summaryrefslogtreecommitdiff
path: root/megapixels/commands
diff options
context:
space:
mode:
authoradamhrv <adam@ahprojects.com>2019-01-07 02:26:34 +0100
committeradamhrv <adam@ahprojects.com>2019-01-07 02:26:34 +0100
commit5e5a7d09774bde195fe31ae143704eb124a764ac (patch)
tree20e48a5f80e94c5021c01e9558de8af873e2eaf7 /megapixels/commands
parent4bcb82c0f295d79d3d247252e7e98b2d986ae821 (diff)
add demos, in progress
Diffstat (limited to 'megapixels/commands')
-rw-r--r--megapixels/commands/cv/face_landmark_3d_68.py11
-rw-r--r--megapixels/commands/demo/3d_landmark_anim.py219
-rw-r--r--megapixels/commands/demo/face_detection.py128
-rw-r--r--megapixels/commands/demo/face_landmarks_2d.py219
-rw-r--r--megapixels/commands/demo/face_landmarks_3d.py219
-rw-r--r--megapixels/commands/demo/face_pose.py128
-rw-r--r--megapixels/commands/demo/face_vector.py79
-rw-r--r--megapixels/commands/visualize/plot_3d_landmarks.py89
8 files changed, 1088 insertions, 4 deletions
diff --git a/megapixels/commands/cv/face_landmark_3d_68.py b/megapixels/commands/cv/face_landmark_3d_68.py
index 56e60cda..a2d14d72 100644
--- a/megapixels/commands/cv/face_landmark_3d_68.py
+++ b/megapixels/commands/cv/face_landmark_3d_68.py
@@ -57,6 +57,7 @@ def cli(ctx, opt_fp_in, opt_fp_out, opt_dir_media, opt_data_store, opt_dataset,
import pandas as pd
from app.utils import logger_utils, file_utils, im_utils, display_utils, draw_utils
+ from app.utils import plot_utils
from app.processors import face_landmarks
from app.models.data_store import DataStore
from app.models.bbox import BBox
@@ -65,7 +66,7 @@ def cli(ctx, opt_fp_in, opt_fp_out, opt_dir_media, opt_data_store, opt_dataset,
# init here
log = logger_utils.Logger.getLogger()
- log.warn('3D landmark points are normalized in a (200, 200, 200) XYZ space')
+ log.warn('not normalizing points')
# init filepaths
data_store = DataStore(opt_data_store, opt_dataset)
# set file output path
@@ -76,7 +77,7 @@ def cli(ctx, opt_fp_in, opt_fp_out, opt_dir_media, opt_data_store, opt_dataset,
return
# init face landmark processors
- if opt_detector_type == types.FaceLandmark2D_5.FACE_ALIGNMENT:
+ if opt_detector_type == types.FaceLandmark3D_68.FACE_ALIGNMENT:
# use FaceAlignment 68 point 3D detector
landmark_detector = face_landmarks.FaceAlignment3D_68()
else:
@@ -122,16 +123,18 @@ def cli(ctx, opt_fp_in, opt_fp_out, opt_dir_media, opt_data_store, opt_dataset,
# get landmark points
points = landmark_detector.landmarks(im_resized, bbox)
# NB can't really normalize these points, but are normalized against 3D space
- points_norm = landmark_detector.normalize(points, dim) # normalized using 200
+ #points_norm = landmark_detector.normalize(points, dim) # normalized using 200
points_flattenend = landmark_detector.flatten(points)
# display to screen if optioned
if opt_display:
- draw_utils.draw_landmarks2D(im_resized, points)
+ draw_utils.draw_landmarks3D(im_resized, points)
draw_utils.draw_bbox(im_resized, bbox)
cv.imshow('', im_resized)
display_utils.handle_keyboard()
+ #plot_utils.generate_3d_landmark_anim(points, '/home/adam/Downloads/3d.gif')
+
results.append(points_flattenend)
# create DataFrame and save to CSV
diff --git a/megapixels/commands/demo/3d_landmark_anim.py b/megapixels/commands/demo/3d_landmark_anim.py
new file mode 100644
index 00000000..22e09297
--- /dev/null
+++ b/megapixels/commands/demo/3d_landmark_anim.py
@@ -0,0 +1,219 @@
+"""
+Crop images to prepare for training
+"""
+
+import click
+# from PIL import Image, ImageOps, ImageFilter, ImageDraw
+
+from app.settings import types
+from app.utils import click_utils
+from app.settings import app_cfg as cfg
+
+
+@click.command()
+@click.option('-i', '--input', 'opt_fp_in', default=None, required=True,
+ help='Image filepath')
+@click.option('-o', '--output', 'opt_fp_out', default=None,
+ help='GIF output path')
+@click.option('--size', 'opt_size',
+ type=(int, int), default=(300, 300),
+ help='Output image size')
+@click.option('--gif-size', 'opt_gif_size',
+ type=(int, int), default=(480, 480),
+ help='GIF output size')
+@click.option('--gif-frames', 'opt_gif_frames', default=15,
+ help='GIF frames')
+@click.option('-g', '--gpu', 'opt_gpu', default=0,
+ help='GPU index')
+@click.option('-f', '--force', 'opt_force', is_flag=True,
+ help='Force overwrite file')
+@click.option('--display/--no-display', 'opt_display', is_flag=True, default=False,
+ help='Display detections to debug')
+@click.pass_context
+def cli(ctx, opt_fp_in, opt_fp_out, opt_gpu, opt_gif_frames,
+ opt_size, opt_gif_size, opt_force, opt_display):
+ """Generates 3D landmark animations from CSV files"""
+
+ import sys
+ import os
+ from os.path import join
+ from pathlib import Path
+ import time
+
+ from tqdm import tqdm
+ import numpy as np
+ import pandas as pd
+ import cv2 as cv
+ import dlib
+ from PIL import Image
+ import matplotlib.pyplot as plt
+
+ from app.utils import logger_utils, file_utils, im_utils, display_utils, draw_utils
+ from app.utils import plot_utils
+ from app.processors import face_detector, face_landmarks
+ from app.models.data_store import DataStore
+
+ # TOOD add selective testing
+ opt_run_pose = True
+ opt_run_2d_68 = True
+ opt_run_3d_68 = True
+ opt_run_3d_68 = True
+
+
+ # -------------------------------------------------
+ # init here
+
+
+ log = logger_utils.Logger.getLogger()
+
+ # load image
+ im = cv.imread(opt_fp_in)
+ im_resized = im_utils.resize(im, width=opt_size[0], height=opt_size[1])
+
+
+ # ----------------------------------------------------------------------------
+ # detect face
+
+ face_detector = face_detector.DetectorDLIBCNN(gpu=opt_gpu) # -1 for CPU
+ log.info('detecting face...')
