diff options
| author | Adam Harvey <adam@ahprojects.com> | 2018-12-23 01:37:03 +0100 |
|---|---|---|
| committer | Adam Harvey <adam@ahprojects.com> | 2018-12-23 01:37:03 +0100 |
| commit | 4452e02e8b04f3476273574a875bb60cfbb4568b (patch) | |
| tree | 3ffa44f9621b736250a8b94da14a187dc785c2fe /megapixels/app | |
| parent | 2a65f7a157bd4bace970cef73529867b0e0a374d (diff) | |
| parent | 5340bee951c18910fd764241945f1f136b5a22b4 (diff) | |
.
Diffstat (limited to 'megapixels/app')
27 files changed, 1977 insertions, 74 deletions
diff --git a/megapixels/app/models/bbox.py b/megapixels/app/models/bbox.py index 41b67416..55a92512 100644 --- a/megapixels/app/models/bbox.py +++ b/megapixels/app/models/bbox.py @@ -1,6 +1,9 @@ +import math + from dlib import rectangle as dlib_rectangle import numpy as np + class BBoxPoint: def __init__(self, x, y): @@ -42,8 +45,12 @@ class BBox: self._tl = (x1, y1) self._br = (x2, y2) self._rect = (self._x1, self._y1, self._x2, self._y2) + self._area = self._width * self._height # as percentage - + @property + def area(self): + return self._area + @property def pt_tl(self): return self._tl @@ -105,7 +112,12 @@ class BBox: # # Utils # def constrain(self, dim): - + def distance(self, b): + a = self + dcx = self._cx - b.cx + dcy = self._cy - b.cy + d = int(math.sqrt(math.pow(dcx, 2) + math.pow(dcy, 2))) + return d # ----------------------------------------------------------------- # Modify @@ -117,26 +129,40 @@ class BBox: :returns (BBox) in pixel dimensions """ # expand - rect_exp = list( (np.array(self._rect) + np.array([-amt, -amt, amt, amt])).astype('int')) + r = list( (np.array(self._rect) + np.array([-amt, -amt, amt, amt])).astype('int')) # outliers oob = list(range(4)) - oob[0] = min(rect_exp[0], 0) - oob[1] = min(rect_exp[1], 0) - oob[2] = dim[0] - max(rect_exp[2], 2) - oob[3] = dim[1] - max(rect_exp[3], 3) + oob[0] = min(r[0], 0) + oob[1] = min(r[1], 0) + oob[2] = dim[0] - r[2] + oob[3] = dim[1] - r[3] oob = np.array(oob) oob[oob > 0] = 0 - # amount + # absolute amount oob = np.absolute(oob) - # threshold - rect_exp[0] = max(rect_exp[0], 0) - rect_exp[1] = max(rect_exp[1], 0) - rect_exp[2] = min(rect_exp[2], dim[0]) - rect_exp[3] = min(rect_exp[3], dim[1]) + # threshold expanded rectangle + r[0] = max(r[0], 0) + r[1] = max(r[1], 0) + r[2] = min(r[2], dim[0]) + r[3] = min(r[3], dim[1]) # redistribute oob amounts oob = np.array([-oob[2], -oob[3], oob[0], oob[1]]) - rect_exp = np.add(np.array(rect_exp), oob) - return BBox(*rect_exp) + r = np.add(np.array(r), oob) + # find overage + oob[0] = min(r[0], 0) + oob[1] = min(r[1], 0) + oob[2] = dim[0] - r[2] + oob[3] = dim[1] - r[3] + oob = np.array(oob) + oob[oob > 0] = 0 + oob = np.absolute(oob) + if np.array(oob).any(): + m = np.max(oob) + adj = np.array([m, m, -m, -m]) + # print(adj) + r = np.add(np.array(r), adj) + + return BBox(*r) # ----------------------------------------------------------------- @@ -156,23 +182,23 @@ class BBox: # ----------------------------------------------------------------- # Format as - def as_xyxy(self): + def to_xyxy(self): """Converts BBox back to x1, y1, x2, y2 rect""" return (self._x1, self._y1, self._x2, self._y2) - def as_xywh(self): + def to_xywh(self): """Converts BBox back to haar type""" return (self._x1, self._y1, self._width, self._height) - def as_trbl(self): + def to_trbl(self): """Converts BBox to CSS (top, right, bottom, left)""" return (self._y1, self._x2, self._y2, self._x1) - def as_dlib(self): + def to_dlib(self): """Converts BBox to dlib rect type""" - return dlib.rectangle(self._x1, self._y1, self._x2, self._y2) + return dlib_rectangle(self._x1, self._y1, self._x2, self._y2) - def as_yolo(self): + def to_yolo(self): """Converts BBox to normalized center x, center y, w, h""" return (self._cx, self._cy, self._width, self._height) @@ -199,6 +225,13 @@ class BBox: return cls(*rect) @classmethod + def from_xyxy(cls, x1, y1, x2, y2): + """Converts x1, y1, x2, y2 to BBox + same as constructure but zprovided for conveniene + """ + return cls(x1, y1, x2, y2) + + @classmethod def from_xywh(cls, x, y, w, h): """Converts x1, y1, w, h to BBox :param rect: (list) x1, y1, w, h @@ -227,8 +260,13 @@ class BBox: """ rect = (rect.left(), rect.top(), rect.right(), rect.bottom()) rect = cls.normalize(cls, rect, dim) - return cls(*rect) + return cls(*rect) + + def __str__(self): + return f'BBox: ({self._x1},{self._y1}), ({self._x2}, {self._y2}), width:{self._width}, height:{self._height}' + def __repr__(self): + return f'BBox: ({self._x1},{self._y1}), ({self._x2}, {self._y2}), width:{self._width}, height:{self._height}' def str(self): """Return BBox as a string "x1, y1, x2, y2" """ diff --git a/megapixels/app/models/data_store.py b/megapixels/app/models/data_store.py new file mode 100644 index 00000000..7b6bef21 --- /dev/null +++ b/megapixels/app/models/data_store.py @@ -0,0 +1,67 @@ +import os +from os.path import join +import logging + +from app.settings import app_cfg as cfg +from app.settings import types + + +# ------------------------------------------------------------------------- +# Metadata and media files +# ------------------------------------------------------------------------- + +class DataStore: + # local data store + def __init__(self, opt_data_store, opt_dataset): + self.data_store = join(f'/data_store_{opt_data_store.name.lower()}') + self.dir_dataset = join(self.data_store, 'datasets', cfg.DIR_PEOPLE, opt_dataset.name.lower()) + self.dir_media = join(self.dir_dataset, 'media') + self.dir_metadata = join(self.dir_dataset, 'metadata') + + def metadata(self, enum_type): + return join(self.dir_metadata, f'{enum_type.name.lower()}.csv') + + def metadata_dir(self): + return join(self.dir_metadata) + + def media_images_original(self): + return join(self.dir_media, 'original') + + def face(self, subdir, fn, ext): + return join(self.dir_media, 'original', subdir, f'{fn}.{ext}') + + def face_crop(self, subdir, fn, ext): + return join(self.dir_media, 'cropped', subdir, f'{fn}.{ext}') + + def face_uuid(self, uuid, ext): + return join(self.dir_media, 'uuid',f'{uuid}.{ext}') + + def face_crop_uuid(self, uuid, ext): + return join(self.dir_media, 'uuid', f'{uuid}.{ext}') + + def uuid_dir(self): + return join(self.dir_media, 'uuid') + + +class DataStoreS3: + # S3 server + def __init__(self, opt_dataset): + self._dir_media = join(cfg.S3_HTTP_MEDIA_URL, opt_dataset.name.lower()) + self._dir_metadata = join(cfg.S3_HTTP_METADATA_URL, opt_dataset.name.lower()) + + def metadata(self, opt_metadata_type, ext='csv'): + return join(self._dir_metadata, f'{opt_metadata_type.name.lower()}.{ext}') + + def face(self, opt_uuid, ext='jpg'): + #return join(self._dir_media, 'original', f'{opt_uuid}.{ext}') + return join(self._dir_media, f'{opt_uuid}.{ext}') + + def face_crop(self, opt_uuid, ext='jpg'): + # not currently using? + return join(self._dir_media, 'cropped', f'{opt_uuid}.{ext}') + + + +# ------------------------------------------------------------------------- +# Models +# -------------------------------------------------------------------------
\ No newline at end of file diff --git a/megapixels/app/models/dataset.py b/megapixels/app/models/dataset.py new file mode 100644 index 00000000..eb0109a7 --- /dev/null +++ b/megapixels/app/models/dataset.py @@ -0,0 +1,229 @@ +""" +Dataset model: container for all CSVs about a dataset +""" +import os +import sys +from os.path import join +from pathlib import Path +import logging + +import pandas as pd +import numpy as np + +from app.settings import app_cfg as cfg +from app.settings import types +from app.models.bbox import BBox +from app.utils import file_utils, im_utils +from app.models.data_store import DataStore, DataStoreS3 +from app.utils.logger_utils import Logger + +# ------------------------------------------------------------------------- +# Dataset +# ------------------------------------------------------------------------- + +class Dataset: + + def __init__(self, opt_data_store, opt_dataset_type): + self._dataset_type = opt_dataset_type # enum type + self.log = Logger.getLogger() + self._metadata = {} + self._face_vectors = [] + self._nullframe = pd.DataFrame() # empty placeholder + self.data_store = DataStore(opt_data_store, self._dataset_type) + self.data_store_s3 = DataStoreS3(self._dataset_type) + + def load_face_vectors(self): + metadata_type = types.Metadata.FACE_VECTOR + fp_csv = self.data_store.metadata(metadata_type) + self.log.info(f'loading: {fp_csv}') + if Path(fp_csv).is_file(): + self._metadata[metadata_type] = pd.read_csv(fp_csv).set_index('index') + # convert DataFrame to list of floats + self._face_vectors = self.df_vecs_to_dict(self._metadata[metadata_type]) + self._face_vector_roi_idxs = self.df_vec_roi_idxs_to_dict(self._metadata[metadata_type]) + self.log.info(f'build face vector dict: {len(self._face_vectors)}') + # remove the face vector column, it can be several GB of memory + self._metadata[metadata_type].drop('vec', axis=1, inplace=True) + else: + self.log.error(f'File not found: {fp_csv}. Exiting.') + sys.exit() + + def load_records(self): + metadata_type = types.Metadata.FILE_RECORD + fp_csv = self.data_store.metadata(metadata_type) + self.log.info(f'loading: {fp_csv}') + if Path(fp_csv).is_file(): + self._metadata[metadata_type] = pd.read_csv(fp_csv).set_index('index') + else: + self.log.error(f'File not found: {fp_csv}. Exiting.') + sys.exit() + + def load_identities(self): + metadata_type = types.Metadata.IDENTITY + fp_csv = self.data_store.metadata(metadata_type) + self.log.info(f'loading: {fp_csv}') + if Path(fp_csv).is_file(): + self._metadata[metadata_type] = pd.read_csv(fp_csv).set_index('index') + else: + self.log.error(f'File not found: {fp_csv}. Exiting.') + sys.exit() + + def metadata(self, opt_metadata_type): + return self._metadata.get(opt_metadata_type, None) + + def index_to_record(self, index): + # get record meta + df_record = self._metadata[types.Metadata.FILE_RECORD] + ds_record = df_record.iloc[index] + identity_index = ds_record.identity_index + # get identity meta + df_identity = self._metadata[types.Metadata.IDENTITY] + # future datasets can have multiple identities per images + ds_identities = df_identity.iloc[identity_index] + # get filepath and S3 url + fp_im = self.data_store.face(ds_record.subdir, ds_record.fn, ds_record.ext) + s3_url = self.data_store_s3.face(ds_record.uuid) + image_record = ImageRecord(ds_record, fp_im, s3_url, ds_identities=ds_identities) + return image_record + + def vector_to_record(self, record_index): + '''Accumulates image and its metadata''' + df_face_vector = self._metadata[types.Metadata.FACE_VECTOR] + ds_face_vector = df_face_vector.iloc[vector_index] + # get the match's ROI index + image_index = ds_face_vector.image_index + # get the roi dataframe + df_face_roi = self._metadata[types.Metadata.FACE_ROI] + ds_roi = df_face_roi.iloc[image_index] + # create BBox + dim = (ds_roi.image_width, ds_roi.image_height) + bbox = BBox.from_xywh_dim(ds_roi.x, ds_roi.y, ds_roi.w, ds_roi.y, dim) + # use the ROI index to get identity index from the identity DataFrame + df_sha256 = self._metadata[types.Metadata.SHA256] + ds_sha256 = df_sha256.iloc[image_index] + sha256 = ds_sha256.sha256 + # get the local filepath + df_filepath = self._metadata[types.Metadata.FILEPATH] + ds_file = df_filepath.iloc[image_index] + fp_im = self.data_store.face_image(ds_file.subdir, ds_file.fn, ds_file.ext)\ + # get remote path + df_uuid = self._metadata[types.Metadata.UUID] + ds_uuid = df_uuid.iloc[image_index] + uuid = ds_uuid.uuid + fp_url = self.data_store_s3.face_image(uuid) + fp_url_crop = self.data_store_s3.face_image_crop(uuid) + + image_record = ImageRecord(image_index, sha256, uuid, bbox, fp_im, fp_url) + # now get the identity index (if available) + identity_index = ds_sha256.identity_index + if identity_index > -1: + # then use the identity index to get the identity meta + df_identity = df_filepath = self._metadata[types.Metadata.IDENTITY] + ds_identity = df_identity.iloc[identity_index] + # get the name and description + name = ds_identity.fullname + desc = ds_identity.description + gender = ds_identity.gender + n_images = ds_identity.images + url = '(url)' # TODO + age = '(age)' # TODO + nationality = '(nationality)' + identity = Identity(identity_index, name=name, desc=desc, gender=gender, n_images=n_images, + url=url, age=age, nationality=nationality) + image_record.identity = identity + else: + self.log.info(f'no identity index: {ds_sha256}') + + return image_record + + + def find_matches(self, query_vec, n_results=5, threshold=0.6): + image_records = [] # list of image matches w/identity if available + # find most similar feature vectors indexes + #match_idxs = self.similar(query_vec, n_results, threshold) + sim_scores = np.linalg.norm(np.array([query_vec]) - np.array(self._face_vectors), axis=1) + match_idxs = np.argpartition(sim_scores, n_results)[:n_results] + + for match_idx in match_idxs: + # get the corresponding face vector row + roi_index = self._face_vector_roi_idxs[match_idx] + df_record = self._metadata[types.Metadata.FILE_RECORD] + ds_record = df_record.iloc[roi_index] + self.log.debug(f'find match index: {match_idx}, --> roi_index: {roi_index}') + fp_im = self.data_store.face(ds_record.subdir, ds_record.fn, ds_record.ext) + s3_url = self.data_store_s3.face(ds_record.uuid) + image_record = ImageRecord(ds_record, fp_im, s3_url) + #roi_index = self._face_vector_roi_idxs[match_idx] + #image_record = self.roi_idx_to_record(roi_index) + image_records.append(image_record) + return image_records + + # ---------------------------------------------------------------------- + # utilities + + def df_vecs_to_dict(self, df): + # convert the DataFrame CSV to float list of vecs + return [list(map(float,x.vec.split(','))) for x in df.itertuples()] + + def df_vec_roi_idxs_to_dict(self, df): + # convert the DataFrame CSV to float list of vecs + #return [x.roi_index for x in df.itertuples()] + return [x.roi_index for x in df.itertuples()] + + def similar(self, query_vec, n_results): + '''Finds most similar N indices of query face vector + :query_vec: (list) of 128 floating point numbers of face encoding + :n_results: (int) number of most similar indices to return + :returns (list) of (int) indices + ''' + # uses np.linalg based on the ageitgey/face_recognition code + + return top_idxs + + + +class ImageRecord: + + def __init__(self, ds_record, fp, url, ds_rois=None, ds_identities=None): + # maybe more other meta will go there + self.image_index = ds_record.index + self.sha256 = ds_record.sha256 + self.uuid = ds_record.uuid + self.filepath = fp + self.url = url + self._identities = [] + # image records contain ROIs + # ROIs are linked to identities + + #self._identities = [Identity(x) for x in ds_identities] + + @property + def identity(self, index): + return self._identity + + def summarize(self): + '''Summarizes data for debugging''' + log = Logger.getLogger() + log.info(f'filepath: {self.filepath}') + log.info(f'sha256: {self.sha256}') + log.info(f'UUID: {self.uuid}') + log.info(f'S3 url: {self.url}') + for identity in self._identities: + log.info(f'fullname: {identity.fullname}') + log.info(f'description: {identity.description}') + log.info(f'gender: {identity.gender}') + log.info(f'images: {identity.n_images}') + + +class Identity: + + def __init__(self, idx, name='NA', desc='NA', gender='NA', n_images=1, + url='NA', age='NA', nationality='NA'): + self.index = idx + self.name = name + self.description = desc + self.gender = gender + self.n_images = n_images + self.url = url + self.age = age + self.nationality = nationality diff --git a/megapixels/app/models/sql_factory.py b/megapixels/app/models/sql_factory.py new file mode 100644 index 00000000..da95b539 --- /dev/null +++ b/megapixels/app/models/sql_factory.py @@ -0,0 +1,224 @@ +import os +import glob +import time +import pandas as pd + +from sqlalchemy import create_engine, Table, Column, String, Integer, DateTime, Float +from sqlalchemy.orm import sessionmaker +from sqlalchemy.ext.declarative import declarative_base + +from app.utils.file_utils import load_recipe, load_csv_safe +from app.settings import app_cfg as cfg + +connection_url = "mysql+mysqlconnector://{}:{}@{}/{}?charset=utf8mb4".format( + os.getenv("DB_USER"), + os.getenv("DB_PASS"), + os.getenv("DB_HOST"), + os.getenv("DB_NAME") +) + +datasets = {} +loaded = False +Session = None + +def list_datasets(): + return [dataset.describe() for dataset in datasets.values()] + +def get_dataset(name): + return datasets[name] if name in datasets else None + +def get_table(name, table_name): + dataset = get_dataset(name) + return dataset.get_table(table_name) if dataset else None + +def load_sql_datasets(replace=False, base_model=None): + global datasets, loaded, Session + if loaded: + return datasets + engine = create_engine(connection_url, encoding="utf-8") + # db.set_character_set('utf8') + # dbc = db.cursor() + # dbc.execute('SET NAMES utf8;') + # dbc.execute('SET CHARACTER SET utf8;') + # dbc.execute('SET character_set_connection=utf8;') + Session = sessionmaker(bind=engine) + for path in glob.iglob(os.path.join(cfg.DIR_FAISS_METADATA, "*")): + dataset = load_sql_dataset(path, replace, engine, base_model) + datasets[dataset.name] = dataset + loaded = True + return datasets + +def load_sql_dataset(path, replace=False, engine=None, base_model=None): + name = os.path.basename(path) + dataset = SqlDataset(name, base_model=base_model) + + for fn in glob.iglob(os.path.join(path, "*.csv")): + key = os.path.basename(fn).replace(".csv", "") + table = dataset.get_table(key) + if table is None: + continue + if replace: + print('loading dataset {}'.format(fn)) + df = pd.read_csv(fn) + # fix columns that are named "index", a sql reserved word + df.columns = table.__table__.columns.keys() + df.to_sql(name=table.