https://pdfs.semanticscholar.org/d0f8/1c31e11af1783644704321903a3d2bd83fd6.pdf,3D Façade Labeling over Complex Scenarios: A Case Study Using Convolutional Neural Network and Structure-From-Motion,2018
217,VOC,voc,50.7369302,-3.53647672,University of Exeter,edu,d0f81c31e11af1783644704321903a3d2bd83fd6,citation,https://pdfs.semanticscholar.org/d0f8/1c31e11af1783644704321903a3d2bd83fd6.pdf,3D Façade Labeling over Complex Scenarios: A Case Study Using Convolutional Neural Network and Structure-From-Motion,2018
218,VOC,voc,38.99203005,-76.9461029,University of Maryland College Park,edu,a996f22a2d0c685f7e4972df9f45e99efc3cbb76,citation,https://arxiv.org/pdf/1708.00079.pdf,Towards the Success Rate of One: Real-Time Unconstrained Salient Object Detection,2018
219,VOC,voc,47.05821,15.46019568,Graz University of Technology,edu,4da5f0c1d07725a06c6b4a2646e31ea3a5f14435,citation,http://pdfs.semanticscholar.org/4da5/f0c1d07725a06c6b4a2646e31ea3a5f14435.pdf,End-to-End Training of Hybrid CNN-CRF Models for Semantic Segmentation using Structured Learning,2017
220,VOC,voc,52.3553655,4.9501644,University of Amsterdam,edu,26c58e24687ccbe9737e41837aab74e4a499d259,citation,http://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Li_Codemaps_-_Segment_2013_ICCV_paper.pdf,"Codemaps - Segment, Classify and Search Objects Locally",2013
221,VOC,voc,37.4219999,-122.0840575,Google,company,299b65d5d3914dad9aae2f936165dcebcf78db88,citation,http://doi.ieeecomputersociety.org/10.1109/ICCV.2015.203,Weakly-and Semi-Supervised Learning of a Deep Convolutional Network for Semantic Image Segmentation,2015
222,VOC,voc,-34.9189226,138.60423668,University of Adelaide,edu,cb5dcd048b0eaa78a887a014be26a8a7b1325d36,citation,https://arxiv.org/pdf/1709.04093.pdf,Joint Learning of Set Cardinality and State Distribution,2018
223,VOC,voc,34.2469152,108.91061982,Northwestern Polytechnical University,edu,63660c50e2669a5115c2379e622549d8ed79be00,citation,http://porikli.com/mysite/pdfs/porikli%202017%20-%20Deep%20salient%20object%20detection%20by%20integrating%20multi-level%20cues.pdf,Deep Salient Object Detection by Integrating Multi-level Cues,2017
224,VOC,voc,-35.2776999,149.118527,Australian National University,edu,63660c50e2669a5115c2379e622549d8ed79be00,citation,http://porikli.com/mysite/pdfs/porikli%202017%20-%20Deep%20salient%20object%20detection%20by%20integrating%20multi-level%20cues.pdf,Deep Salient Object Detection by Integrating Multi-level Cues,2017
225,VOC,voc,48.14955455,11.56775314,Technical University Munich,edu,472541ccd941b9b4c52e1f088cc1152de9b3430f,citation,https://arxiv.org/pdf/1612.00197.pdf,Learning in an Uncertain World: Representing Ambiguity Through Multiple Hypotheses,2017
226,VOC,voc,47.3764534,8.54770931,ETH Zürich,edu,9184b0c04013bfdfd82f4f271b5f017396c2f085,citation,https://pdfs.semanticscholar.org/9184/b0c04013bfdfd82f4f271b5f017396c2f085.pdf,Semantic Segmentation for Line Drawing Vectorization Using Neural Networks,2018
227,VOC,voc,37.4102193,-122.05965487,Carnegie Mellon University,edu,57488aa24092fa7118aa5374c90b282a32473cf9,citation,https://arxiv.org/pdf/1807.01257.pdf,A Weakly Supervised Adaptive DenseNet for Classifying Thoracic Diseases and Identifying Abnormalities,2018
228,VOC,voc,39.9492344,-75.19198985,University of Pennsylvania,edu,57488aa24092fa7118aa5374c90b282a32473cf9,citation,https://arxiv.org/pdf/1807.01257.pdf,A Weakly Supervised Adaptive DenseNet for Classifying Thoracic Diseases and Identifying Abnormalities,2018
229,VOC,voc,32.0565957,118.77408833,Nanjing University,edu,7771807cd05f78a4591f2d0b094ddd3e0bd5339a,citation,https://arxiv.org/pdf/1707.06399.pdf,Adaptive Feeding: Achieving Fast and Accurate Detections by Adaptively Combining Object Detectors,2017
230,VOC,voc,50.7944026,-1.0971748,Cambridge University,edu,4558338873556d01fd290de6ddc55721c633a1ad,citation,http://pdfs.semanticscholar.org/4558/338873556d01fd290de6ddc55721c633a1ad.pdf,Training Constrained Deconvolutional Networks for Road Scene Semantic Segmentation,2016
231,VOC,voc,42.3583961,-71.09567788,MIT,edu,85957b49896246bb416c0a182e52b355a8fa40b4,citation,https://arxiv.org/pdf/1806.03510.pdf,Feature Pyramid Network for Multi-Class Land Segmentation,2018
232,VOC,voc,17.4454957,78.34854698,International Institute of Information Technology,edu,f5eb411217f729ad7ae84bfd4aeb3dedb850206a,citation,https://pdfs.semanticscholar.org/f5eb/411217f729ad7ae84bfd4aeb3dedb850206a.pdf,Tackling Low Resolution for Better Scene Understanding,2018
233,VOC,voc,53.8338371,10.7035939,Institute of Systems and Robotics,edu,7fb8d9c36c23f274f2dd84945dd32ec2cc143de1,citation,http://pdfs.semanticscholar.org/8e44/ba779d7cdc23d597c2c6e4420129834e7e21.pdf,Semantic Segmentation with Second-Order Pooling,2012
234,VOC,voc,50.7338124,7.1022465,University of Bonn,edu,7fb8d9c36c23f274f2dd84945dd32ec2cc143de1,citation,http://pdfs.semanticscholar.org/8e44/ba779d7cdc23d597c2c6e4420129834e7e21.pdf,Semantic Segmentation with Second-Order Pooling,2012
235,VOC,voc,37.43131385,-122.16936535,Stanford University,edu,b5e3beb791cc17cdaf131d5cca6ceb796226d832,citation,http://pdfs.semanticscholar.org/b5e3/beb791cc17cdaf131d5cca6ceb796226d832.pdf,Novel Dataset for Fine-Grained Image Categorization: Stanford Dogs,2012
236,VOC,voc,39.94976005,116.33629046,Beijing Jiaotong University,edu,b5968e7bb23f5f03213178c22fd2e47af3afa04c,citation,https://arxiv.org/pdf/1705.07206.pdf,Multiple-Human Parsing in the Wild,2017
237,VOC,voc,1.2962018,103.77689944,National University of Singapore,edu,b5968e7bb23f5f03213178c22fd2e47af3afa04c,citation,https://arxiv.org/pdf/1705.07206.pdf,Multiple-Human Parsing in the Wild,2017
238,VOC,voc,40.11116745,-88.22587665,"University of Illinois, Urbana-Champaign",edu,532c089b43983935e1001c5e35aa35440263beaf,citation,https://arxiv.org/pdf/1804.03166.pdf,G-Distillation: Reducing Overconfident Errors on Novel Samples,2018