+ st = time.time()
+ bboxes = face_detector.detect(im_resized, largest=True)
+ bbox = bboxes[0]
+ dim = im_resized.shape[:2][::-1]
+ bbox_dim = bbox.to_dim(dim)
+ if not bbox:
+ log.error('no face detected')
+ return
+ else:
+ log.info(f'Detected face in {(time.time() - st):.2f}s')
+ log.info('')
+
+
+ # ----------------------------------------------------------------------------
+ # detect 3D landmarks
+
+ log.info('loading 3D landmark generator files...')
+ landmark_detector_3d_68 = face_landmarks.FaceAlignment3D_68(gpu=opt_gpu) # -1 for CPU
+ log.info('generating 3D landmarks...')
+ st = time.time()
+ points_3d_68 = landmark_detector_3d_68.landmarks(im_resized, bbox_dim.to_xyxy())
+ log.info(f'generated 3D landmarks in {(time.time() - st):.2f}s')
+ log.info('')
+
+
+ # ----------------------------------------------------------------------------
+ # generate 3D GIF animation
+
+ log.info('generating 3D animation...')
+ if not opt_fp_out:
+ fpp_im = Path(opt_fp_in)
+ fp_out = join(fpp_im.parent, f'{fpp_im.stem}_anim.gif')
+ else:
+ fp_out = opt_fp_out
+ st = time.time()
+ plot_utils.generate_3d_landmark_anim(np.array(points_3d_68), fp_out,
+ size=opt_gif_size, num_frames=opt_gif_frames)
+ log.info(f'Generated animation in {(time.time() - st):.2f}s')
+ log.info(f'Saved to: {fp_out}')
+ log.info('')
+
+
+ # ----------------------------------------------------------------------------
+ # generate face vectors, only to test if feature extraction works
+
+ log.info('initialize face recognition model...')
+ from app.processors import face_recognition
+ face_rec = face_recognition.RecognitionDLIB()
+ st = time.time()
+ log.info('generating face vector...')
+ vec = face_rec.vec(im_resized, bbox_dim)
+ log.info(f'generated face vector in {(time.time() - st):.2f}s')
+ log.info('')
+
+
+ # ----------------------------------------------------------------------------
+ # generate 68 point landmarks using dlib
+
+ log.info('initializing face landmarks 68 dlib...')
+ from app.processors import face_landmarks
+ landmark_detector_2d_68 = face_landmarks.Dlib2D_68()
+ log.info('generating 2D 68PT landmarks...')
+ st = time.time()
+ points_2d_68 = landmark_detector_2d_68.landmarks(im_resized, bbox_dim)
+ log.info(f'generated 2D 68PT face landmarks in {(time.time() - st):.2f}s')
+ log.info('')
+
+
+ # ----------------------------------------------------------------------------
+ # generate pose from 68 point 2D landmarks
+
+ if opt_run_pose:
+ log.info('initialize pose...')
+ from app.processors import face_pose
+ pose_detector = face_pose.FacePoseDLIB()
+ log.info('generating pose...')