__tablename__, con=engine, if_exists='replace', index=False) + return dataset + +class SqlDataset: + """ + Bridge between the facial information CSVs connected to the datasets, and MySQL + - each dataset should have files that can be loaded into these database models + - names will be fixed to work in SQL (index -> id) + - we can then have more generic models for fetching this info after doing a FAISS query + """ + def __init__(self, name, engine=None, base_model=None): + self.name = name + self.tables = {} + if base_model is None: + self.engine = create_engine(connection_url) + base_model = declarative_base(engine) + self.base_model = base_model + + def describe(self): + return { + 'name': self.name, + 'tables': list(self.tables.keys()), + } + + def get_identity(self, id): + table = self.get_table('identity_meta') + # id += 1 + identity = table.query.filter(table.image_id <= id).order_by(table.image_id.desc()).first().toJSON() + return { + 'uuid': self.select('uuids', id), + 'identity': identity, + 'roi': self.select('roi', id), + 'pose': self.select('pose', id), + } + + def search_name(self, q): + table = self.get_table('identity_meta') + uuid_table = self.get_table('uuids') + + identity = table.query.filter(table.fullname.like(q)).order_by(table.fullname.desc()).limit(30) + identities = [] + for row in identity: + uuid = uuid_table.query.filter(uuid_table.id == row.image_id).first() + identities.append({ + 'uuid': uuid.toJSON(), + 'identity': row.toJSON(), + }) + return identities + + def select(self, table, id): + table = self.get_table(table) + if not table: + return None + session = Session() + # for obj in session.query(table).filter_by(id=id): + # print(table) + obj = session.query(table).filter(table.id == id).first() + session.close() + return obj.toJSON() + + def get_table(self, type): + if type in self.tables: + return self.tables[type] + elif type == 'uuids': + self.tables[type] = self.uuid_table() + elif type == 'roi': + self.tables[type] = self.roi_table() + elif type == 'identity_meta': + self.tables[type] = self.identity_table() + elif type == 'pose': + self.tables[type] = self.pose_table() + else: + return None + return self.tables[type] + + # ==> uuids.csv <== + # index,uuid + # 0,f03fd921-2d56-4e83-8115-f658d6a72287 + def uuid_table(self): + class UUID(self.base_model): + __tablename__ = self.name + "_uuid" + id = Column(Integer, primary_key=True) + uuid = Column(String(36, convert_unicode=True), nullable=False) + def toJSON(self): + return { + 'id': self.id, + 'uuid': self.uuid, + } + return UUID + + # ==> roi.csv <== + # index,h,image_height,image_index,image_width,w,x,y + # 0,0.33000000000000007,250,0,250,0.32999999999999996,0.33666666666666667,0.35 + def roi_table(self): + class ROI(self.base_model): + __tablename__ = self.name + "_roi" + id = Column(Integer, primary_key=True) + h = Column(Float, nullable=False) + image_height = Column(Integer, nullable=False) + image_index = Column(Integer, nullable=False) + image_width = Column(Integer, nullable=False) + w = Column(Float, nullable=False) + x = Column(Float, nullable=False) + y = Column(Float, nullable=False) + def toJSON(self): + return { + 'id': self.id, + 'image_index': self.image_index, + 'image_height': self.image_height, + 'image_width': self.image_width, + 'w': self.w, + 'h': self.h, + 'x': self.x, + 'y': self.y, + } + return ROI + + # ==> identity.csv <== + # index,fullname,description,gender,images,image_index + # 0,A. J. Cook,Canadian actress,f,1,0 + def identity_table(self): + class Identity(self.base_model): + __tablename__ = self.name + "_identity" + id = Column(Integer, primary_key=True) + fullname = Column(String(36, convert_unicode=True), nullable=False) + description = Column(String(36, convert_unicode=True), nullable=False) + gender = Column(String(1, convert_unicode=True), nullable=False) + images = Column(Integer, nullable=False) + image_id = Column(Integer, nullable=False) + def toJSON(self): + return { + 'id': self.id, + 'image_id': self.image_id, + 'fullname': self.fullname, + 'images': self.images, + 'gender': self.gender, + 'description': self.description, + } + return Identity + + # ==> pose.csv <== + # index,image_index,pitch,roll,yaw + # 0,0,11.16264458441435,10.415885631337728,22.99719032415318 + def pose_table(self): + class Pose(self.base_model): + __tablename__ = self.name + "_pose" + id = Column(Integer, primary_key=True) + image_id = Column(Integer, primary_key=True) + pitch = Column(Float, nullable=False) + roll = Column(Float, nullable=False) + yaw = Column(Float, nullable=False) + def toJSON(self): + return { + 'id': self.id, + 'image_id': self.image_id, + 'pitch': self.pitch, + 'roll': self.roll, + 'yaw': self.yaw, + } + return Pose diff --git a/megapixels/app/processors/face_age.py b/megapixels/app/processors/face_age.py new file mode 100644 index 00000000..222858a5 --- /dev/null +++ b/megapixels/app/processors/face_age.py @@ -0,0 +1,28 @@ +import os +from os.path import join +from pathlib import Path +import math + +import cv2 as cv +import numpy as np +import imutils + +from app.utils import im_utils, logger_utils +from app.models.bbox import BBox +from app.settings import app_cfg as cfg +from app.settings import types + + + +class FaceAge: + + # Estimates face age + + def __init__(self): + self.log = logger_utils.Logger.getLogger() + pass + + + def age(self): + # use enum typed emotions + return {'age': types.Age.ADULT, 'confidence': 0.5}
\ No newline at end of file diff --git a/megapixels/app/processors/face_beauty.py b/megapixels/app/processors/face_beauty.py new file mode 100644 index 00000000..a1ddd9f8 --- /dev/null +++ b/megapixels/app/processors/face_beauty.py @@ -0,0 +1,27 @@ +import os +from os.path import join +from pathlib import Path +import math + +import cv2 as cv +import numpy as np +import imutils + +from app.utils import im_utils, logger_utils +from app.models.bbox import BBox +from app.settings import app_cfg as cfg +from app.settings import types + + + +class FaceBeauty: + + # Estimates beauty using CNN + + def __init__(self): + self.log = logger_utils.Logger.getLogger() + pass + + + def beauty(self): + return 0.5
\ No newline at end of file diff --git a/megapixels/app/processors/face_detector.py b/megapixels/app/processors/face_detector.py index 02d068dc..3a90c557 100644 --- a/megapixels/app/processors/face_detector.py +++ b/megapixels/app/processors/face_detector.py @@ -4,71 +4,140 @@ from pathlib import Path import cv2 as cv import numpy as np -import dlib -# import imutils +import imutils +import operator from app.utils import im_utils, logger_utils from app.models.bbox import BBox from app.settings import app_cfg as cfg +from app.settings import types + + +class DetectorMTCNN: + + # https://github.com/ipazc/mtcnn + # pip install mtcnn + + dnn_size = (300, 300) + + def __init__(self, size=(400,400)): + from mtcnn.mtcnn import MTCNN + self.detector = MTCNN() + + def detect(self, im, size=(400,400), conf_thresh=None, pyramids=None, largest=False): + '''Detects face using MTCNN and returns (list) of BBox + :param im: (numpy.ndarray) image + :returns list of BBox + ''' + bboxes = [] + #conf_thresh = self.conf_thresh if conf_thresh is None else conf_thresh + #pyramids = self.pyramids if pyramids is None else pyramids + dnn_size = self.dnn_size if size is None else size + + im = im_utils.resize(im, width=dnn_size[0], height=dnn_size[1]) + dim = im.shape[:2][::-1] + dets = self.detector.detect_faces(im) + for det in dets: + rect = det['box'] + #keypoints = det['keypoints'] # not using here. see 'face_landmarks.py' + bbox = BBox.from_xywh_dim(*rect, dim) + bboxes.append(bbox) + + if largest and len(bboxes) > 1: + # only keep largest + bboxes.sort(key=operator.attrgetter('area'), reverse=True) + bboxes = [bboxes[0]] + + return bboxes + + +class DetectorHaar: + + im_size = (400, 400) + cascade_name = types.HaarCascade.FRONTAL + + def __init__(self, cascade=types.HaarCascade.FRONTAL): + self.log = logger_utils.Logger.getLogger() + + def detect(self, im, scale_factor=1.05, overlaps=5): + pass + class DetectorDLIBCNN: + dnn_size = (300, 300) pyramids = 0 conf_thresh = 0.85 - def __init__(self, opt_gpu): + def __init__(self, gpu=0): + import dlib self.log = logger_utils.Logger.getLogger() cuda_visible_devices = os.getenv('CUDA_VISIBLE_DEVICES', '') - os.environ['CUDA_VISIBLE_DEVICES'] = str(opt_gpu) + os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu) self.log.info('load model: {}'.format(cfg.DIR_MODELS_DLIB_CNN)) self.detector = dlib.cnn_face_detection_model_v1(cfg.DIR_MODELS_DLIB_CNN) os.environ['CUDA_VISIBLE_DEVICES'] = cuda_visible_devices # reset - def detect(self, im, opt_size=None, opt_conf_thresh=None, opt_pyramids=None): - rois = [] - conf_thresh = self.conf_thresh if opt_conf_thresh is None else opt_conf_thresh - pyramids = self.pyramids if opt_pyramids is None else opt_pyramids - dnn_size = self.dnn_size if opt_size is None else opt_size + def detect(self, im, size=None, conf_thresh=None, pyramids=None, largest=False): + bboxes = [] + conf_thresh = self.conf_thresh if conf_thresh is None else conf_thresh + pyramids = self.pyramids if pyramids is None else pyramids + dnn_size = self.dnn_size if size is None else size # resize image im = im_utils.resize(im, width=dnn_size[0], height=dnn_size[1]) dim = im.shape[:2][::-1] im = im_utils.bgr2rgb(im) # convert to RGB for dlib # run detector - mmod_rects = self.detector(im, 1) + mmod_rects = self.detector(im, pyramids) # sort results for mmod_rect in mmod_rects: if mmod_rect.confidence > conf_thresh: bbox = BBox.from_dlib_dim(mmod_rect.rect, dim) - rois.append(bbox) - return rois + bboxes.append(bbox) + + if largest and len(bboxes) > 1: + # only keep largest + bboxes.sort(key=operator.attrgetter('area'), reverse=True) + bboxes = [bboxes[0]] + + return bboxes class DetectorDLIBHOG: size = (320, 240) pyramids = 0 + conf_thresh = 0.85 def __init__(self): + import dlib + self.log = logger_utils.Logger.getLogger() self.detector = dlib.get_frontal_face_detector() - def detect(self, im, opt_size=None, opt_conf_thresh=None, opt_pyramids=0): - conf_thresh = self.conf_thresh if opt_conf_thresh is None else opt_conf_thresh - dnn_size = self.size if opt_size is None else opt_size - pyramids = self.pyramids if opt_pyramids is None else opt_pyramids + def detect(self, im, size=None, conf_thresh=None, pyramids=0, largest=False): + conf_thresh = self.conf_thresh if conf_thresh