239,VOC,voc,33.776033,-84.39884086,Georgia Institute of Technology,edu,35fc0b28d0d674b28dd625d170bc641a36b17318,citation,http://pdfs.semanticscholar.org/35fc/0b28d0d674b28dd625d170bc641a36b17318.pdf,CSI: Composite Statistical Inference Techniques for Semantic Segmentation,2013
240,VOC,voc,55.7039571,13.1902011,Lund University,edu,35fc0b28d0d674b28dd625d170bc641a36b17318,citation,http://pdfs.semanticscholar.org/35fc/0b28d0d674b28dd625d170bc641a36b17318.pdf,CSI: Composite Statistical Inference Techniques for Semantic Segmentation,2013
241,VOC,voc,58.38131405,26.72078081,University of Tartu,edu,e4cb27d2a3e1153cb517d97d61de48ff0483c988,citation,https://pdfs.semanticscholar.org/e4cb/27d2a3e1153cb517d97d61de48ff0483c988.pdf,Viktoria Plemakova Vehicle Detection Based on Convolutional Neural Networks,2018
242,VOC,voc,33.776033,-84.39884086,Georgia Institute of Technology,edu,3d0660e18c17db305b9764bb86b21a429241309e,citation,https://arxiv.org/pdf/1604.03505.pdf,Counting Everyday Objects in Everyday Scenes,2017
243,VOC,voc,37.2381023,127.1903431,Myongji University,edu,a67da2dd79c01e8cc4029ecc5a05b97967403862,citation,https://pdfs.semanticscholar.org/a67d/a2dd79c01e8cc4029ecc5a05b97967403862.pdf,On Selecting Helpful Unlabeled Data for Improving Semi-Supervised Support Vector Machines,2014
244,VOC,voc,40.00229045,116.32098908,Tsinghua University,edu,4ab69672e1116427d685bf7c1edb5b1fd0573b5e,citation,http://bigml.cs.tsinghua.edu.cn/~lingxi/PDFs/Xie_ACMMM12_EdgeGPP.pdf,Spatial pooling of heterogeneous features for image applications,2012
245,VOC,voc,37.43131385,-122.16936535,Stanford University,edu,989c7cdafa9b90ab2ea0a9d8fa60634cc698f174,citation,http://pdfs.semanticscholar.org/989c/7cdafa9b90ab2ea0a9d8fa60634cc698f174.pdf,YoloFlow Real - time Object Tracking in Video CS 229 Course Project,2016
246,VOC,voc,3.12267405,101.65356103,University of Malaya,edu,85af6c005df806b57b306a732dcb98e096d15bfb,citation,https://arxiv.org/pdf/1805.11227.pdf,Getting to Know Low-light Images with The Exclusively Dark Dataset,2018
247,VOC,voc,37.43131385,-122.16936535,Stanford University,edu,cdb293381ff396d6e9c0f5e9578d411e759347fd,citation,https://pdfs.semanticscholar.org/022e/eae0edc09deb228da26d5390874f781ace0f.pdf,3 DR 2 N 2 : A Unified Approach for Single and Multiview 3 D Object Reconstruction,2016
248,VOC,voc,51.7534538,-1.25400997,University of Oxford,edu,0e67717484684d90ae9d4e1bb9cdceb74b194910,citation,http://pdfs.semanticscholar.org/0e67/717484684d90ae9d4e1bb9cdceb74b194910.pdf,Mining Pixels: Weakly Supervised Semantic Segmentation Using Image Labels,2016
249,VOC,voc,40.11116745,-88.22587665,"University of Illinois, Urbana-Champaign",edu,5b4b84ce3518c8a14f57f5f95a1d07fb60e58223,citation,https://pdfs.semanticscholar.org/9f92/05a60ddf1135929e0747db34363b3a8c6bc8.pdf,Diagnosing Error in Object Detectors,2012
250,VOC,voc,42.718568,-84.47791571,Michigan State University,edu,47203943c86e4d9355ffd99cd3d75f37211fd805,citation,http://pdfs.semanticscholar.org/be18/9c7066c4d99d617d137c975139c594ad09af.pdf,Semi-Crowdsourced Clustering: Generalizing Crowd Labeling by Robust Distance Metric Learning,2012
251,VOC,voc,42.8298248,-73.87719385,GE Global Research Center,edu,47203943c86e4d9355ffd99cd3d75f37211fd805,citation,http://pdfs.semanticscholar.org/be18/9c7066c4d99d617d137c975139c594ad09af.pdf,Semi-Crowdsourced Clustering: Generalizing Crowd Labeling by Robust Distance Metric Learning,2012
252,VOC,voc,39.95472495,-75.15346905,Temple University,edu,45ff38add61df32a027048624f58952a67a7c5f5,citation,http://pdfs.semanticscholar.org/45ff/38add61df32a027048624f58952a67a7c5f5.pdf,Deep Context Convolutional Neural Networks for Semantic Segmentation,2017
253,VOC,voc,43.08250655,-77.67121663,Rochester Institute of Technology,edu,0a789733ccb300d0dd9df6174faaa7e8c64e0409,citation,http://pdfs.semanticscholar.org/0a78/9733ccb300d0dd9df6174faaa7e8c64e0409.pdf,High-Resolution Multispectral Dataset for Semantic Segmentation,2017
254,VOC,voc,47.05821,15.46019568,Graz University of Technology,edu,9d3a6e459e0cecda20a8afd69d182877ff0224cf,citation,http://pdfs.semanticscholar.org/9d3a/6e459e0cecda20a8afd69d182877ff0224cf.pdf,A Framework for Articulated Hand Pose Estimation and Evaluation,2015
255,VOC,voc,52.3553655,4.9501644,University of Amsterdam,edu,943a1e218b917172199e524944006aa349f58968,citation,https://arxiv.org/pdf/1807.11857.pdf,Joint Learning of Intrinsic Images and Semantic Segmentation,2018
256,VOC,voc,40.0044795,116.370238,Chinese Academy of Sciences,edu,5f68e2131d9275d56092e9fca05bcfc65abea0d8,citation,http://doi.acm.org/10.1145/2806416.2806469,Cross-Modal Similarity Learning: A Low Rank Bilinear Formulation,2015
257,VOC,voc,40.9153196,-73.1270626,Stony Brook University,edu,f989a20fbcc2d576c0c4514a0e5085c741580778,citation,https://arxiv.org/pdf/1612.03236.pdf,Co-localization with Category-Consistent Features and Geodesic Distance Propagation,2017
258,VOC,voc,42.36782045,-71.12666653,Harvard University,edu,f989a20fbcc2d576c0c4514a0e5085c741580778,citation,https://arxiv.org/pdf/1612.03236.pdf,Co-localization with Category-Consistent Features and Geodesic Distance Propagation,2017
259,VOC,voc,24.7925484,120.9951183,National Tsing Hua University,edu,cf94200a476dc15d6da95db809349db4cfd8e92c,citation,https://arxiv.org/pdf/1807.11436.pdf,Leveraging Motion Priors in Videos for Improving Human Segmentation,2018
260,VOC,voc,-34.9189226,138.60423668,University of Adelaide,edu,25dba68e4db0ce361032126b91f734f9252cae7c,citation,https://arxiv.org/pdf/1611.08998.pdf,DeepSetNet: Predicting Sets with Deep Neural Networks,2017
261,VOC,voc,59.34986645,18.07063213,"KTH Royal Institute of Technology, Stockholm",edu,883767948f535ea2bf8a0c03047ca9064e1b078f,citation,https://pdfs.semanticscholar.org/8837/67948f535ea2bf8a0c03047ca9064e1b078f.pdf,A Combination of Object Recognition and Localisation for an Autonomous Racecar,0