+ st = time.time()
+ pose_data = pose_detector.pose(points_2d_68, dim)
+ log.info(f'generated pose {(time.time() - st):.2f}s')
+ log.info('')
+
+
+ # x
+
+
+
+ # display
+ if opt_display:
+
+ # draw bbox
+
+ # draw 3d landmarks
+ im_landmarks_3d_68 = im_resized.copy()
+ draw_utils.draw_landmarks3D(im_landmarks_3d_68, points_3d_68)
+ draw_utils.draw_bbox(im_landmarks_3d_68, bbox_dim)
+
+ # draw 2d landmarks
+ im_landmarks_2d_68 = im_resized.copy()
+ draw_utils.draw_landmarks2D(im_landmarks_2d_68, points_2d_68)
+ draw_utils.draw_bbox(im_landmarks_2d_68, bbox_dim)
+
+ # draw pose
+ if opt_run_pose:
+ im_pose = im_resized.copy()
+ draw_utils.draw_pose(im_pose, pose_data['point_nose'], pose_data['points'])
+ draw_utils.draw_degrees(im_pose, pose_data)
+
+ # draw animated GIF
+ im = Image.open(opt_fp_out)
+ im_frames = []
+ duration = im.info['duration']
+ try:
+ while True:
+ im.seek(len(im_frames))
+ mypalette = im.getpalette()
+ im.putpalette(mypalette)
+ im_jpg = Image.new("RGB", im.size)
+ im_jpg.paste(im)
+ im_np = im_utils.pil2np(im_jpg.copy())
+ im_frames.append(im_np)
+ except EOFError:
+ pass # end of GIF sequence
+
+ n_frames = len(im_frames)
+ frame_number = 0
+
+ while True:
+ # show all images here
+ cv.imshow('Original', im_resized)
+ cv.imshow('2D 68PT Landmarks', im_landmarks_2d_68)
+ cv.imshow('3D 68PT Landmarks', im_landmarks_3d_68)
+ cv.imshow('Pose', im_pose)
+ cv.imshow('3D 68pt GIF', im_frames[frame_number])
+ frame_number = (frame_number + 1) % n_frames
+ k = cv.waitKey(duration) & 0xFF
+ if k == 27 or k == ord('q'): # ESC
+ cv.destroyAllWindows()
+ sys.exit()
+ elif k != 255:
+ # any key to continue
+ break \ No newline at end of file
diff --git a/megapixels/commands/demo/face_detection.py b/megapixels/commands/demo/face_detection.py
new file mode 100644
index 00000000..fb23704b
--- /dev/null
+++ b/megapixels/commands/demo/face_detection.py
@@ -0,0 +1,128 @@
+"""
+Crop images to prepare for training
+"""
+
+import click
+# from PIL import Image, ImageOps, ImageFilter, ImageDraw
+
+from app.settings import types
+from app.utils import click_utils
+from app.settings import app_cfg as cfg
+
+
+@click.command()
+@click.option('-i', '--input', 'opt_fp_in', default=None, required=True,
+ help='Image filepath')
+@click.option('-o', '--output', 'opt_fp_out', default=None,
+ help='GIF output path')
+@click.option('--size', 'opt_size',
+ type=(int, int), default=(300, 300),
+ help='Output image size')
+@click.option('-g', '--gpu', 'opt_gpu', default=0,
+ help='GPU index')
+@click.option('-f', '--force', 'opt_force', is_flag=True,
+ help='Force overwrite file')
+@click.option('--display/--no-display', 'opt_display', is_flag=True, default=False,
+ help='Display detections to debug')
+@click.pass_context
+def cli(ctx, opt_fp_in, opt_fp_out, opt_gpu, opt_size, opt_force, opt_display):
+ """Face detector demo"""
+
+ import sys
+ import os
+ from os.path import join
+ from pathlib import Path
+ import time
+
+ from tqdm import tqdm
+ import numpy as np
+ import pandas as pd
+ import cv2 as cv
+ import dlib
+ from PIL import Image
+ import matplotlib.pyplot as plt
+
+ from app.utils import logger_utils, file_utils, im_utils, display_utils, draw_utils
+ from app.utils import plot_utils
+ from app.processors import face_detector, face_landmarks
+ from app.models.data_store import DataStore
+
+
+ log = logger_utils.Logger.getLogger()
+
+
+ # -------------------------------------------------
+ # load image
+
+ im = cv.imread(opt_fp_in)
+ im_resized = im_utils.resize(im, width=opt_size[0], height=opt_size[1])
+
+
+ # ----------------------------------------------------------------------------
+ # detect face
+
+ face_detector = face_detector.DetectorDLIBCNN(gpu=opt_gpu) # -1 for CPU
+ bboxes = face_detector.detect(im_resized, largest=True)
+ bbox = bboxes[0]
+ dim = im_resized.shape[:2][::-1]
+ bbox_dim = bbox.to_dim(dim)
+ if not bbox:
+ log.error('no face detected')
+ return
+
+
+ # ----------------------------------------------------------------------------
+ # generate 68 point landmarks using dlib
+
+ from app.processors import face_landmarks
+ landmark_detector_2d_68 = face_landmarks.Dlib2D_68()
+ points_2d_68 = landmark_detector_2d_68.landmarks(im_resized, bbox_dim)
+
+
+ # ----------------------------------------------------------------------------
+ # generate pose from 68 point 2D landmarks
+
+ from app.processors import face_pose
+ pose_detector = face_pose.FacePoseDLIB()
+ pose_data = pose_detector.pose(points_2d_68, dim)
+
+ # ----------------------------------------------------------------------------
+ # output
+
+ log.info(f'Face coords: {bbox_dim} face')
+ log.info(f'pitch: {pose_data["pitch"]}, roll: {pose_data["roll"]}, yaw: {pose_data["yaw"]}')
+
+
+ # ----------------------------------------------------------------------------
+ # draw
+
+ # draw 2d landmarks
+ im_landmarks_2d_68 = im_resized.copy()
+ draw_utils.draw_landmarks2D(im_landmarks_2d_68, points_2d_68)
+ draw_utils.draw_bbox(im_landmarks_2d_68, bbox_dim)
+
+ # draw pose
+ im_pose = im_resized.copy()
+ draw_utils.draw_pose(im_pose, pose_data['point_nose'], pose_data['points'])
+ draw_utils.draw_degrees(im_pose, pose_data)
+
+
+ # ----------------------------------------------------------------------------
+ # save
+
+ if opt_fp_out:
+ # save pose only