is None else conf_thresh + dnn_size = self.size if size is None else size + pyramids = self.pyramids if pyramids is None else pyramids - im = im_utils.resize(im, width=opt_size[0], height=opt_size[1]) + im = im_utils.resize(im, width=dnn_size[0], height=dnn_size[1]) dim = im.shape[:2][::-1] im = im_utils.bgr2rgb(im) # ? hog_results = self.detector.run(im, pyramids) - rois = [] + bboxes = [] if len(hog_results[0]) > 0: for rect, score, direction in zip(*hog_results): - if score > opt_conf_thresh: + if score > conf_thresh: bbox = BBox.from_dlib_dim(rect, dim) - rois.append(bbox) - return rois + bboxes.append(bbox) + + if largest and len(bboxes) > 1: + # only keep largest + bboxes.sort(key=operator.attrgetter('area'), reverse=True) + bboxes = [bboxes[0]] + + return bboxes class DetectorCVDNN: @@ -79,25 +148,32 @@ class DetectorCVDNN: conf_thresh = 0.85 def __init__(self): + import dlib fp_prototxt = join(cfg.DIR_MODELS_CAFFE, 'face_detect', 'opencv_face_detector.prototxt') fp_model = join(cfg.DIR_MODELS_CAFFE, 'face_detect', 'opencv_face_detector.caffemodel') self.net = cv.dnn.readNet(fp_prototxt, fp_model) self.net.setPreferableBackend(cv.dnn.DNN_BACKEND_OPENCV) self.net.setPreferableTarget(cv.dnn.DNN_TARGET_CPU) - def detect(self, im, opt_size=None, opt_conf_thresh=None): + def detect(self, im, size=None, conf_thresh=None, largest=False, pyramids=None): """Detects faces and returns (list) of (BBox)""" - conf_thresh = self.conf_thresh if opt_conf_thresh is None else opt_conf_thresh - dnn_size = self.size if opt_size is None else opt_size + conf_thresh = self.conf_thresh if conf_thresh is None else conf_thresh + dnn_size = self.size if size is None else size im = cv.resize(im, dnn_size) blob = cv.dnn.blobFromImage(im, self.dnn_scale, dnn_size, self.dnn_mean) self.net.setInput(blob) net_outputs = self.net.forward() - rois = [] + bboxes = [] for i in range(0, net_outputs.shape[2]): conf = net_outputs[0, 0, i, 2] - if conf > opt_conf_thresh: + if conf > conf_thresh: rect_norm = net_outputs[0, 0, i, 3:7] - rois.append(BBox(*rect_norm)) - return rois
\ No newline at end of file + bboxes.append(BBox(*rect_norm)) + + if largest and len(bboxes) > 1: + # only keep largest + bboxes.sort(key=operator.attrgetter('area'), reverse=True) + bboxes = [bboxes[0]] + + return bboxes
\ No newline at end of file diff --git a/megapixels/app/processors/face_emotion.py b/megapixels/app/processors/face_emotion.py new file mode 100644 index 00000000..c45da9ba --- /dev/null +++ b/megapixels/app/processors/face_emotion.py @@ -0,0 +1,28 @@ +import os +from os.path import join +from pathlib import Path +import math + +import cv2 as cv +import numpy as np +import imutils + +from app.utils import im_utils, logger_utils +from app.models.bbox import BBox +from app.settings import app_cfg as cfg +from app.settings import types + + + +class FaceEmotion: + + # Estimates face emotion + + def __init__(self): + self.log = logger_utils.Logger.getLogger() + pass + + + def emotion(self): + # use enum typed emotions + return {'emotion': types.Emotion.NEUTRAL, 'confidence': 0.5}
\ No newline at end of file diff --git a/megapixels/app/processors/face_gender.py b/megapixels/app/processors/face_gender.py new file mode 100644 index 00000000..ee152098 --- /dev/null +++ b/megapixels/app/processors/face_gender.py @@ -0,0 +1,27 @@ +import os +from os.path import join +from pathlib import Path +import math + +import cv2 as cv +import numpy as np +import imutils + +from app.utils import im_utils, logger_utils +from app.models.bbox import BBox +from app.settings import app_cfg as cfg +from app.settings import types + + + +class FaceGender: + + # Estimates gender using CNN + + def __init__(self): + self.log = logger_utils.Logger.getLogger() + pass + + + def gender(self): + return 'm'
\ No newline at end of file diff --git a/megapixels/app/processors/face_landmarks.py b/megapixels/app/processors/face_landmarks.py new file mode 100644 index 00000000..dfcb9ee8 --- /dev/null +++ b/megapixels/app/processors/face_landmarks.py @@ -0,0 +1,60 @@ +import os +from os.path import join +from pathlib import Path + +import cv2 as cv +import numpy as np +import imutils +from app.utils import im_utils, logger_utils +from app.models.bbox import BBox +from app.settings import app_cfg as cfg +from app.settings import types +from app.models.bbox import BBox + +class LandmarksDLIB: + + def __init__(self): + # init dlib + import dlib + self.log = logger_utils.Logger.getLogger() + self.predictor = dlib.shape_predictor(cfg.DIR_MODELS_DLIB_68PT) + + def landmarks(self, im, bbox): + # Draw high-confidence faces + dim = im.shape[:2][::-1] + bbox = bbox.to_dlib() + im_gray = cv.cvtColor(im, cv.COLOR_BGR2GRAY) + landmarks = [[p.x, p.y] for p in self.predictor(im_gray, bbox).parts()] + return landmarks + + +class LandmarksMTCNN: + + # https://github.com/ipazc/mtcnn + # pip install mtcnn + + dnn_size = (400, 400) + + def __init__(self, size=(400,400)): + from mtcnn.mtcnn import MTCNN + self.detector = MTCNN() + + def detect(self, im, opt_size=None, opt_conf_thresh=None, opt_pyramids=None): + '''Detects face using MTCNN and returns (list) of BBox + :param im: (numpy.ndarray) image + :returns list of BBox + ''' + rois = [] + dnn_size = self.dnn_size if opt_size is None else opt_size + im = im_utils.resize(im, width=dnn_size[0], height=dnn_size[1]) + dim = im.shape[:2][::-1] + + # run MTCNN + dets = self.detector.detect_faces(im) + + for det in dets: + rect = det['box'] + keypoints = det['keypoints'] # not using here. see 'face_landmarks.py' + bbox = BBox.from_xywh_dim(*rect, dim) + rois.append(bbox) + return rois
\ No newline at end of file diff --git a/megapixels/app/processors/face_landmarks_3d.py b/megapixels/app/processors/face_landmarks_3d.py new file mode 100644 index 00000000..84a423b0 --- /dev/null +++ b/megapixels/app/processors/face_landmarks_3d.py @@ -0,0 +1,27 @@ +import os +from os.path import join +from pathlib import Path +import math + +import cv2 as cv +import numpy as np +import imutils + +from app.utils import im_utils, logger_utils +from app.models.bbox import BBox +from app.settings import app_cfg as cfg +from app.settings import types + + + +class FaceLandmarks3D: + + # Estimates 3D facial landmarks + + def __init__(self): + self.log = logger_utils.Logger.getLogger() + pass + + + def landmarks(self): + return [1,2,3,4,100]
\ No newline at end of file diff --git a/megapixels/app/processors/face_mesh.py b/megapixels/app/processors/face_mesh.py new file mode 100644 index 00000000..2d3deb4f --- /dev/null +++ b/megapixels/app/processors/face_mesh.py @@ -0,0 +1,27 @@ +import os +from os.path import join +from pathlib import Path +import math + +import cv2 as cv +import numpy as np +import imutils + +from app.utils import im_utils, logger_utils +from app.models.bbox import BBox +from app.settings import app_cfg as cfg +from app.settings import types + + + +class FaceMesh3D: + + # Estimates 3D face mesh + + def __init__(self): + self.log = logger_utils.Logger.getLogger() + pass + + + def mesh(self): + return [1,2,3,4,100]
\ No newline at end of file diff --git a/megapixels/app/processors/face_pose.py b/megapixels/app/processors/face_pose.py new file mode 100644 index 00000000..f2548b32 --- /dev/null +++ b/megapixels/app/processors/face_pose.py @@ -0,0 +1,104 @@ +import os +from os.path import join +from pathlib import Path +import math + +import cv2 as cv +import numpy as np +import imutils + +from app.utils import im_utils, logger_utils +from app.models.bbox import BBox +from app.settings import app_cfg as cfg +from app.settings import types + + + +class FacePoseDLIB: + + + dnn_size = (400, 400) + + def __init__(self): + pass + + + def pose(self, landmarks, dim, project_points=False): + # computes pose using 6 / 68 points from dlib face landmarks + # based on learnopencv.com and + # https://github.com/jerryhouuu/Face-Yaw-Roll-Pitch-from-Pose-Estimation-using-OpenCV/ + # NB: not as accurate as MTCNN, see @jerryhouuu for ideas + + pose_points_idx = (30, 8, 36, 45, 48, 54) + axis = np.float32([[500,0,0], [0,500,0], [0,0,500]]) + + # 3D model points. + model_points = np.array([ + (0.0, 0.0, 0.0), # Nose tip + (0.0, -330.0, -65.0), # Chin + (-225.0, 170.0, -135.0), # Left eye left corner + (225.0, 170.0, -135.0), # Right eye right corne + (-150.0, -150.0, -125.0), # Left Mouth corner + (150.0, -150.0, -125.0) # Right mouth corner + ]) + + # Assuming no lens distortion + dist_coeffs = np.zeros((4,1)) + + # find 6 pose points + pose_points = [] + for j, idx in enumerate(pose_points_idx): + pt = landmarks[idx] + pose_points.append((pt[0], pt[1])) + pose_points = np.array(pose_points, dtype='double') # convert to double + + # create camera matrix + focal_length = dim[0] + center = (dim[0]/2, dim[1]/2) + cam_mat = np.array( + [[focal_length, 0, center[0]], + [0, focal_length, center[1]], + [0, 1, 1]], dtype = "double") + + # solve PnP for rotation and translation + (success, rot_vec, tran_vec) = cv.solvePnP(model_points, pose_points, + cam_mat, dist_coeffs, + flags=cv.SOLVEPNP_ITERATIVE) + + result = {} + + # project points + if project_points: + pts_im, jac = cv.projectPoints(axis, rot_vec, tran_vec, cam_mat, dist_coeffs) + pts_model, jac2 = cv.projectPoints(model_points, rot_vec, tran_vec, cam_mat, dist_coeffs) + result['points_model'] = pts_model + result['points_image'] = pts_im + result['point_nose'] = tuple(landmarks[pose_points_idx[0]]) + + rvec_matrix = cv.Rodrigues(rot_vec)[0] + + # convert to degrees + proj_matrix = np.hstack((rvec_matrix, tran_vec)) + eulerAngles = cv.decomposeProjectionMatrix(proj_matrix)[6] + pitch, yaw, roll = [math.radians(x) for x in eulerAngles] + pitch = math.degrees(math.asin(math.sin(pitch))) + roll = -math.degrees(math.asin(math.sin(roll))) + yaw = math.degrees(math.asin(math.sin(yaw))) + degrees = {'pitch': pitch, 'roll': roll, 'yaw': yaw} + result['degrees'] = degrees + + return result + + + def draw_pose(self, im, pts_im, pts_model, pt_nose): + cv.line(im, pt_nose, tuple(pts_im[1].ravel()), (0,255,0), 3) #GREEN + cv.line(im, pt_nose, tuple(pts_im[0].ravel()), (255,0,), 3) #BLUE + cv.line(im, pt_nose, tuple(pts_im[2].ravel()), (0,0,255), 3) #RED + + + def draw_degrees(self, im, degrees, color=(0,255,0)): + for i, item in enumerate(degrees.items()): + k, v = item + t = '{}: {:.2f}'.format(k, v) + origin = (10, 30 + (25 * i)) + cv.putText(im, t, origin, cv.FONT_HERSHEY_SIMPLEX, 0.5, color, thickness=2, lineType=2)
