summaryrefslogtreecommitdiff
path: root/megapixels/app
diff options
context:
space:
mode:
authorAdam Harvey <adam@ahprojects.com>2018-12-23 01:37:03 +0100
committerAdam Harvey <adam@ahprojects.com>2018-12-23 01:37:03 +0100
commit4452e02e8b04f3476273574a875bb60cfbb4568b (patch)
tree3ffa44f9621b736250a8b94da14a187dc785c2fe /megapixels/app
parent2a65f7a157bd4bace970cef73529867b0e0a374d (diff)
parent5340bee951c18910fd764241945f1f136b5a22b4 (diff)
.
Diffstat (limited to 'megapixels/app')
-rw-r--r--megapixels/app/models/bbox.py82
-rw-r--r--megapixels/app/models/data_store.py67
-rw-r--r--megapixels/app/models/dataset.py229
-rw-r--r--megapixels/app/models/sql_factory.py224
-rw-r--r--megapixels/app/processors/face_age.py28
-rw-r--r--megapixels/app/processors/face_beauty.py27
-rw-r--r--megapixels/app/processors/face_detector.py132
-rw-r--r--megapixels/app/processors/face_emotion.py28
-rw-r--r--megapixels/app/processors/face_gender.py27
-rw-r--r--megapixels/app/processors/face_landmarks.py60
-rw-r--r--megapixels/app/processors/face_landmarks_3d.py27
-rw-r--r--megapixels/app/processors/face_mesh.py27
-rw-r--r--megapixels/app/processors/face_pose.py104
-rw-r--r--megapixels/app/processors/face_recognition.py56
-rw-r--r--megapixels/app/processors/faiss.py58
-rw-r--r--megapixels/app/server/api.py152
-rw-r--r--megapixels/app/server/create.py49
-rw-r--r--megapixels/app/server/json_encoder.py17
l---------megapixels/app/server/static1
-rw-r--r--megapixels/app/settings/app_cfg.py68
-rw-r--r--megapixels/app/settings/types.py59
-rw-r--r--megapixels/app/site/README.md21
-rw-r--r--megapixels/app/site/builder.py103
-rw-r--r--megapixels/app/site/parser.py238
-rw-r--r--megapixels/app/site/s3.py66
-rw-r--r--megapixels/app/utils/file_utils.py64
-rw-r--r--megapixels/app/utils/im_utils.py37
27 files changed, 1977 insertions, 74 deletions
diff --git a/megapixels/app/models/bbox.py b/megapixels/app/models/bbox.py
index 41b67416..55a92512 100644
--- a/megapixels/app/models/bbox.py
+++ b/megapixels/app/models/bbox.py
@@ -1,6 +1,9 @@
+import math
+
from dlib import rectangle as dlib_rectangle
import numpy as np
+
class BBoxPoint:
def __init__(self, x, y):
@@ -42,8 +45,12 @@ class BBox:
self._tl = (x1, y1)
self._br = (x2, y2)
self._rect = (self._x1, self._y1, self._x2, self._y2)
+ self._area = self._width * self._height # as percentage
-
+ @property
+ def area(self):
+ return self._area
+
@property
def pt_tl(self):
return self._tl
@@ -105,7 +112,12 @@ class BBox:
# # Utils
# def constrain(self, dim):
-
+ def distance(self, b):
+ a = self
+ dcx = self._cx - b.cx
+ dcy = self._cy - b.cy
+ d = int(math.sqrt(math.pow(dcx, 2) + math.pow(dcy, 2)))
+ return d
# -----------------------------------------------------------------
# Modify
@@ -117,26 +129,40 @@ class BBox:
:returns (BBox) in pixel dimensions
"""
# expand
- rect_exp = list( (np.array(self._rect) + np.array([-amt, -amt, amt, amt])).astype('int'))
+ r = list( (np.array(self._rect) + np.array([-amt, -amt, amt, amt])).astype('int'))
# outliers
oob = list(range(4))
- oob[0] = min(rect_exp[0], 0)
- oob[1] = min(rect_exp[1], 0)
- oob[2] = dim[0] - max(rect_exp[2], 2)
- oob[3] = dim[1] - max(rect_exp[3], 3)
+ oob[0] = min(r[0], 0)
+ oob[1] = min(r[1], 0)
+ oob[2] = dim[0] - r[2]
+ oob[3] = dim[1] - r[3]
oob = np.array(oob)
oob[oob > 0] = 0
- # amount
+ # absolute amount
oob = np.absolute(oob)
- # threshold
- rect_exp[0] = max(rect_exp[0], 0)
- rect_exp[1] = max(rect_exp[1], 0)
- rect_exp[2] = min(rect_exp[2], dim[0])
- rect_exp[3] = min(rect_exp[3], dim[1])
+ # threshold expanded rectangle