+ cv.imwrite(opt_fp_out, im_pose)
+
+
+ # ----------------------------------------------------------------------------
+ # display
+
+ if opt_display:
+
+
+ # show all images here
+ cv.imshow('Original', im_resized)
+ cv.imshow('2D 68PT Landmarks', im_landmarks_2d_68)
+ cv.imshow('Pose', im_pose)
+ display_utils.handle_keyboard() \ No newline at end of file
diff --git a/megapixels/commands/demo/face_landmarks_2d.py b/megapixels/commands/demo/face_landmarks_2d.py
new file mode 100644
index 00000000..22e09297
--- /dev/null
+++ b/megapixels/commands/demo/face_landmarks_2d.py
@@ -0,0 +1,219 @@
+"""
+Crop images to prepare for training
+"""
+
+import click
+# from PIL import Image, ImageOps, ImageFilter, ImageDraw
+
+from app.settings import types
+from app.utils import click_utils
+from app.settings import app_cfg as cfg
+
+
+@click.command()
+@click.option('-i', '--input', 'opt_fp_in', default=None, required=True,
+ help='Image filepath')
+@click.option('-o', '--output', 'opt_fp_out', default=None,
+ help='GIF output path')
+@click.option('--size', 'opt_size',
+ type=(int, int), default=(300, 300),
+ help='Output image size')
+@click.option('--gif-size', 'opt_gif_size',
+ type=(int, int), default=(480, 480),
+ help='GIF output size')
+@click.option('--gif-frames', 'opt_gif_frames', default=15,
+ help='GIF frames')
+@click.option('-g', '--gpu', 'opt_gpu', default=0,
+ help='GPU index')
+@click.option('-f', '--force', 'opt_force', is_flag=True,
+ help='Force overwrite file')
+@click.option('--display/--no-display', 'opt_display', is_flag=True, default=False,
+ help='Display detections to debug')
+@click.pass_context
+def cli(ctx, opt_fp_in, opt_fp_out, opt_gpu, opt_gif_frames,
+ opt_size, opt_gif_size, opt_force, opt_display):
+ """Generates 3D landmark animations from CSV files"""
+
+ import sys
+ import os
+ from os.path import join
+ from pathlib import Path
+ import time
+
+ from tqdm import tqdm
+ import numpy as np
+ import pandas as pd
+ import cv2 as cv
+ import dlib
+ from PIL import Image
+ import matplotlib.pyplot as plt
+
+ from app.utils import logger_utils, file_utils, im_utils, display_utils, draw_utils
+ from app.utils import plot_utils
+ from app.processors import face_detector, face_landmarks
+ from app.models.data_store import DataStore
+
+ # TOOD add selective testing
+ opt_run_pose = True
+ opt_run_2d_68 = True
+ opt_run_3d_68 = True
+ opt_run_3d_68 = True
+
+
+ # -------------------------------------------------
+ # init here
+
+
+ log = logger_utils.Logger.getLogger()
+
+ # load image
+ im = cv.imread(opt_fp_in)
+ im_resized = im_utils.resize(im, width=opt_size[0], height=opt_size[1])
+
+
+ # ----------------------------------------------------------------------------
+ # detect face
+
+ face_detector = face_detector.DetectorDLIBCNN(gpu=opt_gpu) # -1 for CPU
+ log.info('detecting face...')
+ st = time.time()
+ bboxes = face_detector.detect(im_resized, largest=True)
+ bbox = bboxes[0]
+ dim = im_resized.shape[:2][::-1]
+ bbox_dim = bbox.to_dim(dim)
+ if not bbox:
+ log.error('no face detected')
+ return
+ else:
+ log.info(f'Detected face in {(time.time() - st):.2f}s')
+ log.info('')
+
+
+ # ----------------------------------------------------------------------------
+ # detect 3D landmarks
+
+ log.info('loading 3D landmark generator files...')
+ landmark_detector_3d_68 = face_landmarks.FaceAlignment3D_68(gpu=opt_gpu) # -1 for CPU
+ log.info('generating 3D landmarks...')
+ st = time.time()
+ points_3d_68 = landmark_detector_3d_68.landmarks(im_resized, bbox_dim.to_xyxy())
+ log.info(f'generated 3D landmarks in {(time.time() - st):.2f}s')
+ log.info('')
+
+
+ # ----------------------------------------------------------------------------
+ # generate 3D GIF animation
+
+ log.info('generating 3D animation...')
+ if not opt_fp_out:
+ fpp_im = Path(opt_fp_in)
+ fp_out = join(fpp_im.parent, f'{fpp_im.stem}_anim.gif')
+ else:
+ fp_out = opt_fp_out
+ st = time.time()
+ plot_utils.generate_3d_landmark_anim(np.array(points_3d_68), fp_out,
+ size=opt_gif_size, num_frames=opt_gif_frames)
+ log.info(f'Generated animation in {(time.time() - st):.2f}s')
+ log.info(f'Saved to: {fp_out}')
+ log.info('')
+
+
+ # ----------------------------------------------------------------------------
+ # generate face vectors, only to test if feature extraction works
+
+ log.info('initialize face recognition model...')
+ from app.processors import face_recognition
+ face_rec = face_recognition.RecognitionDLIB()
+ st = time.time()
+ log.info('generating face vector...')
+ vec = face_rec.vec(im_resized, bbox_dim)
+ log.info(f'generated face vector in {(time.time() - st):.2f}s')
+ log.info('')
+
+
+ # ----------------------------------------------------------------------------
+ # generate 68 point landmarks using dlib
+
+ log.info('initializing face landmarks 68 dlib...')
+ from app.processors import face_landmarks
+ landmark_detector_2d_68 = face_landmarks.Dlib2D_68()
+ log.info('generating 2D 68PT landmarks...')
+ st = time.time()
+ points_2d_68 = landmark_detector_2d_68.landmarks(im_resized, bbox_dim)
+ log.info(f'generated 2D 68PT face landmarks in {(time.time() - st):.2f}s')
+ log.info('')
+
+
+ # ----------------------------------------------------------------------------
+ # generate pose from 68 point 2D landmarks
+
+ if opt_run_pose:
+ log.info('initialize pose...')