\ No newline at end of file diff --git a/megapixels/app/processors/face_recognition.py b/megapixels/app/processors/face_recognition.py new file mode 100644 index 00000000..e0b9f752 --- /dev/null +++ b/megapixels/app/processors/face_recognition.py @@ -0,0 +1,56 @@ +import os +from os.path import join +from pathlib import Path + +import cv2 as cv +import numpy as np +import dlib +import imutils + +from app.utils import im_utils, logger_utils +from app.models.bbox import BBox +from app.settings import app_cfg as cfg +from app.settings import types + +class RecognitionDLIB: + + # https://github.com/davisking/dlib/blob/master/python_examples/face_recognition.py + # facerec.compute_face_descriptor(img, shape, 100, 0.25) + + def __init__(self, gpu=0): + self.log = logger_utils.Logger.getLogger() + + if gpu > -1: + cuda_visible_devices = os.getenv('CUDA_VISIBLE_DEVICES', '') + os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu) + + self.predictor = dlib.shape_predictor(cfg.DIR_MODELS_DLIB_5PT) + self.facerec = dlib.face_recognition_model_v1(cfg.DIR_MODELS_DLIB_FACEREC_RESNET) + + if gpu > -1: + os.environ['CUDA_VISIBLE_DEVICES'] = cuda_visible_devices # reset GPU env + + + def vec(self, im, bbox, width=100, + jitters=cfg.DLIB_FACEREC_JITTERS, padding=cfg.DLIB_FACEREC_PADDING): + # Converts image and bbox into 128d vector + # scale the image so the face is always 100x100 pixels + + #self.log.debug('compute scale') + scale = width / bbox.width + #im = cv.resize(im, (scale, scale), cv.INTER_LANCZOS4) + #self.log.debug('resize') + cv.resize(im, None, fx=scale, fy=scale, interpolation=cv.INTER_LANCZOS4) + #self.log.debug('to dlib') + bbox_dlib = bbox.to_dlib() + #self.log.debug('precitor') + face_shape = self.predictor(im, bbox_dlib) + # vec = self.facerec.compute_face_descriptor(im, face_shape, jitters, padding) + #self.log.debug('vec') + vec = self.facerec.compute_face_descriptor(im, face_shape, jitters) + #vec = self.facerec.compute_face_descriptor(im, face_shape) + return vec + + + def similarity(self, query_enc, known_enc): + return np.linalg.norm(query_enc - known_enc, axis=1) diff --git a/megapixels/app/processors/faiss.py b/megapixels/app/processors/faiss.py new file mode 100644 index 00000000..5156ad71 --- /dev/null +++ b/megapixels/app/processors/faiss.py @@ -0,0 +1,58 @@ +""" +Index all of the FAISS datasets +""" + +import os +import glob +import faiss +import time +import numpy as np + +from app.utils.file_utils import load_recipe, load_csv_safe +from app.settings import app_cfg as cfg + +class DefaultRecipe: + def __init__(self): + self.dim = 128 + self.factory_type = 'Flat' + +def build_all_faiss_databases(): + datasets = [] + for fn in glob.iglob(os.path.join(cfg.DIR_FAISS_METADATA, "*")): + name = os.path.basename(fn) + recipe_fn = os.path.join(cfg.DIR_FAISS_RECIPES, name + ".json") + if os.path.exists(recipe_fn): + build_faiss_database(name, load_recipe(recipe_fn)) + else: + build_faiss_database(name, DefaultRecipe()) + +def build_faiss_database(name, recipe): + vec_fn = os.path.join(cfg.DIR_FAISS_METADATA, name, "vecs.csv") + index_fn = os.path.join(cfg.DIR_FAISS_INDEXES, name + ".index") + + index = faiss.index_factory(recipe.dim, recipe.factory_type) + + keys, rows = load_csv_safe(vec_fn) + feats = np.array([ list(map(float, row[3].split(","))) for row in rows ]).astype('float32') + n, d = feats.shape + + print("{}: training {} x {} dim vectors".format(name, n, d)) + print(recipe.factory_type) + + add_start = time.time() + index.add(feats) + add_end = time.time() + add_time = add_end - add_start + print("{}: add time: {:.1f}s".format(name, add_time)) + + faiss.write_index(index, index_fn) + +def load_faiss_databases(): + faiss_datasets = {} + for fn in glob.iglob(os.path.join(cfg.DIR_FAISS_METADATA, "*")): + name = os.path.basename(fn) + index_fn = os.path.join(cfg.DIR_FAISS_INDEXES, name + ".index") + if os.path.exists(index_fn): + index = faiss.read_index(index_fn) + faiss_datasets[name] = index + return faiss_datasets diff --git a/megapixels/app/server/api.py b/megapixels/app/server/api.py new file mode 100644 index 00000000..35862837 --- /dev/null +++ b/megapixels/app/server/api.py @@ -0,0 +1,152 @@ +import os +import re +import time +import dlib +import numpy as np +from flask import Blueprint, request, jsonify +from PIL import Image # todo: try to remove PIL dependency + +from app.processors import face_recognition +from app.processors import face_detector +from app.processors.faiss import load_faiss_databases +from app.models.sql_factory import load_sql_datasets, list_datasets, get_dataset, get_table +from app.utils.im_utils import pil2np + +sanitize_re = re.compile('[\W]+') +valid_exts = ['.gif', '.jpg', '.jpeg', '.png'] + +LIMIT = 9 +THRESHOLD = 0.3 + +api = Blueprint('api', __name__) + +faiss_datasets = load_faiss_databases() + +@api.route('/') +def index(): + """List the datasets and their fields""" + return jsonify({ 'datasets': list_datasets() }) + + +@api.route('/dataset/<dataset_name>') +def show(dataset_name): + """Show the data that a dataset will return""" + dataset = get_dataset(dataset_name) + if dataset: + return jsonify(dataset.describe()) + else: + return jsonify({ 'status': 404 }) + + +@api.route('/dataset/<dataset_name>/face', methods=['POST']) +def upload(dataset_name): + """Query an image against FAISS and return the matching identities""" + start = time.time() + dataset = get_dataset(dataset_name) + if dataset_name not in faiss_datasets: + return jsonify({ + 'error': 'invalid dataset' + }) + faiss_dataset = faiss_datasets[dataset_name] + file = request.files['query_img'] + fn = file.filename + if fn.endswith('blob'): + fn = 'filename.jpg' + + basename, ext = os.path.splitext(fn) + # print("got {}, type {}".format(basename, ext)) + if ext.lower() not in valid_exts: + return jsonify({ 'error': 'not an image' }) + + im = Image.open(file.stream).convert('RGB') + im_np = pil2np(im) + + # Face detection + detector = face_detector.DetectorDLIBHOG() + + # get detection as BBox object + bboxes = detector.detect(im_np, largest=True) + if not bboxes or not len(bboxes): + return jsonify({ + 'error': 'bbox' + }) + bbox = bboxes[0] + if not bbox: + return jsonify({ + 'error': 'bbox' + }) + + dim = im_np.shape[:2][::-1] + bbox = bbox.to_dim(dim) # convert back to real dimensions + # print("got bbox") + if not bbox: + return jsonify({ + 'error': 'bbox' + }) + + # extract 128-D vector + recognition = face_recognition.RecognitionDLIB(gpu=-1) + vec = recognition.vec(im_np, bbox) + query = np.array([ vec ]).astype('float32') + + # query FAISS + distances, indexes = faiss_dataset.search(query, LIMIT) + + if len(indexes) == 0 or len(indexes[0]) == 0: + return jsonify({ + 'error': 'nomatch' + }) + + # get the results for this single query... + distances = distances[0] + indexes = indexes[0] + + dists = [] + ids = [] + for _d, _i in zip(distances, indexes): + if _d <= THRESHOLD: + dists.append(round(float(_d), 2)) + ids.append(_i+1) + + results = [ dataset.get_identity(int(_i)) for _i in ids ] + + # print(distances) + # print(ids) + + # 'bbox': str(bboxes[0]), + # 'bbox_dim': str(bbox), + # print(bboxes[0]) + # print(bbox) + + query = { + 'timing': round(time.time() - start, 3), + 'bbox': str(bbox), + } + # print(results) + return jsonify({ + 'query': query, + 'results': results, + 'distances': dists, + }) + + +@api.route('/dataset/<dataset_name>/name', methods=['GET','POST']) +def name_lookup(dataset_name): + """Find a name in the dataset""" + start = time.time() + dataset = get_dataset(dataset_name) + + q = request.args.get('q') + # print(q) + + query = { + 'q': q, + 'timing': time.time() - start, + } + results = dataset.search_name(q + '%') if q else None + + # print(results) + return jsonify({ + 'query': query, + 'results': results, + }) diff --git a/megapixels/app/server/create.py b/megapixels/app/server/create.py new file mode 100644 index 00000000..4b1333b9 --- /dev/null +++ b/megapixels/app/server/create.py @@ -0,0 +1,49 @@ +from flask import Flask, Blueprint, jsonify, send_from_directory +from flask_sqlalchemy import SQLAlchemy +from app.models.sql_factory import connection_url, load_sql_datasets + +from app.server.api import api + +db = SQLAlchemy() + +def create_app(script_info=None): + """ + functional pattern for creating the flask app + """ + app = Flask(__name__, static_folder='static', static_url_path='') + app.config['SQLALCHEMY_DATABASE_URI'] = connection_url + app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False + + db.init_app(app) + datasets = load_sql_datasets(replace=False, base_model=db.Model) + + app.register_blueprint(api, url_prefix='/api') + app.add_url_rule('/<path:file_relative_path_to_root>', 'serve_page', serve_page, methods=['GET']) + + @app.route('/', methods=['GET']) + def index(): + return app.send_static_file('index.html') + + @app.shell_context_processor + def shell_context(): + return { 'app': app, 'db': db } + + @app.route("/site-map") + def site_map(): + links = [] + for rule in app.url_map.iter_rules(): + # url = url_for(rule.endpoint, **(rule.defaults or {})) + # print(url) + links.append((rule.endpoint)) + return(jsonify(links)) + + return app + +def serve_page(file_relative_path_to_root): + """ + trying to get this to serve /path/ with /path/index.html, + ...but it doesnt actually matter for production... + """ + if file_relative_path_to_root[-1] == '/': + file_relative_path_to_root += 'index.html' + return send_from_directory("static", file_relative_path_to_root) diff --git a/megapixels/app/server/json_encoder.py b/megapixels/app/server/json_encoder.py new file mode 100644 index 00000000..89af578a --- /dev/null +++ b/megapixels/app/server/json_encoder.py @@ -0,0 +1,17 @@ +from sqlalchemy.ext.declarative import DeclarativeMeta +from flask import json + +class AlchemyEncoder(json.JSONEncoder): + def default(self, o): + if isinstance(o.__class__, DeclarativeMeta): + data = {} + fields = o.__json__() if hasattr(o, '__json__') else dir(o) + for field in [f for f in fields if not f.startswith('_') and f not in ['metadata', 'query', 'query_class']]: + value = o.__getattribute__(field) + try: + json.dumps(value) + data[field] = value + except TypeError: + data[field] = None + return data + return json.JSONEncoder.default(self, o) diff --git a/megapixels/app/server/static b/megapixels/app/server/static new file mode 120000 index 00000000..1dc7a639 --- /dev/null +++ b/megapixels/app/server/static @@ -0,0 +1 @@ +../../../site/public
\ No newline at end of file diff --git a/megapixels/app/settings/app_cfg.py b/megapixels/app/settings/app_cfg.py index 739ddce2..55fed166 100644 --- a/megapixels/app/settings/app_cfg.py +++ b/megapixels/app/settings/app_cfg.py @@ -2,27 +2,36 @@ import os from os.path import join import logging import collections - -import cv2 as cv +from dotenv import load_dotenv from app.settings import types from app.utils import click_utils +import codecs +codecs.register(lambda name: codecs.lookup('utf8') if name == 'utf8mb4' else None) # ----------------------------------------------------------------------------- # Enun lists used for custom Click Params # ----------------------------------------------------------------------------- FaceDetectNetVar = click_utils.ParamVar(types.FaceDetectNet) - +HaarCascadeVar = click_utils.ParamVar(types.HaarCascade) LogLevelVar = click_utils.ParamVar(types.LogLevel) +MetadataVar = click_utils.ParamVar(types.Metadata) +DatasetVar = click_utils.ParamVar(types.Dataset) +DataStoreVar = click_utils.ParamVar(types.DataStore) # # data_store DATA_STORE = '/data_store_hdd/' +DATA_STORE_NAS = '/data_store_nas/' +DATA_STORE_HDD = '/data_store_hdd/' +DATA_STORE_SSD = '/data_store_ssd/' DIR_DATASETS = join(DATA_STORE,'datasets') +DIR_DATSET_NAS = join(DIR_DATASETS, 'people') DIR_APPS = join(DATA_STORE,'apps') DIR_APP = join(DIR_APPS,'megapixels') DIR_MODELS = join(DIR_APP,'models') +DIR_PEOPLE = 'people' # # Frameworks DIR_MODELS_CAFFE = join(DIR_MODELS,'caffe') @@ -36,23 +45,39 @@ DIR_MODELS_DLIB = join(DIR_MODELS,'dlib') DIR_MODELS_DLIB_CNN = join(DIR_MODELS_DLIB, 'mmod_human_face_detector.dat') DIR_MODELS_DLIB_5PT = join(DIR_MODELS_DLIB, 'shape_predictor_5_face_landmarks.dat') DIR_MODELS_DLIB_68PT = join(DIR_MODELS_DLIB, 'shape_predictor_68_face_landmarks.dat') +DIR_MODELS_DLIB_FACEREC_RESNET = join(DIR_MODELS_DLIB, 'dlib_face_recognition_resnet_model_v1.dat') +DIR_FAISS = join(DIR_APP, 'faiss') +DIR_FAISS_INDEXES = join(DIR_FAISS, 'indexes') +DIR_FAISS_METADATA = join(DIR_FAISS, 'metadata') +DIR_FAISS_RECIPES = join(DIR_FAISS, 'recipes') # Test images DIR_TEST_IMAGES = join(DIR_APP, 'test', 'images') # ----------------------------------------------------------------------------- +# .env config for keys +# ----------------------------------------------------------------------------- + +# DIR_DOTENV = join(DIR_APP, '.env') +load_dotenv() # dotenv_path=DIR_DOTENV) + +# ----------------------------------------------------------------------------- # Drawing, GUI settings # ----------------------------------------------------------------------------- DIR_ASSETS = join(DIR_APP, 'assets') FP_FONT = join(DIR_ASSETS, 'font') - # ----------------------------------------------------------------------------- # click chair settings # ----------------------------------------------------------------------------- -DIR_COMMANDS_PROCESSOR_ADMIN = 'admin/commands' -DIR_COMMANDS_PROCESSOR_DATASETS = 'datasets/commands' +DIR_COMMANDS_CV = 'commands/cv' +DIR_COMMANDS_ADMIN = 'commands/admin' +DIR_COMMANDS_DATASETS = 'commands/datasets' +DIR_COMMANDS_FAISS = 'commands/faiss' +DIR_COMMANDS_MISC = 'commands/misc' +DIR_COMMANDS_SITE = 'commands/site' +DIR_COMMANDS_DEMO = 'commands/demo' # ----------------------------------------------------------------------------- # Filesystem settings @@ -64,6 +89,16 @@ CKPT_ZERO_PADDING = 9 HASH_TREE_DEPTH = 3 HASH_BRANCH_SIZE = 3 +DLIB_FACEREC_JITTERS = 5 # number of face recognition jitters +DLIB_FACEREC_PADDING = 0.25 # default dlib + +POSE_MINMAX_YAW = (-25,25) +POSE_MINMAX_ROLL = (-15,15) +POSE_MINMAX_PITCH = (-10,10) + +POSE_MINMAX_YAW = (-40,40) +POSE_MINMAX_ROLL = (-35,35) +POSE_MINMAX_PITCH = (-25,25) # ----------------------------------------------------------------------------- # Logging options exposed for custom click Params # ----------------------------------------------------------------------------- @@ -87,4 +122,23 @@ black, red, green, yellow, blue, purple, cyan and white. bold, bold_{color}, fg_bold_{color}, bg_bold_{color}: Bold/bright colors. reset: Clear all formatting (both foreground and background colors). """ -LOGFILE_FORMAT = "%(log_color)s%(levelname)-8s%(reset)s %(cyan)s%(filename)s:%(lineno)s:%(bold_cyan)s%(funcName)s() %(reset)s%(message)s"
\ No newline at end of file +LOGFILE_FORMAT = "%(log_color)s%(levelname)-8s%(reset)s %(cyan)s%(filename)s:%(lineno)s:%(bold_cyan)s%(funcName)s() %(reset)s%(message)s" + +# ----------------------------------------------------------------------------- +# S3 storage +# ----------------------------------------------------------------------------- +S3_ROOT_URL = 's3://megapixels/v1/' +S3_MEDIA_URL = join(S3_ROOT_URL, 'media') +S3_METADATA_URL = join(S3_ROOT_URL, 'metadata') +S3_HTTP_URL = 'https://megapixels.nyc3.digitaloceanspaces.com/v1/' +S3_HTTP_MEDIA_URL = join(S3_HTTP_URL, 'media') +S3_HTTP_METADATA_URL = join(S3_HTTP_URL, 'metadata') + +# ----------------------------------------------------------------------------- +# Static site generator +# ----------------------------------------------------------------------------- +S3_SITE_PATH = "v1/site" +S3_DATASETS_PATH = "v1" # datasets is already in the filename +DIR_SITE_PUBLIC = "../site/public" +DIR_SITE_CONTENT = "../site/content" +DIR_SITE_TEMPLATES = "../site/templates" diff --git a/megapixels/app/settings/types.py b/megapixels/app/settings/types.py index 0c3d7942..0805c5bd 100644 --- a/megapixels/app/settings/types.py +++ b/megapixels/app/settings/types.py @@ -7,10 +7,9 @@ def find_type(name, enum_type): return None - class FaceDetectNet(Enum): """Scene text detector networks""" - HAAR, DLIB_CNN, DLIB_HOG, CVDNN = range(4) + HAAR, DLIB_CNN, DLIB_HOG, CVDNN, MTCNN = range(5) class CVBackend(Enum): """OpenCV 3.4.2+ DNN target type""" @@ -20,6 +19,18 @@ class CVTarget(Enum): """OpenCV 3.4.2+ DNN backend processor type""" CPU, OPENCL, OPENCL_FP16, MYRIAD = range(4) +class HaarCascade(Enum): + FRONTAL, ALT, ALT2, PROFILE = range(4) + + +# --------------------------------------------------------------------- +# Storage +# -------------------------------------------------------------------- + +class DataStore(Enum): + """Storage devices. Paths are symlinked to root (eg /data_store_nas)""" + NAS, HDD, SSD, S3 = range(4) + # --------------------------------------------------------------------- # Logger, monitoring # -------------------------------------------------------------------- @@ -27,3 +38,47 @@ class CVTarget(Enum): class LogLevel(Enum): """Loger vebosity""" DEBUG, INFO, WARN, ERROR, CRITICAL = range(5) + + +# --------------------------------------------------------------------- +# Metadata types +# -------------------------------------------------------------------- + +class Metadata(Enum): + IDENTITY, FILE_RECORD, FACE_VECTOR, FACE_POSE, FACE_ROI, FACE_LANDMARKS_68, \ + FACE_LANDMARKS_3D = range(7) + +class Dataset(Enum): + LFW, VGG_FACE2, MSCELEB, UCCS, UMD_FACES = range(5) + + +# --------------------------------------------------------------------- +# Face analysis types +# -------------------------------------------------------------------- +class FaceEmotion(Enum): + # Map these to text strings for web display + NEUTRAL, HAPPY, SAD, ANGRY, FRUSTURATED = range(5) + +class FaceBeauty(Enum): + # Map these to text strings for web display + AVERAGE, BELOW_AVERAGE, ABOVE_AVERAGE = range(3) + +class FaceYaw(Enum): + # Map these to text strings for web display + FAR_LEFT, LEFT, CENTER, RIGHT, FAR_RIGHT = range(5) + +class FacePitch(Enum): + # Map these to text strings for web display + FAR_DOWN, DOWN, CENTER, UP, FAR_UP = range(5) + +class FaceRoll(Enum): + # Map these to text strings for web display + FAR_DOWN, DOWN, CENTER, UP, FAR_UP = range(5) + +class FaceAge(Enum): + # Map these to text strings for web display + CHILD, TEENAGER, YOUNG_ADULT, ADULT, MATURE_ADULT, SENIOR = range(6) + +class Confidence(Enum): + # Map these to text strings for web display + VERY_LOW, LOW, MEDIUM, MEDIUM_HIGH, HIGH, VERY_HIGH = range(6)