262,VOC,voc,23.09461185,113.28788994,Sun Yat-Sen University,edu,18095a530b532a70f3b615fef2f59e6fdacb2d84,citation,https://arxiv.org/pdf/1604.02271v3.pdf,Deep Structured Scene Parsing by Learning with Image Descriptions,2016
263,VOC,voc,45.7413921,126.62552755,Harbin Institute of Technology,edu,18095a530b532a70f3b615fef2f59e6fdacb2d84,citation,https://arxiv.org/pdf/1604.02271v3.pdf,Deep Structured Scene Parsing by Learning with Image Descriptions,2016
264,VOC,voc,-27.47715625,153.02841004,Queensland University of Technology,edu,9397e7acd062245d37350f5c05faf56e9cfae0d6,citation,http://pdfs.semanticscholar.org/9397/e7acd062245d37350f5c05faf56e9cfae0d6.pdf,DeepFruits: A Fruit Detection System Using Deep Neural Networks,2016
265,VOC,voc,40.00229045,116.32098908,Tsinghua University,edu,03a24d15533dae78de78fd9d5f6c9050fb97f186,citation,https://doi.org/10.1109/SSCI.2016.7850112,Pedestrian detection aided by scale-discriminative network,2016
266,VOC,voc,-33.88890695,151.18943366,University of Sydney,edu,17d4fd92352baf6f0039ec64d43ca572c8252384,citation,https://arxiv.org/pdf/1806.07049.pdf,MoE-SPNet: A mixture-of-experts scene parsing network,2018
267,VOC,voc,47.05821,15.46019568,Graz University of Technology,edu,30a29f6c407749e97bc7c2db5674a62773af9d27,citation,http://pdfs.semanticscholar.org/30a2/9f6c407749e97bc7c2db5674a62773af9d27.pdf,Tracking and Visual Quality Inspection in Harsh Environments (print-version),2012
268,VOC,voc,37.43131385,-122.16936535,Stanford University,edu,280d632ef3234c5ab06018c6eaccead75bc173b3,citation,http://pdfs.semanticscholar.org/6b1a/c8e438041ac02cc8fab5762ca069c386f473.pdf,Efficient Image and Video Co-localization with Frank-Wolfe Algorithm,2014
269,VOC,voc,31.83907195,117.26420748,University of Science and Technology of China,edu,0f945f796a9343b51a3dc69941c0fa1a98c0f448,citation,http://pdfs.semanticscholar.org/a7ef/979ce52b9e4bcbd6ee5524dfd4e92baf6292.pdf,Local Hypersphere Coding Based on Edges between Visual Words,2012
270,VOC,voc,-34.9189226,138.60423668,University of Adelaide,edu,0db6a58927a671c01089c53248b0e1c36bdc3231,citation,http://openaccess.thecvf.com/content_cvpr_2016/papers/Pham_Efficient_Point_Process_CVPR_2016_paper.pdf,Efficient Point Process Inference for Large-Scale Object Detection,2016
271,VOC,voc,42.2942142,-83.71003894,University of Michigan,edu,14d0afea52c4e9b7a488f6398e4a92bd4f4b93c7,citation,https://arxiv.org/pdf/1804.07667.pdf,Rethinking the Faster R-CNN Architecture for Temporal Action Localization,2018
272,VOC,voc,42.2942142,-83.71003894,University of Michigan,edu,8da1b0834688edb311a803532e33939e9ecf8292,citation,https://arxiv.org/pdf/1808.01244.pdf,CornerNet: Detecting Objects as Paired Keypoints,2018
273,VOC,voc,39.2899685,-76.62196103,University of Maryland,edu,f42d3225afd9e463ddb7a355f64b54af8bd14227,citation,https://arxiv.org/pdf/1804.10343.pdf,Stacked U-Nets: A No-Frills Approach to Natural Image Segmentation,2018
274,VOC,voc,31.83907195,117.26420748,University of Science and Technology of China,edu,a1dd88f44d045b360569a9a8721f728afbd951c3,citation,https://pdfs.semanticscholar.org/a1dd/88f44d045b360569a9a8721f728afbd951c3.pdf,Relief Impression Image Detection : Unsupervised Extracting Objects Directly From Feature Arrangements of Deep CNN,2016
275,VOC,voc,34.0687788,-118.4450094,"University of California, Los Angeles",edu,fc027fccb19512a439fc17181c34ee1c3aad51b5,citation,https://arxiv.org/pdf/1708.03383.pdf,Joint Multi-person Pose Estimation and Semantic Part Segmentation,2017
276,VOC,voc,39.329053,-76.619425,Johns Hopkins University,edu,377f2b65e6a9300448bdccf678cde59449ecd337,citation,https://arxiv.org/pdf/1804.10275.pdf,Pushing the Limits of Unconstrained Face Detection: a Challenge Dataset and Baseline Results,2018
277,VOC,voc,40.47913175,-74.43168868,Rutgers University,edu,377f2b65e6a9300448bdccf678cde59449ecd337,citation,https://arxiv.org/pdf/1804.10275.pdf,Pushing the Limits of Unconstrained Face Detection: a Challenge Dataset and Baseline Results,2018
278,VOC,voc,31.20081505,121.42840681,Shanghai Jiao Tong University,edu,451eed7fd8ae281d1cc76ca8cdecbaf47816e55a,citation,http://pdfs.semanticscholar.org/451e/ed7fd8ae281d1cc76ca8cdecbaf47816e55a.pdf,Close Yet Distinctive Domain Adaptation,2017
279,VOC,voc,35.9990522,-78.9290629,Duke University,edu,992b93ab9d016640551a8cebcaf4757288154f32,citation,http://pdfs.semanticscholar.org/e38c/f96363aaf1f17c487c484ad27d3175ca4b31.pdf,Nested Pictorial Structures,2012
280,VOC,voc,43.08250655,-77.67121663,Rochester Institute of Technology,edu,7489990ea3d6ab4c1c86c9ed9f049399961dfaef,citation,https://people.rit.edu/ndcsma/pubs/WNYISPW_Nov_2014_Chew.pdf,Normalized cutswith soft must-link constraints for image segmentation and clustering,2014
281,VOC,voc,59.34986645,18.07063213,"KTH Royal Institute of Technology, Stockholm",edu,41199678ad9370ff8ca7e9e3c2617b62a297fac3,citation,http://pdfs.semanticscholar.org/4119/9678ad9370ff8ca7e9e3c2617b62a297fac3.pdf,Multitask Deep Learning models for real-time deployment in embedded systems,2017
282,VOC,voc,39.7487516,30.47653071,Eskisehir Osmangazi University,edu,7fb74f5abab4830e3cdaf477230e5571d9e3ca57,citation,http://openaccess.thecvf.com/content_cvpr_2017/papers/Cevikalp_Polyhedral_Conic_Classifiers_CVPR_2017_paper.pdf,Polyhedral Conic Classifiers for Visual Object Detection and Classification,2017
283,VOC,voc,33.776033,-84.39884086,Georgia Institute of Technology,edu,10793d1475607929fedc6d9a677911ad16843e58,citation,http://openaccess.thecvf.com/content_cvpr_2016/papers/Li_Unsupervised_Learning_of_CVPR_2016_paper.pdf,Unsupervised Learning of Edges,2016