+ from app.processors import face_pose
+ pose_detector = face_pose.FacePoseDLIB()
+ log.info('generating pose...')
+ st = time.time()
+ pose_data = pose_detector.pose(points_2d_68, dim)
+ log.info(f'generated pose {(time.time() - st):.2f}s')
+ log.info('')
+
+
+ # x
+
+
+
+ # display
+ if opt_display:
+
+ # draw bbox
+
+ # draw 3d landmarks
+ im_landmarks_3d_68 = im_resized.copy()
+ draw_utils.draw_landmarks3D(im_landmarks_3d_68, points_3d_68)
+ draw_utils.draw_bbox(im_landmarks_3d_68, bbox_dim)
+
+ # draw 2d landmarks
+ im_landmarks_2d_68 = im_resized.copy()
+ draw_utils.draw_landmarks2D(im_landmarks_2d_68, points_2d_68)
+ draw_utils.draw_bbox(im_landmarks_2d_68, bbox_dim)
+
+ # draw pose
+ if opt_run_pose:
+ im_pose = im_resized.copy()
+ draw_utils.draw_pose(im_pose, pose_data['point_nose'], pose_data['points'])
+ draw_utils.draw_degrees(im_pose, pose_data)
+
+ # draw animated GIF
+ im = Image.open(opt_fp_out)
+ im_frames = []
+ duration = im.info['duration']
+ try:
+ while True:
+ im.seek(len(im_frames))
+ mypalette = im.getpalette()
+ im.putpalette(mypalette)
+ im_jpg = Image.new("RGB", im.size)
+ im_jpg.paste(im)
+ im_np = im_utils.pil2np(im_jpg.copy())
+ im_frames.append(im_np)
+ except EOFError:
+ pass # end of GIF sequence
+
+ n_frames = len(im_frames)
+ frame_number = 0
+
+ while True:
+ # show all images here
+ cv.imshow('Original', im_resized)
+ cv.imshow('2D 68PT Landmarks', im_landmarks_2d_68)
+ cv.imshow('3D 68PT Landmarks', im_landmarks_3d_68)
+ cv.imshow('Pose', im_pose)
+ cv.imshow('3D 68pt GIF', im_frames[frame_number])
+ frame_number = (frame_number + 1) % n_frames
+ k = cv.waitKey(duration) & 0xFF
+ if k == 27 or k == ord('q'): # ESC
+ cv.destroyAllWindows()
+ sys.exit()
+ elif k != 255:
+ # any key to continue
+ break \ No newline at end of file
diff --git a/megapixels/commands/demo/face_landmarks_3d.py b/megapixels/commands/demo/face_landmarks_3d.py
new file mode 100644
index 00000000..22e09297
--- /dev/null
+++ b/megapixels/commands/demo/face_landmarks_3d.py
@@ -0,0 +1,219 @@
+"""
+Crop images to prepare for training
+"""
+
+import click
+# from PIL import Image, ImageOps, ImageFilter, ImageDraw
+
+from app.settings import types
+from app.utils import click_utils
+from app.settings import app_cfg as cfg
+
+
+@click.command()
+@click.option('-i', '--input', 'opt_fp_in', default=None, required=True,
+ help='Image filepath')
+@click.option('-o', '--output', 'opt_fp_out', default=None,
+ help='GIF output path')
+@click.option('--size', 'opt_size',
+ type=(int, int), default=(300, 300),
+ help='Output image size')
+@click.option('--gif-size', 'opt_gif_size',
+ type=(int, int), default=(480, 480),
+ help='GIF output size')
+@click.option('--gif-frames', 'opt_gif_frames', default=15,
+ help='GIF frames')
+@click.option('-g', '--gpu', 'opt_gpu', default=0,
+ help='GPU index')
+@click.option('-f', '--force', 'opt_force', is_flag=True,
+ help='Force overwrite file')
+@click.option('--display/--no-display', 'opt_display', is_flag=True, default=False,
+ help='Display detections to debug')
+@click.pass_context
+def cli(ctx, opt_fp_in, opt_fp_out, opt_gpu, opt_gif_frames,
+ opt_size, opt_gif_size, opt_force, opt_display):
+ """Generates 3D landmark animations from CSV files"""
+
+ import sys
+ import os
+ from os.path import join
+ from pathlib import Path
+ import time
+
+ from tqdm import tqdm
+ import numpy as np
+ import pandas as pd
+ import cv2 as cv
+ import dlib
+ from PIL import Image
+ import matplotlib.pyplot as plt
+
+ from app.utils import logger_utils, file_utils, im_utils, display_utils, draw_utils
+ from app.utils import plot_utils
+ from app.processors import face_detector, face_landmarks
+ from app.models.data_store import DataStore
+
+ # TOOD add selective testing
+ opt_run_pose = True
+ opt_run_2d_68 = True
+ opt_run_3d_68 = True
+ opt_run_3d_68 = True
+
+
+ # -------------------------------------------------
+ # init here
+
+
+ log = logger_utils.Logger.getLogger()
+
+ # load image
+ im = cv.imread(opt_fp_in)
+ im_resized = im_utils.resize(im, width=opt_size[0], height=opt_size[1])
+
+
+ # ----------------------------------------------------------------------------
+ # detect face
+
+ face_detector = face_detector.DetectorDLIBCNN(gpu=opt_gpu) # -1 for CPU
+ log.info('detecting face...')