+ r[0] = max(r[0], 0)
+ r[1] = max(r[1], 0)
+ r[2] = min(r[2], dim[0])
+ r[3] = min(r[3], dim[1])
# redistribute oob amounts
oob = np.array([-oob[2], -oob[3], oob[0], oob[1]])
- rect_exp = np.add(np.array(rect_exp), oob)
- return BBox(*rect_exp)
+ r = np.add(np.array(r), oob)
+ # find overage
+ oob[0] = min(r[0], 0)
+ oob[1] = min(r[1], 0)
+ oob[2] = dim[0] - r[2]
+ oob[3] = dim[1] - r[3]
+ oob = np.array(oob)
+ oob[oob > 0] = 0
+ oob = np.absolute(oob)
+ if np.array(oob).any():
+ m = np.max(oob)
+ adj = np.array([m, m, -m, -m])
+ # print(adj)
+ r = np.add(np.array(r), adj)
+
+ return BBox(*r)
# -----------------------------------------------------------------
@@ -156,23 +182,23 @@ class BBox:
# -----------------------------------------------------------------
# Format as
- def as_xyxy(self):
+ def to_xyxy(self):
"""Converts BBox back to x1, y1, x2, y2 rect"""
return (self._x1, self._y1, self._x2, self._y2)
- def as_xywh(self):
+ def to_xywh(self):
"""Converts BBox back to haar type"""
return (self._x1, self._y1, self._width, self._height)
- def as_trbl(self):
+ def to_trbl(self):
"""Converts BBox to CSS (top, right, bottom, left)"""
return (self._y1, self._x2, self._y2, self._x1)
- def as_dlib(self):
+ def to_dlib(self):
"""Converts BBox to dlib rect type"""
- return dlib.rectangle(self._x1, self._y1, self._x2, self._y2)
+ return dlib_rectangle(self._x1, self._y1, self._x2, self._y2)
- def as_yolo(self):
+ def to_yolo(self):
"""Converts BBox to normalized center x, center y, w, h"""
return (self._cx, self._cy, self._width, self._height)
@@ -199,6 +225,13 @@ class BBox:
return cls(*rect)
@classmethod
+ def from_xyxy(cls, x1, y1, x2, y2):
+ """Converts x1, y1, x2, y2 to BBox
+ same as constructure but zprovided for conveniene
+ """
+ return cls(x1, y1, x2, y2)
+
+ @classmethod
def from_xywh(cls, x, y, w, h):
"""Converts x1, y1, w, h to BBox
:param rect: (list) x1, y1, w, h
@@ -227,8 +260,13 @@ class BBox:
"""
rect = (rect.left(), rect.top(), rect.right(), rect.bottom())
rect = cls.normalize(cls, rect, dim)
- return cls(*rect)
+ return cls(*rect)
+
+ def __str__(self):
+ return f'BBox: ({self._x1},{self._y1}), ({self._x2}, {self._y2}), width:{self._width}, height:{self._height}'
+ def __repr__(self):
+ return f'BBox: ({self._x1},{self._y1}), ({self._x2}, {self._y2}), width:{self._width}, height:{self._height}'
def str(self):
"""Return BBox as a string "x1, y1, x2, y2" """
diff --git a/megapixels/app/models/data_store.py b/megapixels/app/models/data_store.py
new file mode 100644
index 00000000..7b6bef21
--- /dev/null
+++ b/megapixels/app/models/data_store.py
@@ -0,0 +1,67 @@
+import os
+from os.path import join
+import logging
+
+from app.settings import app_cfg as cfg
+from app.settings import types
+
+
+# -------------------------------------------------------------------------
+# Metadata and media files
+# -------------------------------------------------------------------------
+
+class DataStore:
+ # local data store
+ def __init__(self, opt_data_store, opt_dataset):
+ self.data_store = join(f'/data_store_{opt_data_store.name.lower()}')
+ self.dir_dataset = join(self.data_store, 'datasets', cfg.DIR_PEOPLE, opt_dataset.name.lower())
+ self.dir_media = join(self.dir_dataset, 'media')
+ self.dir_metadata = join(self.dir_dataset, 'metadata')
+
+ def metadata(self, enum_type):
+ return join(self.dir_metadata, f'{enum_type.name.lower()}.csv')
+
+ def metadata_dir(self):
+ return join(self.dir_metadata)
+
+ def media_images_original(self):
+ return join(self.dir_media, 'original')
+
+ def face(self, subdir, fn, ext):