284,VOC,voc,31.30104395,121.50045497,Fudan University,edu,c94fd258a8f1e8f4033a7fe491f1372dcf7d3cd6,citation,https://arxiv.org/pdf/1807.04897.pdf,TS ^2 2 C: Tight Box Mining with Surrounding Segmentation Context for Weakly Supervised Object Detection,2018
285,VOC,voc,1.2962018,103.77689944,National University of Singapore,edu,c94fd258a8f1e8f4033a7fe491f1372dcf7d3cd6,citation,https://arxiv.org/pdf/1807.04897.pdf,TS ^2 2 C: Tight Box Mining with Surrounding Segmentation Context for Weakly Supervised Object Detection,2018
286,VOC,voc,52.5180641,13.3250425,TU Berlin,edu,2581a12189eb1a0b5b27a7fd1c2cbe44c88fcc20,citation,http://arxiv.org/pdf/1512.00172v1.pdf,Analyzing Classifiers: Fisher Vectors and Deep Neural Networks,2016
287,VOC,voc,32.0565957,118.77408833,Nanjing University,edu,96416b1b44fb05302c6e9a8ab1b74d9204995e73,citation,http://pdfs.semanticscholar.org/9641/6b1b44fb05302c6e9a8ab1b74d9204995e73.pdf,Learning Effective Binary Visual Representations with Deep Networks,2018
288,VOC,voc,42.3619407,-71.0904378,MIT CSAIL,edu,aa2ddae22760249729ac2c2c4e24c8b665bcd40e,citation,https://pdfs.semanticscholar.org/8c47/635ae7f1641c2bdd45026ad7dbff70c24398.pdf,Interpretable Basis Decomposition for Visual Explanation,2018
289,VOC,voc,42.2942142,-83.71003894,University of Michigan,edu,60542b1a857024c79db8b5b03db6e79f74ec8f9f,citation,https://arxiv.org/pdf/1702.05448.pdf,Learning to Detect Human-Object Interactions,2018
290,VOC,voc,36.3693473,120.673818,Shandong University,edu,bd8a85acaa45d4068fca584e8d9e3bd3bb4eea4d,citation,http://pdfs.semanticscholar.org/bd8a/85acaa45d4068fca584e8d9e3bd3bb4eea4d.pdf,Toward Scene Recognition by Discovering Semantic Structures and Parts,2015
291,VOC,voc,49.2767454,-122.91777375,Simon Fraser University,edu,bd8a85acaa45d4068fca584e8d9e3bd3bb4eea4d,citation,http://pdfs.semanticscholar.org/bd8a/85acaa45d4068fca584e8d9e3bd3bb4eea4d.pdf,Toward Scene Recognition by Discovering Semantic Structures and Parts,2015
292,VOC,voc,55.94951105,-3.19534913,University of Edinburgh,edu,456abee9c8d31f004b2f0a3b47222043e20f5042,citation,https://arxiv.org/pdf/1603.09188.pdf,Unsupervised Visual Sense Disambiguation for Verbs using Multimodal Embeddings,2016
293,VOC,voc,31.83907195,117.26420748,University of Science and Technology of China,edu,7c2f6424b0bb2c28f282fbc0b4e98bf85d5584eb,citation,http://pdfs.semanticscholar.org/a5ae/7d662ed086bc5b0c9a2c1dc54fcb23635000.pdf,Relief R-CNN: Utilizing Convolutional Feature Interrelationship for Fast Object Detection Deployment,2016
294,VOC,voc,22.53521465,113.9315911,Shenzhen University,edu,7c2f6424b0bb2c28f282fbc0b4e98bf85d5584eb,citation,http://pdfs.semanticscholar.org/a5ae/7d662ed086bc5b0c9a2c1dc54fcb23635000.pdf,Relief R-CNN: Utilizing Convolutional Feature Interrelationship for Fast Object Detection Deployment,2016
295,VOC,voc,37.5557271,127.0436642,Hanyang University,edu,59e9934720baf3c5df3a0e1e988202856e1f83ce,citation,https://arxiv.org/pdf/1511.04136.pdf,UA-DETRAC: A New Benchmark and Protocol for Multi-Object Detection and Tracking,2015
296,VOC,voc,40.0141905,-83.0309143,University of Electronic Science and Technology of China,edu,d58c44bd9b464d9ac1db1344445c31364925f75a,citation,https://pdfs.semanticscholar.org/d58c/44bd9b464d9ac1db1344445c31364925f75a.pdf,TBN: Convolutional Neural Network with Ternary Inputs and Binary Weights,2018
297,VOC,voc,37.43131385,-122.16936535,Stanford University,edu,81ba5202424906f64b77f68afca063658139fbb2,citation,https://arxiv.org/pdf/1611.09078.pdf,Social Scene Understanding: End-to-End Multi-person Action Localization and Collective Activity Recognition,2017
298,VOC,voc,46.109237,7.08453549,IDIAP Research Institute,edu,81ba5202424906f64b77f68afca063658139fbb2,citation,https://arxiv.org/pdf/1611.09078.pdf,Social Scene Understanding: End-to-End Multi-person Action Localization and Collective Activity Recognition,2017
299,VOC,voc,50.7338124,7.1022465,University of Bonn,edu,0b6f64c78c44dc043e2972fa7bfe2a5753768609,citation,https://doi.org/10.1109/ICPR.2016.7900008,A future for learning semantic models of man-made environments,2016
300,VOC,voc,30.5097537,114.4062881,Huazhong University of Science and Technology,edu,016eb7b32d1fdec0899151fb03799378bf59bbe5,citation,http://pdfs.semanticscholar.org/016e/b7b32d1fdec0899151fb03799378bf59bbe5.pdf,Point Linking Network for Object Detection,2017
301,VOC,voc,33.9928298,-81.02685168,University of South Carolina,edu,cd9d654c6a4250e0cf8bcfddc2afab9e70ee6cae,citation,http://pdfs.semanticscholar.org/cd9d/654c6a4250e0cf8bcfddc2afab9e70ee6cae.pdf,Object Detection with Mask-based Feature Encoding,2018
302,VOC,voc,36.20304395,117.05842113,Tianjin University,edu,cd9d654c6a4250e0cf8bcfddc2afab9e70ee6cae,citation,http://pdfs.semanticscholar.org/cd9d/654c6a4250e0cf8bcfddc2afab9e70ee6cae.pdf,Object Detection with Mask-based Feature Encoding,2018
303,VOC,voc,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,28737575297a20d431dd2b777a79a8be2c9c2bbd,citation,http://pdfs.semanticscholar.org/2873/7575297a20d431dd2b777a79a8be2c9c2bbd.pdf,Object Ranking on Deformable Part Models with Bagged LambdaMART,2014
304,VOC,voc,40.11116745,-88.22587665,"University of Illinois, Urbana-Champaign",edu,46702e0127e16a4d6a1feda3ffc5f0f123957e87,citation,https://arxiv.org/pdf/1809.06131.pdf,Revisit Multinomial Logistic Regression in Deep Learning: Data Dependent Model Initialization for Image Recognition,2018
305,VOC,voc,34.0687788,-118.4450094,"University of California, Los Angeles",edu,d2b2cb1d5cc1aa30cf5be7bcb0494198934caabb,citation,http://pdfs.semanticscholar.org/d2b2/cb1d5cc1aa30cf5be7bcb0494198934caabb.pdf,A Restricted Visual Turing Test for Deep Scene and Event Understanding,2015
306,VOC,voc,37.8687126,-122.25586815,"University of California, Berkeley",edu,446fbff6a2a7c9989b0a0465f960e236d9a5e886,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Pathak_Context_Encoders_Feature_CVPR_2016_paper.pdf,Context Encoders: Feature Learning by Inpainting,2016