+ st = time.time()
+ bboxes = face_detector.detect(im_resized, largest=True)
+ bbox = bboxes[0]
+ dim = im_resized.shape[:2][::-1]
+ bbox_dim = bbox.to_dim(dim)
+ if not bbox:
+ log.error('no face detected')
+ return
+ else:
+ log.info(f'Detected face in {(time.time() - st):.2f}s')
+ log.info('')
+
+
+ # ----------------------------------------------------------------------------
+ # detect 3D landmarks
+
+ log.info('loading 3D landmark generator files...')
+ landmark_detector_3d_68 = face_landmarks.FaceAlignment3D_68(gpu=opt_gpu) # -1 for CPU
+ log.info('generating 3D landmarks...')
+ st = time.time()
+ points_3d_68 = landmark_detector_3d_68.landmarks(im_resized, bbox_dim.to_xyxy())
+ log.info(f'generated 3D landmarks in {(time.time() - st):.2f}s')
+ log.info('')
+
+
+ # ----------------------------------------------------------------------------
+ # generate 3D GIF animation
+
+ log.info('generating 3D animation...')
+ if not opt_fp_out:
+ fpp_im = Path(opt_fp_in)
+ fp_out = join(fpp_im.parent, f'{fpp_im.stem}_anim.gif')
+ else:
+ fp_out = opt_fp_out
+ st = time.time()
+ plot_utils.generate_3d_landmark_anim(np.array(points_3d_68), fp_out,
+ size=opt_gif_size, num_frames=opt_gif_frames)
+ log.info(f'Generated animation in {(time.time() - st):.2f}s')
+ log.info(f'Saved to: {fp_out}')
+ log.info('')
+
+
+ # ----------------------------------------------------------------------------
+ # generate face vectors, only to test if feature extraction works
+
+ log.info('initialize face recognition model...')
+ from app.processors import face_recognition
+ face_rec = face_recognition.RecognitionDLIB()
+ st = time.time()
+ log.info('generating face vector...')
+ vec = face_rec.vec(im_resized, bbox_dim)
+ log.info(f'generated face vector in {(time.time() - st):.2f}s')
+ log.info('')
+
+
+ # ----------------------------------------------------------------------------
+ # generate 68 point landmarks using dlib
+
+ log.info('initializing face landmarks 68 dlib...')
+ from app.processors import face_landmarks
+ landmark_detector_2d_68 = face_landmarks.Dlib2D_68()
+ log.info('generating 2D 68PT landmarks...')
+ st = time.time()
+ points_2d_68 = landmark_detector_2d_68.landmarks(im_resized, bbox_dim)
+ log.info(f'generated 2D 68PT face landmarks in {(time.time() - st):.2f}s')
+ log.info('')
+
+
+ # ----------------------------------------------------------------------------
+ # generate pose from 68 point 2D landmarks
+
+ if opt_run_pose:
+ log.info('initialize pose...')
+ from app.processors import face_pose
+ pose_detector = face_pose.FacePoseDLIB()
+ log.info('generating pose...')
+ st = time.time()
+ pose_data = pose_detector.pose(points_2d_68, dim)
+ log.info(f'generated pose {(time.time() - st):.2f}s')
+ log.info('')
+
+
+ # x
+
+
+
+ # display
+ if opt_display:
+
+ # draw bbox
+
+ # draw 3d landmarks
+ im_landmarks_3d_68 = im_resized.copy()
+ draw_utils.draw_landmarks3D(im_landmarks_3d_68, points_3d_68)
+ draw_utils.draw_bbox(im_landmarks_3d_68, bbox_dim)
+
+ # draw 2d landmarks
+ im_landmarks_2d_68 = im_resized.copy()
+ draw_utils.draw_landmarks2D(im_landmarks_2d_68, points_2d_68)
+ draw_utils.draw_bbox(im_landmarks_2d_68, bbox_dim)
+
+ # draw pose
+ if opt_run_pose:
+ im_pose = im_resized.copy()
+ draw_utils.draw_pose(im_pose, pose_data['point_nose'], pose_data['points'])
+ draw_utils.draw_degrees(im_pose, pose_data)
+
+ # draw animated GIF
+ im = Image.open(opt_fp_out)
+ im_frames = []
+ duration = im.info['duration']
+ try:
+ while True:
+ im.seek(len(im_frames))
+ mypalette = im.getpalette()
+ im.putpalette(mypalette)
+ im_jpg = Image.new("RGB", im.size)
+ im_jpg.paste(im)
+ im_np = im_utils.pil2np(im_jpg.copy())
+ im_frames.append(im_np)
+ except EOFError:
+ pass # end of GIF sequence
+
+ n_frames = len(im_frames)
+ frame_number = 0
+
+ while True:
+ # show all images here
+ cv.imshow('Original', im_resized)
+ cv.imshow('2D 68PT Landmarks', im_landmarks_2d_68)
+ cv.imshow('3D 68PT Landmarks', im_landmarks_3d_68)
+ cv.imshow('Pose', im_pose)
+ cv.imshow('3D 68pt GIF', im_frames[frame_number])
+ frame_number = (frame_number + 1) % n_frames
+ k = cv.waitKey(duration) & 0xFF
+ if k == 27 or k == ord('q'): # ESC
+ cv.destroyAllWindows()
+ sys.exit()
+ elif k != 255:
+ # any key to continue
+ break \ No newline at end of file
diff --git a/megapixels/commands/demo/face_pose.py b/megapixels/commands/demo/face_pose.py
new file mode 100644
index 00000000..3918adac
--- /dev/null
+++ b/megapixels/commands/demo/face_pose.py
@@ -0,0 +1,128 @@
+"""
+Crop images to prepare for training
+"""
+
+import click
+# from PIL import Image, ImageOps, ImageFilter, ImageDraw
+
+from app.settings import types
+from app.utils import click_utils
+from app.settings import app_cfg as cfg
+
+
+@click.command()
+@click.option('-i', '--input', 'opt_fp_in', default=None, required=True,