+ return join(self.dir_media, 'original', subdir, f'{fn}.{ext}')
+
+ def face_crop(self, subdir, fn, ext):
+ return join(self.dir_media, 'cropped', subdir, f'{fn}.{ext}')
+
+ def face_uuid(self, uuid, ext):
+ return join(self.dir_media, 'uuid',f'{uuid}.{ext}')
+
+ def face_crop_uuid(self, uuid, ext):
+ return join(self.dir_media, 'uuid', f'{uuid}.{ext}')
+
+ def uuid_dir(self):
+ return join(self.dir_media, 'uuid')
+
+
+class DataStoreS3:
+ # S3 server
+ def __init__(self, opt_dataset):
+ self._dir_media = join(cfg.S3_HTTP_MEDIA_URL, opt_dataset.name.lower())
+ self._dir_metadata = join(cfg.S3_HTTP_METADATA_URL, opt_dataset.name.lower())
+
+ def metadata(self, opt_metadata_type, ext='csv'):
+ return join(self._dir_metadata, f'{opt_metadata_type.name.lower()}.{ext}')
+
+ def face(self, opt_uuid, ext='jpg'):
+ #return join(self._dir_media, 'original', f'{opt_uuid}.{ext}')
+ return join(self._dir_media, f'{opt_uuid}.{ext}')
+
+ def face_crop(self, opt_uuid, ext='jpg'):
+ # not currently using?
+ return join(self._dir_media, 'cropped', f'{opt_uuid}.{ext}')
+
+
+
+# -------------------------------------------------------------------------
+# Models
+# ------------------------------------------------------------------------- \ No newline at end of file
diff --git a/megapixels/app/models/dataset.py b/megapixels/app/models/dataset.py
new file mode 100644
index 00000000..eb0109a7
--- /dev/null
+++ b/megapixels/app/models/dataset.py
@@ -0,0 +1,229 @@
+"""
+Dataset model: container for all CSVs about a dataset
+"""
+import os
+import sys
+from os.path import join
+from pathlib import Path
+import logging
+
+import pandas as pd
+import numpy as np
+
+from app.settings import app_cfg as cfg
+from app.settings import types
+from app.models.bbox import BBox
+from app.utils import file_utils, im_utils
+from app.models.data_store import DataStore, DataStoreS3
+from app.utils.logger_utils import Logger
+
+# -------------------------------------------------------------------------
+# Dataset
+# -------------------------------------------------------------------------
+
+class Dataset:
+
+ def __init__(self, opt_data_store, opt_dataset_type):
+ self._dataset_type = opt_dataset_type # enum type
+ self.log = Logger.getLogger()
+ self._metadata = {}
+ self._face_vectors = []
+ self._nullframe = pd.DataFrame() # empty placeholder
+ self.data_store = DataStore(opt_data_store, self._dataset_type)
+ self.data_store_s3 = DataStoreS3(self._dataset_type)
+
+ def load_face_vectors(self):
+ metadata_type = types.Metadata.FACE_VECTOR
+ fp_csv = self.data_store.metadata(metadata_type)
+ self.log.info(f'loading: {fp_csv}')
+ if Path(fp_csv).is_file():
+ self._metadata[metadata_type] = pd.read_csv(fp_csv).set_index('index')
+ # convert DataFrame to list of floats
+ self._face_vectors = self.df_vecs_to_dict(self._metadata[metadata_type])
+ self._face_vector_roi_idxs = self.df_vec_roi_idxs_to_dict(self._metadata[metadata_type])
+ self.log.info(f'build face vector dict: {len(self._face_vectors)}')
+ # remove the face vector column, it can be several GB of memory
+ self._metadata[metadata_type].drop('vec', axis=1, inplace=True)
+ else:
+ self.log.error(f'File not found: {fp_csv}. Exiting.')
+ sys.exit()
+
+ def load_records(self):
+ metadata_type = types.Metadata.FILE_RECORD
+ fp_csv = self.data_store.metadata(metadata_type)
+ self.log.info(f'loading: {fp_csv}')
+ if Path(fp_csv).is_file():
+ self._metadata[metadata_type] = pd.read_csv(fp_csv).set_index('index')
+ else:
+ self.log.error(f'File not found: {fp_csv}. Exiting.')