307,VOC,voc,51.49887085,-0.17560797,Imperial College London,edu,291e5377df2eec4835b5c6889896941831a11c69,citation,http://pdfs.semanticscholar.org/291e/5377df2eec4835b5c6889896941831a11c69.pdf,Recovering 6D Object Pose: Multi-modal Analyses on Challenges,2017
308,VOC,voc,40.9153196,-73.1270626,Stony Brook University,edu,b69fbf046faf685655b5fa52fef07fb77e75eff4,citation,http://pdfs.semanticscholar.org/b69f/bf046faf685655b5fa52fef07fb77e75eff4.pdf,Modeling guidance and recognition in categorical search: bridging human and computer object detection.,2013
309,VOC,voc,39.7487516,30.47653071,Eskisehir Osmangazi University,edu,13bda03fc8984d5943ed8d02e49a779d27c84114,citation,http://doi.ieeecomputersociety.org/10.1109/CVPR.2012.6248047,Efficient object detection using cascades of nearest convex model classifiers,2012
310,VOC,voc,50.7338124,7.1022465,University of Bonn,edu,87a66ccc68374ffb704ee6fb9fa7df369718095c,citation,http://pdfs.semanticscholar.org/ea90/16fb585ba6449d3d6f98bf85fa0bcd1f4621.pdf,Multi-person Pose Estimation with Local Joint-to-Person Associations,2016
311,VOC,voc,39.9922379,116.30393816,Peking University,edu,4960ab1cef23e5ccd60173725ea280f462164a0e,citation,https://pdfs.semanticscholar.org/4960/ab1cef23e5ccd60173725ea280f462164a0e.pdf,Video Object Segmentation by Learning Location-Sensitive Embeddings,2018
312,VOC,voc,39.977217,116.337632,Microsoft Research Asia,company,4960ab1cef23e5ccd60173725ea280f462164a0e,citation,https://pdfs.semanticscholar.org/4960/ab1cef23e5ccd60173725ea280f462164a0e.pdf,Video Object Segmentation by Learning Location-Sensitive Embeddings,2018
313,VOC,voc,35.9990522,-78.9290629,Duke University,edu,8856fbf333b2aba7b9f1f746e16a2b7f083ee5b8,citation,http://pdfs.semanticscholar.org/8856/fbf333b2aba7b9f1f746e16a2b7f083ee5b8.pdf,Analyzing animal behavior via classifying each video frame using convolutional neural networks,2015
314,VOC,voc,34.1235825,108.83546,Xidian University,edu,f9f01af981f8d25f0c96ea06d88be62dabb79256,citation,https://pdfs.semanticscholar.org/f9f0/1af981f8d25f0c96ea06d88be62dabb79256.pdf,Terahertz Image Detection with the Improved Faster Region-Based Convolutional Neural Network,2018
315,VOC,voc,37.5600406,126.9369248,Yonsei University,edu,09066d7d0bb6273bf996c8538d7b34c38ea6a500,citation,https://arxiv.org/pdf/1809.01845.pdf,"Yes, IoU loss is submodular - as a function of the mispredictions",2018
316,VOC,voc,49.2579566,7.04577417,Max Planck Institute for Informatics,edu,4aeebd1c9b4b936ed2e4d988d8d28e27f129e6f1,citation,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Chiu_See_the_Difference_ICCV_2015_paper.pdf,See the Difference: Direct Pre-Image Reconstruction and Pose Estimation by Differentiating HOG,2015
317,VOC,voc,34.0687788,-118.4450094,"University of California, Los Angeles",edu,232ff2dab49cb5a1dae1012fd7ba53382909ec18,citation,http://pdfs.semanticscholar.org/232f/f2dab49cb5a1dae1012fd7ba53382909ec18.pdf,Semantic Video Segmentation from Occlusion Relations within a Convex Optimization Framework,2013
318,VOC,voc,50.13053055,8.69234224,University of Frankfurt,edu,465c34c3334f29de28f973b7702a235509649429,citation,http://pdfs.semanticscholar.org/465c/34c3334f29de28f973b7702a235509649429.pdf,Stereopsis via deep learning,2013
319,VOC,voc,47.6543238,-122.30800894,University of Washington,edu,caa2ded6d8d5de97c824d29b0c7a18d220c596c8,citation,https://arxiv.org/pdf/1709.02554.pdf,Learning to Segment Breast Biopsy Whole Slide Images,2018
320,VOC,voc,44.48116865,-73.2002179,University of Vermont,edu,caa2ded6d8d5de97c824d29b0c7a18d220c596c8,citation,https://arxiv.org/pdf/1709.02554.pdf,Learning to Segment Breast Biopsy Whole Slide Images,2018
321,VOC,voc,42.2942142,-83.71003894,University of Michigan,edu,289d833a35c2156b7e332e67d1cb099fd0683025,citation,http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Chao_HICO_A_Benchmark_ICCV_2015_paper.pdf,HICO: A Benchmark for Recognizing Human-Object Interactions in Images,2015
322,VOC,voc,37.8687126,-122.25586815,"University of California, Berkeley",edu,0fbdd4b8eb9e4c4cfbe5b76ab29ab8b0219fbdc0,citation,https://people.eecs.berkeley.edu/~pathak/papers/iccv15.pdf,Constrained Convolutional Neural Networks for Weakly Supervised Segmentation,2015
323,VOC,voc,39.9601488,116.35193921,Beijing University of Posts and Telecommunications,edu,f94f79168c1cfaebb8eab5151e01d56478ab0b73,citation,http://pdfs.semanticscholar.org/f94f/79168c1cfaebb8eab5151e01d56478ab0b73.pdf,Optimizing Region Selection for Weakly Supervised Object Detection,2017
324,VOC,voc,40.0044795,116.370238,Chinese Academy of Sciences,edu,6bb51f431f348b2b3e1db859827e80f97a576c30,citation,http://pdfs.semanticscholar.org/6bb5/1f431f348b2b3e1db859827e80f97a576c30.pdf,Irregular Convolutional Neural Networks,2017
325,VOC,voc,22.42031295,114.20788644,Chinese University of Hong Kong,edu,b78e611c32dc0daf762cfa93044558cdb545d857,citation,http://pdfs.semanticscholar.org/b78e/611c32dc0daf762cfa93044558cdb545d857.pdf,Temporal Action Detection with Structured Segment Networks Supplementary Materials,2017
326,VOC,voc,48.14955455,11.56775314,Technical University Munich,edu,bc12715a1ddf1a540dab06bf3ac4f3a32a26b135,citation,http://pdfs.semanticscholar.org/bc12/715a1ddf1a540dab06bf3ac4f3a32a26b135.pdf,Tracking the Trackers: An Analysis of the State of the Art in Multiple Object Tracking,2017
327,VOC,voc,-34.9189226,138.60423668,University of Adelaide,edu,bc12715a1ddf1a540dab06bf3ac4f3a32a26b135,citation,http://pdfs.semanticscholar.org/bc12/715a1ddf1a540dab06bf3ac4f3a32a26b135.pdf,Tracking the Trackers: An Analysis of the State of the Art in Multiple Object Tracking,2017
328,VOC,voc,31.20081505,121.42840681,Shanghai Jiao Tong University,edu,4d1757aacbc49c74a5d4e53259c92ab0e47544da,citation,https://arxiv.org/pdf/1805.04310.pdf,Weakly and Semi Supervised Human Body Part Parsing via Pose-Guided Knowledge Transfer,2018