\ No newline at end of file diff --git a/megapixels/app/site/README.md b/megapixels/app/site/README.md new file mode 100644 index 00000000..1a6d3a1e --- /dev/null +++ b/megapixels/app/site/README.md @@ -0,0 +1,21 @@ +Megapixels Static Site Generator +================================ + +The index, blog, and about other pages are built using this static site generator. + +## Metadata + +``` +status: published|draft|private +title: From 1 to 100 Pixels +desc: High resolution insights from low resolution imagery +slug: from-1-to-100-pixels +published: 2018-12-04 +updated: 2018-12-04 +authors: Adam Harvey, Berit Gilma, Matthew Stender +``` + +## S3 Assets + +Static assets: `v1/site/about/assets/picture.jpg` +Dataset assets: `v1/datasets/lfw/assets/picture.jpg` diff --git a/megapixels/app/site/builder.py b/megapixels/app/site/builder.py new file mode 100644 index 00000000..ff1a0c83 --- /dev/null +++ b/megapixels/app/site/builder.py @@ -0,0 +1,103 @@ +#!/usr/bin/python + +import os +import glob +from jinja2 import Environment, FileSystemLoader, select_autoescape + +import app.settings.app_cfg as cfg + +import app.site.s3 as s3 +import app.site.parser as parser + +env = Environment( + loader=FileSystemLoader(cfg.DIR_SITE_TEMPLATES), + autoescape=select_autoescape([]) +) + +def build_page(fn, research_posts): + """ + build a single page from markdown into the appropriate template + - writes it to site/public/ + - syncs any assets with s3 + - handles certain index pages... + """ + metadata, sections = parser.read_metadata(fn) + + if metadata is None: + print("{} has no metadata".format(fn)) + return + + print(metadata['url']) + + dirname = os.path.dirname(fn) + output_path = cfg.DIR_SITE_PUBLIC + metadata['url'] + output_fn = os.path.join(output_path, "index.html") + + skip_h1 = False + + if metadata['url'] == '/': + template = env.get_template("home.html") + elif 'research/' in fn: + skip_h1 = True + template = env.get_template("research.html") + else: + template = env.get_template("page.html") + + if 'datasets/' in fn: + s3_dir = cfg.S3_DATASETS_PATH + else: + s3_dir = cfg.S3_SITE_PATH + + s3_path = s3.make_s3_path(s3_dir, metadata['path']) + + if 'index.md' in fn: + s3.sync_directory(dirname, s3_dir, metadata) + + content = parser.parse_markdown(sections, s3_path, skip_h1=skip_h1) + + html = template.render( + metadata=metadata, + content=content, + research_posts=research_posts, + latest_research_post=research_posts[-1], + ) + + os.makedirs(output_path, exist_ok=True) + with open(output_fn, "w") as file: + file.write(html) + +def build_research_index(research_posts): + """ + build the index of research (blog) posts + """ + metadata, sections = parser.read_metadata('../site/content/research/index.md') + template = env.get_template("page.html") + s3_path = s3.make_s3_path(cfg.S3_SITE_PATH, metadata['path']) + content = parser.parse_markdown(sections, s3_path, skip_h1=False) + content += parser.parse_research_index(research_posts) + html = template.render( + metadata=metadata, + content=content, + research_posts=research_posts, + latest_research_post=research_posts[-1], + ) + output_fn = cfg.DIR_SITE_PUBLIC + '/research/index.html' + with open(output_fn, "w") as file: + file.write(html) + +def build_site(): + """ + build the site! =^) + """ + research_posts = parser.read_research_post_index() + for fn in glob.iglob(os.path.join(cfg.DIR_SITE_CONTENT, "**/*.md"), recursive=True): + build_page(fn, research_posts) + build_research_index(research_posts) + +def build_file(fn): + """ + build just one page from a filename! =^) + """ + research_posts = parser.read_research_post_index() + fn = os.path.join(cfg.DIR_SITE_CONTENT, fn) + build_page(fn, research_posts) diff --git a/megapixels/app/site/parser.py b/megapixels/app/site/parser.py new file mode 100644 index 00000000..b3d3a8c2 --- /dev/null +++ b/megapixels/app/site/parser.py @@ -0,0 +1,238 @@ +import os +import re +import glob +import simplejson as json +import mistune + +import app.settings.app_cfg as cfg +import app.site.s3 as s3 + +renderer = mistune.Renderer(escape=False) +markdown = mistune.Markdown(renderer=renderer) + +def fix_images(lines, s3_path): + """ + do our own tranformation of the markdown around images to handle wide images etc + lines: markdown lines + """ + real_lines = [] + block = "\n\n".join(lines) + for line in block.split("\n"): + if " + url, tail = tail.split(')', 1) + if ':' in alt_text: + tail, alt_text = alt_text.split(':', 1) + img_tag = "<img src='{}' alt='{}'>".format(s3_path + url, alt_text.replace("'", "")) + if len(alt_text): + line = "<div class='image'>{}<div class='caption'>{}</div></div>".format(img_tag, alt_text) + else: + line = "<div class='image'>{}</div>".format(img_tag, alt_text) + real_lines.append(line) + return "\n".join(real_lines) + +def format_section(lines, s3_path, type=''): + """ + format a normal markdown section + """ + if len(lines): + lines = fix_images(lines, s3_path) + if type: + return "<section class='{}'>{}</section>".format(type, markdown(lines)) + else: + return "<section>" + markdown(lines) + "</section>" + return "" + +def format_metadata(section): + """ + format a metadata section (+ key: value pairs) + """ + meta = [] + for line in section.split('\n'): + key, value = line[2:].split(': ', 1) + meta.append("<div><div class='gray'>{}</div><div>{}</div></div>".format(key, value)) + return "<section><div class='meta'>{}</div></section>".format(''.join(meta)) + +def format_applet(section, s3_path): + # print(section) + payload = section.strip('```').strip().strip('```').strip().split('\n') + applet = {} + print(payload) + if ': ' in payload[0]: + command, opt = payload[0].split(': ') + else: + command = payload[0] + opt = None + if command == 'python' or command == 'javascript' or command == 'code': + return format_section([ section ], s3_path) + + applet['command'] = command + if opt: + applet['opt'] = opt + if command == 'load_file': + if opt[0:4] != 'http': + applet['opt'] = s3_path + opt + if len(payload) > 1: + applet['fields'] = payload[1:] + return "<section class='applet_container'><div class='applet' data-payload='{}'></div></section>".format(json.dumps(applet)) + +def parse_markdown(sections, s3_path, skip_h1=False): + """ + parse page into sections, preprocess the markdown to handle our modifications + """ + groups = [] + current_group = [] + for section in sections: + if skip_h1 and section.startswith('# '): + continue + elif section.strip().startswith('```'): + groups.append(format_section(current_group, s3_path)) + current_group = [] + current_group.append(section) + if section.strip().endswith('```'): + groups.append(format_applet("\n\n".join(current_group), s3_path)) + current_group = [] + elif section.strip().endswith('```'): + current_group.append(section) + groups.append(format_applet("\n\n".join(current_group), s3_path)) + current_group = [] + elif section.startswith('+ '): + groups.append(format_section(current_group, s3_path)) + groups.append(format_metadata(section)) + current_group = [] + elif '![wide:' in section: + groups.append(format_section(current_group, s3_path)) + groups.append(format_section([section], s3_path, type='wide')) + current_group = [] + elif '![' in section: + groups.append(format_section(current_group, s3_path)) + groups.append(format_section([section], s3_path, type='images')) + current_group = [] + else: + current_group.append(section) + groups.append(format_section(current_group, s3_path)) + content = "".join(groups) + return content + +def parse_research_index(research_posts): + """ + Generate an index file for the research pages + """ + content = "<div class='research_index'>" + for post in research_posts: + s3_path = s3.make_s3_path(cfg.S3_SITE_PATH, post['path']) + if 'image' in post: + post_image = s3_path + post['image'] + else: + post_image = '' + row = "<a href='{}'><section class='wide'><img src='{}' alt='Research post' /><section><h1>{}</h1><h2>{}</h2></section></section></a>".format( + post['path'], + post_image, + post['title'], + post['tagline']) + content += row + content += '</div>' + return content + +def read_metadata(fn): + """ + Read in read a markdown file and extract the metadata + """ + with open(fn, "r") as file: + data = file.read() + data = data.replace("\n ", "\n") + if "\n" in data: + data = data.replace("\r", "") + else: + data = data.replace("\r", "\n") + sections = data.split("\n\n") + return parse_metadata(fn, sections) + +default_metadata = { + 'status': 'published', + 'title': 'Untitled Page', + 'desc': '', + 'slug': '', + 'published': '2018-12-31', + 'updated': '2018-12-31', + 'authors': 'Adam Harvey', + 'sync': 'true', + 'tagline': '', +} + +def parse_metadata_section(metadata, section): + """ + parse a metadata