+ help='Image filepath')
+@click.option('-o', '--output', 'opt_fp_out', default=None,
+ help='GIF output path')
+@click.option('--size', 'opt_size',
+ type=(int, int), default=(300, 300),
+ help='Output image size')
+@click.option('-g', '--gpu', 'opt_gpu', default=0,
+ help='GPU index')
+@click.option('-f', '--force', 'opt_force', is_flag=True,
+ help='Force overwrite file')
+@click.option('--display/--no-display', 'opt_display', is_flag=True, default=False,
+ help='Display detections to debug')
+@click.pass_context
+def cli(ctx, opt_fp_in, opt_fp_out, opt_gpu, opt_size, opt_force, opt_display):
+ """Face pose demo"""
+
+ import sys
+ import os
+ from os.path import join
+ from pathlib import Path
+ import time
+
+ from tqdm import tqdm
+ import numpy as np
+ import pandas as pd
+ import cv2 as cv
+ import dlib
+ from PIL import Image
+ import matplotlib.pyplot as plt
+
+ from app.utils import logger_utils, file_utils, im_utils, display_utils, draw_utils
+ from app.utils import plot_utils
+ from app.processors import face_detector, face_landmarks
+ from app.models.data_store import DataStore
+
+
+ log = logger_utils.Logger.getLogger()
+
+
+ # -------------------------------------------------
+ # load image
+
+ im = cv.imread(opt_fp_in)
+ im_resized = im_utils.resize(im, width=opt_size[0], height=opt_size[1])
+
+
+ # ----------------------------------------------------------------------------
+ # detect face
+
+ face_detector = face_detector.DetectorDLIBCNN(gpu=opt_gpu) # -1 for CPU
+ bboxes = face_detector.detect(im_resized, largest=True)
+ bbox = bboxes[0]
+ dim = im_resized.shape[:2][::-1]
+ bbox_dim = bbox.to_dim(dim)
+ if not bbox:
+ log.error('no face detected')
+ return
+
+
+ # ----------------------------------------------------------------------------
+ # generate 68 point landmarks using dlib
+
+ from app.processors import face_landmarks
+ landmark_detector_2d_68 = face_landmarks.Dlib2D_68()
+ points_2d_68 = landmark_detector_2d_68.landmarks(im_resized, bbox_dim)
+
+
+ # ----------------------------------------------------------------------------
+ # generate pose from 68 point 2D landmarks
+
+ from app.processors import face_pose
+ pose_detector = face_pose.FacePoseDLIB()
+ pose_data = pose_detector.pose(points_2d_68, dim)
+
+ # ----------------------------------------------------------------------------
+ # output
+
+ log.info(f'Face coords: {bbox_dim} face')
+ log.info(f'pitch: {pose_data["pitch"]}, roll: {pose_data["roll"]}, yaw: {pose_data["yaw"]}')
+
+
+ # ----------------------------------------------------------------------------
+ # draw
+
+ # draw 2d landmarks
+ im_landmarks_2d_68 = im_resized.copy()
+ draw_utils.draw_landmarks2D(im_landmarks_2d_68, points_2d_68)
+ draw_utils.draw_bbox(im_landmarks_2d_68, bbox_dim)
+
+ # draw pose
+ im_pose = im_resized.copy()
+ draw_utils.draw_pose(im_pose, pose_data['point_nose'], pose_data['points'])
+ draw_utils.draw_degrees(im_pose, pose_data)
+
+
+ # ----------------------------------------------------------------------------
+ # save
+
+ if opt_fp_out:
+ # save pose only
+ cv.imwrite(opt_fp_out, im_pose)
+
+
+ # ----------------------------------------------------------------------------
+ # display
+
+ if opt_display:
+
+
+ # show all images here
+ cv.imshow('Original', im_resized)
+ cv.imshow('2D 68PT Landmarks', im_landmarks_2d_68)
+ cv.imshow('Pose', im_pose)
+ display_utils.handle_keyboard() \ No newline at end of file
diff --git a/megapixels/commands/demo/face_vector.py b/megapixels/commands/demo/face_vector.py
new file mode 100644
index 00000000..1104f923
--- /dev/null
+++ b/megapixels/commands/demo/face_vector.py
@@ -0,0 +1,79 @@
+"""
+Crop images to prepare for training
+"""
+
+import click
+# from PIL import Image, ImageOps, ImageFilter, ImageDraw
+
+from app.settings import types
+from app.utils import click_utils
+from app.settings import app_cfg as cfg
+
+
+@click.command()
+@click.option('-i', '--input', 'opt_fp_in', default=None, required=True,
+ help='Image filepath')
+@click.option('--size', 'opt_size',
+ type=(int, int), default=(300, 300),
+ help='Output image size')
+@click.option('-g', '--gpu', 'opt_gpu', default=0,
+ help='GPU index')
+@click.option('--display/--no-display', 'opt_display', is_flag=True, default=False,
+ help='Display detections to debug')
+@click.pass_context
+def cli(ctx, opt_fp_in, opt_gpu, opt_size, opt_display):
+ """Demo generating face vector"""
+
+ import sys
+ import os
+ from os.path import join
+ from pathlib import Path
+ import time
+
+ import numpy as np
+ import cv2 as cv
+ import dlib # NB: keep a reference in main file if using dlib detector processors
+
+ from app.utils import logger_utils, file_utils, im_utils, display_utils, draw_utils
+ from app.utils import plot_utils
+ from app.processors import face_detector