329,VOC,voc,36.1112058,140.1055176,University of Tsukuba,edu,d392098688a999c70589c995bd4427c212eff69d,citation,http://pdfs.semanticscholar.org/d392/098688a999c70589c995bd4427c212eff69d.pdf,Object Repositioning Based on the Perspective in a Single Image,2014
330,VOC,voc,22.42031295,114.20788644,Chinese University of Hong Kong,edu,1c1f21bf136fe2eec412e5f70fd918c27c5ccb0a,citation,http://pdfs.semanticscholar.org/1c1f/21bf136fe2eec412e5f70fd918c27c5ccb0a.pdf,Object Detection and Viewpoint Estimation with Auto-masking Neural Network,2014
331,VOC,voc,22.59805605,113.98533784,Shenzhen Institutes of Advanced Technology,edu,1c1f21bf136fe2eec412e5f70fd918c27c5ccb0a,citation,http://pdfs.semanticscholar.org/1c1f/21bf136fe2eec412e5f70fd918c27c5ccb0a.pdf,Object Detection and Viewpoint Estimation with Auto-masking Neural Network,2014
332,VOC,voc,51.49887085,-0.17560797,Imperial College London,edu,72e9acdd64e71fc2084acaf177aafaa2e075bd8c,citation,http://pdfs.semanticscholar.org/72e9/acdd64e71fc2084acaf177aafaa2e075bd8c.pdf,The 2017 Hands in the Million Challenge on 3D Hand Pose Estimation,2017
333,VOC,voc,51.49887085,-0.17560797,Imperial College London,edu,0209389b8369aaa2a08830ac3b2036d4901ba1f1,citation,https://arxiv.org/pdf/1612.01202v2.pdf,DenseReg: Fully Convolutional Dense Shape Regression In-the-Wild,2017
334,VOC,voc,51.5231607,-0.1282037,University College London,edu,0209389b8369aaa2a08830ac3b2036d4901ba1f1,citation,https://arxiv.org/pdf/1612.01202v2.pdf,DenseReg: Fully Convolutional Dense Shape Regression In-the-Wild,2017
335,VOC,voc,50.7338124,7.1022465,University of Bonn,edu,07b8a9a225b738c4074a50cf80ee5fe516878421,citation,https://arxiv.org/pdf/1807.09169.pdf,Convolutional Simplex Projection Network for Weakly Supervised Semantic Segmentation,2018
336,VOC,voc,37.43131385,-122.16936535,Stanford University,edu,1bd1645a629f1b612960ab9bba276afd4cf7c666,citation,http://arxiv.org/pdf/1506.04878.pdf,End-to-End People Detection in Crowded Scenes,2016
337,VOC,voc,49.2579566,7.04577417,Max Planck Institute for Informatics,edu,1bd1645a629f1b612960ab9bba276afd4cf7c666,citation,http://arxiv.org/pdf/1506.04878.pdf,End-to-End People Detection in Crowded Scenes,2016
338,VOC,voc,43.7776426,11.259765,University of Florence,edu,1bbe0371ca22c2fdb6e0d098049bbf6430324bdb,citation,http://doi.acm.org/10.1145/2906152,"Socializing the Semantic Gap: A Comparative Survey on Image Tag Assignment, Refinement and Retrieval",2016
339,VOC,voc,37.43131385,-122.16936535,Stanford University,edu,1bbe0371ca22c2fdb6e0d098049bbf6430324bdb,citation,http://doi.acm.org/10.1145/2906152,"Socializing the Semantic Gap: A Comparative Survey on Image Tag Assignment, Refinement and Retrieval",2016
340,VOC,voc,34.7275714,135.2371,Kobe University,edu,9954f7ee5288724184f9420e39cca9165efa6822,citation,http://www.me.cs.scitec.kobe-u.ac.jp/~takigu/pdf/2015/Th5_4.pdf,Estimation of object functions using deformable part model,2015
341,VOC,voc,48.14955455,11.56775314,Technical University Munich,edu,e212b2bc41645fe467a73d004067fcf1ca77d87f,citation,http://pdfs.semanticscholar.org/e212/b2bc41645fe467a73d004067fcf1ca77d87f.pdf,Deep Active Contours,2016
342,VOC,voc,55.94951105,-3.19534913,University of Edinburgh,edu,51c4ecf4539f56c4b1035b890f743b3a91dd758b,citation,http://arxiv.org/abs/1504.06434,Situational object boundary detection,2015
343,VOC,voc,37.8687126,-122.25586815,"University of California, Berkeley",edu,007e86cb55f0ba0415a7764a1e9f9566c1e8784b,citation,http://pdfs.semanticscholar.org/2677/3023b17ba560bad6a679930710a9049abca5.pdf,Adversarial Feature Learning,2016
344,VOC,voc,40.00229045,116.32098908,Tsinghua University,edu,54d97ea9a5f92761dddd148fb0e602c2293e7c16,citation,https://pdfs.semanticscholar.org/54d9/7ea9a5f92761dddd148fb0e602c2293e7c16.pdf,Associating Inter-image Salient Instances for Weakly Supervised Semantic Segmentation,2018
345,VOC,voc,51.4879961,-3.17969747,Cardiff University,edu,54d97ea9a5f92761dddd148fb0e602c2293e7c16,citation,https://pdfs.semanticscholar.org/54d9/7ea9a5f92761dddd148fb0e602c2293e7c16.pdf,Associating Inter-image Salient Instances for Weakly Supervised Semantic Segmentation,2018
346,VOC,voc,51.5231607,-0.1282037,University College London,edu,0e923b74fd41f73f57e22f66397feeea67e834f0,citation,http://pdfs.semanticscholar.org/0e92/3b74fd41f73f57e22f66397feeea67e834f0.pdf,Invariant encoding schemes for visual recognition,2012
347,VOC,voc,34.0224149,-118.28634407,University of Southern California,edu,93cba94ff0ff96f865ce24ea01e9c006369d75ff,citation,https://arxiv.org/pdf/1803.03879.pdf,Knowledge Aided Consistency for Weakly Supervised Phrase Grounding,2018
348,VOC,voc,35.704514,51.40972058,Amirkabir University of Technology,edu,24fc311970e097efc317c0f98d2df37b828bfbad,citation,https://arxiv.org/pdf/1709.08019v2.pdf,Semi-supervised hierarchical semantic object parsing,2017
349,VOC,voc,37.4102193,-122.05965487,Carnegie Mellon University,edu,5c4d4fd37e8c80ae95c00973531f34a6d810ea3a,citation,https://arxiv.org/pdf/1603.09439.pdf,The Open World of Micro-Videos,2016
350,VOC,voc,37.26728,126.9841151,Seoul National University,edu,71b973c87965e4086e75fd2379dd1bd8e3f8231e,citation,https://arxiv.org/pdf/1606.02393.pdf,Progressive Attention Networks for Visual Attribute Prediction,2018
351,VOC,voc,37.4102193,-122.05965487,Carnegie Mellon University,edu,20c02e98602f6adf1cebaba075d45cef50de089f,citation,https://arxiv.org/pdf/1808.07507.pdf,Video Jigsaw: Unsupervised Learning of Spatiotemporal Context for Video Action Recognition,2018
352,VOC,voc,33.776033,-84.39884086,Georgia Institute of Technology,edu,20c02e98602f6adf1cebaba075d45cef50de089f,citation,https://arxiv.org/pdf/1808.07507.pdf,Video Jigsaw: Unsupervised Learning of Spatiotemporal Context for Video Action Recognition,2018