key: value pair + """ + for line in section.split("\n"): + if ': ' not in line: + continue + key, value = line.split(': ', 1) + metadata[key.lower()] = value + +def parse_metadata(fn, sections): + """ + parse the metadata headers in a markdown file + (everything before the second ---------) + also generates appropriate urls for this page :) + """ + found_meta = False + metadata = {} + valid_sections = [] + for section in sections: + if not found_meta and ': ' in section: + found_meta = True + parse_metadata_section(metadata, section) + continue + if '-----' in section: + continue + if found_meta: + valid_sections.append(section) + + if 'title' not in metadata: + print('warning: {} has no title'.format(fn)) + for key in default_metadata: + if key not in metadata: + metadata[key] = default_metadata[key] + + basedir = os.path.dirname(fn.replace(cfg.DIR_SITE_CONTENT, '')) + basename = os.path.basename(fn) + if basedir == '/': + metadata['path'] = '/' + metadata['url'] = '/' + elif basename == 'index.md': + metadata['path'] = basedir + '/' + metadata['url'] = metadata['path'] + else: + metadata['path'] = basedir + '/' + metadata['url'] = metadata['path'] + basename.replace('.md', '') + '/' + + if metadata['status'] == 'published|draft|private': + metadata['status'] = 'published' + + metadata['sync'] = metadata['sync'] != 'false' + + metadata['author_html'] = '<br>'.join(metadata['authors'].split(',')) + + return metadata, valid_sections + +def read_research_post_index(): + """ + Generate an index of the research (blog) posts + """ + posts = [] + for fn in sorted(glob.glob('../site/content/research/*/index.md')): + metadata, valid_sections = read_metadata(fn) + if metadata is None or metadata['status'] == 'private' or metadata['status'] == 'draft': + continue + posts.append(metadata) + if not len(posts): + posts.append({ + 'title': 'Placeholder', + 'slug': 'placeholder', + 'date': 'Placeholder', + 'url': '/', + }) + return posts + diff --git a/megapixels/app/site/s3.py b/megapixels/app/site/s3.py new file mode 100644 index 00000000..18133078 --- /dev/null +++ b/megapixels/app/site/s3.py @@ -0,0 +1,66 @@ +import os +import glob +import boto3 + +def sync_directory(base_fn, s3_path, metadata): + """ + Synchronize a local assets folder with S3 + """ + if not metadata['sync']: + return + + fns = {} + for fn in glob.glob(os.path.join(base_fn, 'assets/*')): + # print(fn) + fns[os.path.basename(fn)] = True + + remote_path = s3_path + metadata['url'] + + session = boto3.session.Session() + + s3_client = session.client( + service_name='s3', + aws_access_key_id=os.getenv('S3_KEY'), + aws_secret_access_key=os.getenv('S3_SECRET'), + endpoint_url=os.getenv('S3_ENDPOINT'), + region_name=os.getenv('S3_REGION'), + ) + + directory = s3_client.list_objects(Bucket=os.getenv('S3_BUCKET'), Prefix=remote_path) + prefixes = [] + + if 'Contents' in directory: + for obj in directory['Contents']: + s3_fn = obj['Key'] + # print(s3_fn) + fn = os.path.basename(s3_fn) + local_fn = os.path.join(base_fn, 'assets', fn) + if fn in fns: + del fns[fn] + if obj['LastModified'].timestamp() < os.path.getmtime(os.path.join(local_fn)): + print("s3 update {}".format(s3_fn)) + s3_client.upload_file( + local_fn, + os.getenv('S3_BUCKET'), + s3_fn, + ExtraArgs={ 'ACL': 'public-read' }) + else: + print("s3 delete {}".format(s3_fn)) + response = s3_client.delete_object( + Bucket=os.getenv('S3_BUCKET'), + Key=s3_fn, + ) + + for fn in fns: + local_fn = os.path.join(base_fn, 'assets', fn) + s3_fn = os.path.join(remote_path, 'assets', fn) + print(s3_fn) + print("s3 create {}".format(s3_fn)) + s3_client.upload_file( + local_fn, + os.getenv('S3_BUCKET'), + s3_fn, + ExtraArgs={ 'ACL': 'public-read' }) + +def make_s3_path(s3_dir, metadata_path): + return "{}/{}/{}{}".format(os.getenv('S3_ENDPOINT'), os.getenv('S3_BUCKET'), s3_dir, metadata_path) diff --git a/megapixels/app/utils/file_utils.py b/megapixels/app/utils/file_utils.py index 773667b1..5c7b39d1 100644 --- a/megapixels/app/utils/file_utils.py +++ b/megapixels/app/utils/file_utils.py @@ -40,10 +40,16 @@ log = logging.getLogger(cfg.LOGGER_NAME) # File I/O read/write little helpers # ------------------------------------------ -def glob_multi(dir_in, exts): +def glob_multi(dir_in, exts, recursive=False): files = [] - for e in exts: - files.append(glob(join(dir_in, '*.{}'.format(e)))) + for ext in exts: + if recursive: + fp_glob = join(dir_in, '**/*.{}'.format(ext)) + log.info(f'glob {fp_glob}') + files += glob(fp_glob, recursive=True) + else: + fp_glob = join(dir_in, '*.{}'.format(ext)) + files += glob(fp_glob) return files @@ -77,7 +83,7 @@ def load_csv(fp_in, as_list=True): :returns: list of all CSV data """ if not Path(fp_in).exists(): - log.info('loading {}'.format(fp_in)) + log.info('not found: {}'.format(fp_in)) log.info('loading: {}'.format(fp_in)) with open(fp_in, 'r') as fp: items = csv.DictReader(fp) @@ -86,6 +92,50 @@ def load_csv(fp_in, as_list=True): log.info('returning {:,} items'.format(len(items))) return items +def unfussy_csv_reader(reader): + """Loads a CSV while ignoring possible data errors + :param reader: Special reader for load_csv_safe which ignores CSV parse errors + """ + while True: + try: + yield next(reader) + except StopIteration: + return + except csv.Error: + print(csv.Error) + # log the problem or whatever + continue + +def load_csv_safe(fp_in, keys=True, create=False): + """Loads a CSV while ignoring possible data errors + :param fp_in: string filepath to JSON file + :param keys: boolean set to false if the first line is not headers (for some reason) + :param create: boolean set to true to return an empty keys/values if the CSV does not exist + """ + try: + with open(fp_in, 'r', newline='', encoding='utf-8') as f: + # reader = csv.reader( (line.replace('\0','') for line in f) ) + reader = csv.reader(f) + lines = list(unfussy_csv_reader(reader)) + if keys: + keys = lines[0] + lines = lines[1:] + return keys, lines + return lines + except: + if create: + if keys: + return {}, [] + return [] + raise + +def load_recipe(fp_in): + """Loads a JSON file as an object with properties accessible with dot syntax + :param fp_in: string filepath to JSON file + """ + with open(path) as fh: + return json.load(fh, object_hook=lambda d: collections.namedtuple('X', d.keys())(*d.values())) + def lazywrite(data, fp_out, sort_keys=True): """Writes JSON or Pickle data""" @@ -175,7 +225,7 @@ def write_pickle(data, fp_out, ensure_path=True): pickle.dump(data, fp) -def write_json(data, fp_out, minify=True, ensure_path=True, sort_keys=True): +def write_json(data, fp_out, minify=True, ensure_path=True, sort_keys=True, verbose=False): """ """ if ensure_path: @@ -185,6 +235,8 @@ def write_json(data, fp_out, minify=True, ensure_path=True, sort_keys=True): json.dump(data, fp, separators=(',',':'), sort_keys=sort_keys) else: json.dump(data, fp, indent=2, sort_keys=sort_keys) + if verbose: + log.info('Wrote JSON: {}'.format(fp_out)) def write_csv(data, fp_out, header=None): """ """ @@ -277,7 +329,7 @@ def sha256(fp_in, block_size=65536): """ sha256 = hashlib.sha256() with open(fp_in, 'rb') as fp: - for block in iter(lambda: f.read(block_size), b''): + for block in iter(lambda: fp.read(block_size), b''): sha256.update(block) return sha256.hexdigest() diff --git a/megapixels/app/utils/im_utils.py b/megapixels/app/utils/im_utils.py index a0f23cd2..d5e92aa3 100644 --- a/megapixels/app/utils/im_utils.py +++ b/megapixels/app/utils/im_utils.py @@ -22,6 +22,16 @@ import datetime +def is_grayscale(im, threshold=5): + """Returns True if image is grayscale + :param im: (numpy.array) image + :return (bool) of if image is grayscale""" + b = im[:,:,0] + g = im[:,:,1] + mean = np.mean(np.abs(g - b)) + return mean < threshold + + def compute_features(fe,frames,phashes,phash_thresh=1): """ Get vector embedding using FeatureExtractor @@ -40,7 +50,7 @@ def compute_features(fe,frames,phashes,phash_thresh=1): return vals -def ensure_pil(im, bgr2rgb=False): +def np2pil(im, swap=True): """Ensure image is Pillow format :param im: image in numpy or PIL.Image format :returns: image in Pillow RGB format @@ -49,35 +59,44 @@ def ensure_pil(im, bgr2rgb=False): im.verify() return im except: - if bgr2rgb: + if swap: im = cv.cvtColor(im,cv.COLOR_BGR2RGB) return Image.fromarray(im.astype('uint8'), 'RGB') -def ensure_np(im): +def pil2np(im, swap=True): """Ensure image is Numpy.ndarry format :param im: image in numpy or PIL.Image format :returns: image in Numpy uint8 format """ if type(im) == np.ndarray: - return im - return np.asarray(im, np.uint8) + return im + im = np.asarray(im, np.uint8) + if swap: + im = cv.cvtColor(im, cv.COLOR_RGB2BGR) + return im -def resize(im,width=0,height=0): +def resize(im, width=0, height=0): """resize image using imutils. Use w/h=[0 || None] to prioritize other edge size :param im: a Numpy.ndarray image :param wh: a tuple of (width, height) """ + # TODO change to cv.resize and add algorithm choices w = width h = height if w is 0 and h is 0: return im elif w > 0 and h > 0: - return imutils.resize(im,width=w,height=h) + ws = im.shape[1] / w + hs = im.shape[0] / h + if ws > hs: + return imutils.resize(im, width=w) + else: + return imutils.resize(im, height=h) elif w > 0 and h is 0: - return imutils.resize(im,width=w) + return imutils.resize(im, width=w) elif w is 0 and h > 0: - return imutils.resize(im,height=h) + return imutils.resize(im, height=h) else: return im |