+ from app.models.data_store import DataStore
+
+ # -------------------------------------------------
+ # init here
+
+ log = logger_utils.Logger.getLogger()
+
+ # ----------------------------------------------------------------------------
+ # load image
+
+ im = cv.imread(opt_fp_in)
+ im_resized = im_utils.resize(im, width=opt_size[0], height=opt_size[1])
+
+
+ # ----------------------------------------------------------------------------
+ # detect face
+
+ face_detector = face_detector.DetectorDLIBCNN(gpu=opt_gpu) # -1 for CPU
+ bboxes = face_detector.detect(im_resized, largest=True)
+ bbox = bboxes[0]
+ dim = im_resized.shape[:2][::-1]
+ bbox_dim = bbox.to_dim(dim)
+ if not bbox:
+ log.error('no face detected')
+ return
+
+
+ # ----------------------------------------------------------------------------
+ # generate face vectors, only to test if feature extraction works
+
+ from app.processors import face_recognition
+ face_rec = face_recognition.RecognitionDLIB()
+ vec = face_rec.vec(im_resized, bbox_dim)
+ log.info(f'generated vector. showing vec[0:10]:')
+ log.info(f'\n{vec[0:10]}')
+
+ if opt_display:
+ draw_utils.draw_bbox(im_resized, bbox_dim)
+ cv.imshow('Original', im_resized)
+ display_utils.handle_keyboard() \ No newline at end of file
diff --git a/megapixels/commands/visualize/plot_3d_landmarks.py b/megapixels/commands/visualize/plot_3d_landmarks.py
new file mode 100644
index 00000000..a0f9e555
--- /dev/null
+++ b/megapixels/commands/visualize/plot_3d_landmarks.py
@@ -0,0 +1,89 @@
+"""
+Crop images to prepare for training
+"""
+
+import click
+# from PIL import Image, ImageOps, ImageFilter, ImageDraw
+
+from app.settings import types
+from app.utils import click_utils
+from app.settings import app_cfg as cfg
+
+color_filters = {'color': 1, 'gray': 2, 'all': 3}
+
+@click.command()
+@click.option('-i', '--input', 'opt_fp_in', default=None,
+ help='Override enum input filename CSV')
+@click.option('-o', '--output', 'opt_fp_out', default=None,
+ help='Override enum output filename CSV')
+@click.option('-m', '--media', 'opt_dir_media', default=None,
+ help='Override enum media directory')
+@click.option('--store', 'opt_data_store',
+ type=cfg.DataStoreVar,
+ default=click_utils.get_default(types.DataStore.HDD),
+ show_default=True,
+ help=click_utils.show_help(types.Dataset))
+@click.option('--dataset', 'opt_dataset',
+ type=cfg.DatasetVar,
+ required=True,
+ show_default=True,
+ help=click_utils.show_help(types.Dataset))
+@click.option('--size', 'opt_size',
+ type=(int, int), default=(480, 480),
+ help='Output image size')
+@click.option('--slice', 'opt_slice', type=(int, int), default=(None, None),
+ help='Slice list of files')
+@click.option('--display/--no-display', 'opt_display', is_flag=True, default=False,
+ help='Display detections to debug')
+@click.option('-f', '--force', 'opt_force', is_flag=True,
+ help='Force overwrite file')
+@click.pass_context
+def cli(ctx, opt_fp_in, opt_dir_media, opt_fp_out, opt_data_store, opt_dataset,
+ opt_size, opt_slice, opt_display, opt_force):
+ """Generates 3D landmark animations from CSV files"""
+
+ import sys
+ import os
+ from os.path import join
+ from pathlib import Path
+
+ from tqdm import tqdm
+ import numpy as np
+ import pandas as pd
+ import matplotlib.pyplot as plt
+
+ from app.utils import logger_utils, file_utils, im_utils, display_utils, draw_utils
+ from app.utils import plot_utils
+ from app.processors import face_detector
+ from app.models.data_store import DataStore
+
+ # -------------------------------------------------
+ # init here
+
+ log = logger_utils.Logger.getLogger()
+
+ # set storage location
+ data_store = DataStore(opt_data_store, opt_dataset)
+ # load file records
+ fp_record = data_store.metadata(types.Metadata.FILE_RECORD) # file_record.csv
+ df_records = pd.read_csv(fp_record).set_index('index')
+ # load ROI data
+ fp_roi = data_store.metadata(types.Metadata.FACE_ROI) # face_roi.csv
+ df_rois = pd.read_csv(fp_roi).set_index('index')
+ fp_landmark_3d = data_store.metadata(types.Metadata.FACE_LANDMARK_3D_68) # face_landmark_3d_68.csv
+ df_landmarks_3d = pd.read_csv(fp_landmark_3d).set_index('index')
+ if opt_slice:
+ df_landmarks_3d = df_landmarks_3d[opt_slice[0]:opt_slice[1]] # slice if you want
+ log.debug('processing {:,} groups'.format(len(df_landmarks_3d)))
+
+ # get filepath out
+ #fp_out = data_store.metadata(types.Metadata.FACE_ROI) if opt_fp_out is None else opt_fp_out
+ fp_out = '/home/adam/Downloads/3d.gif'
+
+
+ for roi_index, df_3d in tqdm(df_landmarks_3d.iterrows(), total=len(df_landmarks_3d)):
+ log.debug(f'roi_index: {roi_index}')
+ # unflatten points
+ points_3d = np.array([(df_3d[f'x{i}'], df_3d[f'y{i}'], df_3d[f'z{i}']) for i in range(1, 68)])
+ plot_utils.generate_3d_landmark_anim(points_3d, fp_out, size=(300,300))
+ break \ No newline at end of file