353,VOC,voc,47.6543238,-122.30800894,University of Washington,edu,c17ed26650a67e80151f5312fa15b5c423acc797,citation,http://pdfs.semanticscholar.org/c17e/d26650a67e80151f5312fa15b5c423acc797.pdf,Multiple-Kernel Based Vehicle Tracking Using 3D Deformable Model and Camera Self-Calibration,2017
354,VOC,voc,36.05238585,140.11852361,Institute of Industrial Science,edu,c17ed26650a67e80151f5312fa15b5c423acc797,citation,http://pdfs.semanticscholar.org/c17e/d26650a67e80151f5312fa15b5c423acc797.pdf,Multiple-Kernel Based Vehicle Tracking Using 3D Deformable Model and Camera Self-Calibration,2017
355,VOC,voc,35.9020448,139.93622009,University of Tokyo,edu,c17ed26650a67e80151f5312fa15b5c423acc797,citation,http://pdfs.semanticscholar.org/c17e/d26650a67e80151f5312fa15b5c423acc797.pdf,Multiple-Kernel Based Vehicle Tracking Using 3D Deformable Model and Camera Self-Calibration,2017
356,VOC,voc,47.6423318,-122.1369302,Microsoft,company,c17ed26650a67e80151f5312fa15b5c423acc797,citation,http://pdfs.semanticscholar.org/c17e/d26650a67e80151f5312fa15b5c423acc797.pdf,Multiple-Kernel Based Vehicle Tracking Using 3D Deformable Model and Camera Self-Calibration,2017
357,VOC,voc,31.21051105,29.91314562,Alexandria University,edu,0ce08f1cc6684495d12c2da157a056c7b88ffcd9,citation,http://pdfs.semanticscholar.org/0ce0/8f1cc6684495d12c2da157a056c7b88ffcd9.pdf,Multi-Modality Feature Transform: An Interactive Image Segmentation Approach,2015
358,VOC,voc,1.3484104,103.68297965,Nanyang Technological University,edu,567078a51ea63b70396dca5dabb50a10a736d991,citation,https://pdfs.semanticscholar.org/1b5a/3bdb174df1ff36c1c101739d6daaec07760d.pdf,Conditional Generative Adversarial Network for Structured Domain Adaptation,2018
359,VOC,voc,43.0008093,-78.7889697,University at Buffalo,edu,567078a51ea63b70396dca5dabb50a10a736d991,citation,https://pdfs.semanticscholar.org/1b5a/3bdb174df1ff36c1c101739d6daaec07760d.pdf,Conditional Generative Adversarial Network for Structured Domain Adaptation,2018
360,VOC,voc,40.00229045,116.32098908,Tsinghua University,edu,6e4e5ef25f657de8fb383c8dfeb8e229eea28bb9,citation,https://arxiv.org/pdf/1707.01691.pdf,RON: Reverse Connection with Objectness Prior Networks for Object Detection,2017
361,VOC,voc,50.0764296,14.41802312,Czech Technical University,edu,cf528f9fe6588b71efa94c219979ce111fc9c1c9,citation,http://pdfs.semanticscholar.org/cf52/8f9fe6588b71efa94c219979ce111fc9c1c9.pdf,On Evaluation of 6D Object Pose Estimation,2016
362,VOC,voc,22.2081469,114.25964115,University of Hong Kong,edu,3b67645cd512898806aaf1df1811035f2d957f6b,citation,https://arxiv.org/pdf/1705.04043.pdf,SCNet: Learning Semantic Correspondence,2017
363,VOC,voc,26.513188,80.23651945,Indian Institute of Technology Kanpur,edu,ef2e36daf429899bb48d80ce6804731c3f99bb85,citation,http://pdfs.semanticscholar.org/f7bd/b4df0fb5b3ff9fa0ebfe7c2a9ddc34c09a5c.pdf,"Debnath, Banerjee, Namboodiri: Adapting Ransac-svm to Detect Outliers for Robust Classification",2015
364,VOC,voc,40.0044795,116.370238,Chinese Academy of Sciences,edu,79a3a07661b8c6a36070fd767344e15c847a30ef,citation,http://pdfs.semanticscholar.org/79a3/a07661b8c6a36070fd767344e15c847a30ef.pdf,Contextual Pooling in Image Classification,2012
365,VOC,voc,13.0222347,77.56718325,Indian Institute of Science Bangalore,edu,5aa7f33cdc00787284b609aa63f5eb5c0a3212f6,citation,http://pdfs.semanticscholar.org/5aa7/f33cdc00787284b609aa63f5eb5c0a3212f6.pdf,Multiplicative mixing of object identity and image attributes in single inferior temporal neurons,2018
366,VOC,voc,51.5247272,-0.03931035,Queen Mary University of London,edu,38f88655debf4bf32978a7b39fbd56aea6ee5752,citation,https://arxiv.org/pdf/1712.03162.pdf,Class Rectification Hard Mining for Imbalanced Deep Learning,2017
367,VOC,voc,36.1244756,-97.05004383,Oklahoma State University,edu,7b3b2912c1d7a70839bc71a150e33f8634d0fff3,citation,https://pdfs.semanticscholar.org/7b3b/2912c1d7a70839bc71a150e33f8634d0fff3.pdf,Convolutional Neural Network-Based Embarrassing Situation Detection under Camera for Social Robot in Smart Homes,2018
368,VOC,voc,40.00229045,116.32098908,Tsinghua University,edu,acdc333f7b32d987e65ce15f21db64e850ca9471,citation,https://pdfs.semanticscholar.org/acdc/333f7b32d987e65ce15f21db64e850ca9471.pdf,Direct Loss Minimization for Training Deep Neural Nets,2015
369,VOC,voc,43.66333345,-79.39769975,University of Toronto,edu,acdc333f7b32d987e65ce15f21db64e850ca9471,citation,https://pdfs.semanticscholar.org/acdc/333f7b32d987e65ce15f21db64e850ca9471.pdf,Direct Loss Minimization for Training Deep Neural Nets,2015
370,VOC,voc,28.2290209,112.99483204,"National University of Defense Technology, China",edu,da4137396f26bf3e76d04eeed0c94e11b7824aa6,citation,https://arxiv.org/pdf/1711.06828.pdf,Transferable Semi-Supervised Semantic Segmentation,2018
371,VOC,voc,1.2962018,103.77689944,National University of Singapore,edu,da4137396f26bf3e76d04eeed0c94e11b7824aa6,citation,https://arxiv.org/pdf/1711.06828.pdf,Transferable Semi-Supervised Semantic Segmentation,2018
372,VOC,voc,40.11571585,-88.22750772,Beckman Institute,edu,da4137396f26bf3e76d04eeed0c94e11b7824aa6,citation,https://arxiv.org/pdf/1711.06828.pdf,Transferable Semi-Supervised Semantic Segmentation,2018
373,VOC,voc,40.9153196,-73.1270626,Stony Brook University,edu,5240941af3b263609acaa168f96e1decdb0b3fe4,citation,http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2015/W06/papers/Ge_Action_Classification_in_2015_CVPR_paper.pdf,Action classification in still images using human eye movements,2015
374,VOC,voc,43.66333345,-79.39769975,University of Toronto,edu,126250d6077a6a68ae06277352eb42c4fa4c8b10,citation,http://pdfs.semanticscholar.org/1262/50d6077a6a68ae06277352eb42c4fa4c8b10.pdf,Learning Patch-based Structural Element Models with Hierarchical Palettes Abstract Learning Patch-based Structural Element Models with Hierarchical Palettes,2012
375,VOC,voc,40.11116745,-88.22587665,"University of Illinois, Urbana-Champaign",edu,0cbbbfac2fe925479c6b34712e056f840a10fa4d,citation,https://pdfs.semanticscholar.org/0cbb/bfac2fe925479c6b34712e056f840a10fa4d.pdf,Quality Evaluation Methods for Crowdsourced Image Segmentation,2018
376,VOC,voc,37.3936717,-122.0807262,Facebook,company,0cbbbfac2fe925479c6b34712e056f840a10fa4d,citation,https://pdfs.semanticscholar.org/0cbb/bfac2fe925479c6b34712e056f840a10fa4d.pdf,Quality Evaluation Methods for Crowdsourced Image Segmentation,2018
377,VOC,voc,42.718568,-84.47791571,Michigan State University,edu,28df3f11894ce0c48dd8aee65a6ec76d9009cbbd,citation,https://arxiv.org/pdf/1809.08318.pdf,Recurrent Flow-Guided Semantic Forecasting,2018
378,VOC,voc,42.30791465,-83.07176915,University of Windsor,edu,535ed3850e79ccd51922601546ef0fc48c5fb468,citation,http://arxiv.org/abs/1705.04301,A feature embedding strategy for high-level CNN representations from multiple convnets,2017
379,VOC,voc,30.19331415,120.11930822,Zhejiang University,edu,535ed3850e79ccd51922601546ef0fc48c5fb468,citation,http://arxiv.org/abs/1705.04301,A feature embedding strategy for high-level CNN representations from multiple convnets,2017
380,VOC,voc,-34.9189226,138.60423668,University of Adelaide,edu,247ca98c5a46616044cf6ae32b0d5b4140a7a161,citation,http://pdfs.semanticscholar.org/247c/a98c5a46616044cf6ae32b0d5b4140a7a161.pdf,High-performance Semantic Segmentation Using Very Deep Fully Convolutional Networks,2016
381,VOC,voc,28.2290209,112.99483204,"National University of Defense Technology, China",edu,5f771fed91c8e4b666489ba2384d0705bcf75030,citation,https://arxiv.org/pdf/1804.03287.pdf,Understanding Humans in Crowded Scenes: Deep Nested Adversarial Learning and A New Benchmark for Multi-Human Parsing,2018
382,VOC,voc,1.2962018,103.77689944,National University of Singapore,edu,5f771fed91c8e4b666489ba2384d0705bcf75030,citation,https://arxiv.org/pdf/1804.03287.pdf,Understanding Humans in Crowded Scenes: Deep Nested Adversarial Learning and A New Benchmark for Multi-Human Parsing,2018
383,VOC,voc,51.6091578,-3.97934429,Swansea University,edu,d115c4a66d765fef596b0b171febca334cea15b5,citation,http://pdfs.semanticscholar.org/d115/c4a66d765fef596b0b171febca334cea15b5.pdf,Combining Stacked Denoising Autoencoders and Random Forests for Face Detection,2016
384,VOC,voc,39.2899685,-76.62196103,University of Maryland,edu,e20ab84ac7fa0a5d36d4cf2266b7065c60e1c804,citation,https://pdfs.semanticscholar.org/e20a/b84ac7fa0a5d36d4cf2266b7065c60e1c804.pdf,Stacked U-Nets for Ground Material Segmentation in Remote Sensing Imagery,0
385,VOC,voc,22.3386304,114.2620337,Hong Kong University of Science and Technology,edu,a1fdf45e6649b0020eb533c70d6062b9183561ff,citation,https://arxiv.org/pdf/1802.07931.pdf,Where's YOUR focus: Personalized Attention,2017
386,VOC,voc,36.05238585,140.11852361,National Institute of Advanced Industrial Science and Technology,edu,775c51b965e8ff37646a265aab64136b4a620526,citation,http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/2A_059_ext.pdf,Three viewpoints toward exemplar SVM,2015
387,VOC,voc,28.59899755,-81.19712501,University of Central Florida,edu,0688c0568f3ab418719260d443cc0d86c3af2914,citation,https://arxiv.org/pdf/1707.09465.pdf,Curriculum Domain Adaptation for Semantic Segmentation of Urban Scenes,2017
388,VOC,voc,37.4102193,-122.05965487,Carnegie Mellon University,edu,5d92531e74c4c2cdce91fdcd3c7ff090c8c29504,citation,http://pdfs.semanticscholar.org/5d92/531e74c4c2cdce91fdcd3c7ff090c8c29504.pdf,Synthesizing Scenes for Instance Detection,2017
389,VOC,voc,58.38131405,26.72078081,University of Tartu,edu,c919a9f61656cdcd3a26076057ee006c48e8f609,citation,https://pdfs.semanticscholar.org/c919/a9f61656cdcd3a26076057ee006c48e8f609.pdf,High-Value Target Detection,2018
390,VOC,voc,39.9082804,116.2458527,University of Chinese Academy of Sciences,edu,c6ce8eb37dafed09e1c55735fd1f1e9dc9c6bfe2,citation,https://arxiv.org/pdf/1707.07584.pdf,Joint background reconstruction and foreground segmentation via a two-stage convolutional neural network,2017
391,VOC,voc,40.0044795,116.370238,Chinese Academy of Sciences,edu,c6ce8eb37dafed09e1c55735fd1f1e9dc9c6bfe2,citation,https://arxiv.org/pdf/1707.07584.pdf,Joint background reconstruction and foreground segmentation via a two-stage convolutional neural network,2017
392,VOC,voc,55.7039571,13.1902011,Lund University,edu,c0006a2268d299644e9f1b455601bcbe89ddc2b5,citation,https://arxiv.org/pdf/1612.08871.pdf,Semantic Video Segmentation by Gated Recurrent Flow Propagation,2016
393,VOC,voc,34.13710185,-118.12527487,California Institute of Technology,edu,273b9b7c63ac9196fb12734b49b74d0523ca4df4,citation,https://arxiv.org/pdf/1406.2807v2.pdf,The Secrets of Salient Object Segmentation,2014
394,VOC,voc,34.0687788,-118.4450094,"University of California, Los Angeles",edu,273b9b7c63ac9196fb12734b49b74d0523ca4df4,citation,https://arxiv.org/pdf/1406.2807v2.pdf,The Secrets of Salient Object Segmentation,2014
395,VOC,voc,33.59914655,130.22359848,Kyushu University,edu,e771661fa441f008c111ea786eb275153919da6e,citation,http://pdfs.semanticscholar.org/e771/661fa441f008c111ea786eb275153919da6e.pdf,Globally Optimal Object Tracking with Fully Convolutional Networks,2016
396,VOC,voc,41.5007811,2.11143663,Universitat Autònoma de Barcelona,edu,5feacd9dd73827fb438a6bf6c8b406f4f11aa2fa,citation,http://pdfs.semanticscholar.org/5fea/cd9dd73827fb438a6bf6c8b406f4f11aa2fa.pdf,Slanted Stixels: Representing San Francisco's Steepest Streets,2017
397,VOC,voc,47.3764534,8.54770931,ETH Zürich,edu,5feacd9dd73827fb438a6bf6c8b406f4f11aa2fa,citation,http://pdfs.semanticscholar.org/5fea/cd9dd73827fb438a6bf6c8b406f4f11aa2fa.pdf,Slanted Stixels: Representing San Francisco's Steepest Streets,2017