+ sys.exit()
+
+ def load_identities(self):
+ metadata_type = types.Metadata.IDENTITY
+ fp_csv = self.data_store.metadata(metadata_type)
+ self.log.info(f'loading: {fp_csv}')
+ if Path(fp_csv).is_file():
+ self._metadata[metadata_type] = pd.read_csv(fp_csv).set_index('index')
+ else:
+ self.log.error(f'File not found: {fp_csv}. Exiting.')
+ sys.exit()
+
+ def metadata(self, opt_metadata_type):
+ return self._metadata.get(opt_metadata_type, None)
+
+ def index_to_record(self, index):
+ # get record meta
+ df_record = self._metadata[types.Metadata.FILE_RECORD]
+ ds_record = df_record.iloc[index]
+ identity_index = ds_record.identity_index
+ # get identity meta
+ df_identity = self._metadata[types.Metadata.IDENTITY]
+ # future datasets can have multiple identities per images
+ ds_identities = df_identity.iloc[identity_index]
+ # get filepath and S3 url
+ fp_im = self.data_store.face(ds_record.subdir, ds_record.fn, ds_record.ext)
+ s3_url = self.data_store_s3.face(ds_record.uuid)
+ image_record = ImageRecord(ds_record, fp_im, s3_url, ds_identities=ds_identities)
+ return image_record
+
+ def vector_to_record(self, record_index):
+ '''Accumulates image and its metadata'''
+ df_face_vector = self._metadata[types.Metadata.FACE_VECTOR]
+ ds_face_vector = df_face_vector.iloc[vector_index]
+ # get the match's ROI index
+ image_index = ds_face_vector.image_index
+ # get the roi dataframe
+ df_face_roi = self._metadata[types.Metadata.FACE_ROI]
+ ds_roi = df_face_roi.iloc[image_index]
+ # create BBox
+ dim = (ds_roi.image_width, ds_roi.image_height)
+ bbox = BBox.from_xywh_dim(ds_roi.x, ds_roi.y, ds_roi.w, ds_roi.y, dim)
+ # use the ROI index to get identity index from the identity DataFrame
+ df_sha256 = self._metadata[types.Metadata.SHA256]
+ ds_sha256 = df_sha256.iloc[image_index]
+ sha256 = ds_sha256.sha256
+ # get the local filepath
+ df_filepath = self._metadata[types.Metadata.FILEPATH]
+ ds_file = df_filepath.iloc[image_index]
+ fp_im = self.data_store.face_image(ds_file.subdir, ds_file.fn, ds_file.ext)\
+ # get remote path
+ df_uuid = self._metadata[types.Metadata.UUID]
+ ds_uuid = df_uuid.iloc[image_index]
+ uuid = ds_uuid.uuid
+ fp_url = self.data_store_s3.face_image(uuid)
+ fp_url_crop = self.data_store_s3.face_image_crop(uuid)
+
+ image_record = ImageRecord(image_index, sha256, uuid, bbox, fp_im, fp_url)
+ # now get the identity index (if available)
+ identity_index = ds_sha256.identity_index
+ if identity_index > -1:
+ # then use the identity index to get the identity meta
+ df_identity = df_filepath = self._metadata[types.Metadata.IDENTITY]
+ ds_identity = df_identity.iloc[identity_index]
+ # get the name and description
+ name = ds_identity.fullname
+ desc = ds_identity.description
+ gender = ds_identity.gender
+ n_images = ds_identity.images
+ url = '(url)' # TODO
+ age = '(age)' # TODO
+ nationality = '(nationality)'
+ identity = Identity(identity_index, name=name, desc=desc, gender=gender, n_images=n_images,
+ url=url, age=age, nationality=nationality)
+ image_record.identity = identity
+ else:
+ self.log.info(f'no identity index: {ds_sha256}')
+
+ return image_record
+
+
+ def find_matches(self, query_vec, n_results=5, threshold=0.6):
+ image_records = [] # list of image matches w/identity if available
+ # find most similar feature vectors indexes
+ #match_idxs = self.similar(query_vec, n_results, threshold)
+ sim_scores = np.linalg.norm(np.array([query_vec]) - np.array(self._face_vectors), axis=1)
+ match_idxs = np.argpartition(sim_scores, n_results)[:n_results]
+
+ for match_idx in match_idxs:
+ # get the corresponding face vector row
+ roi_index = self._face_vector_roi_idxs[match_idx]
+ df_record = self._metadata[types.Metadata.FILE_RECORD]
+ ds_record = df_record.iloc[roi_index]
+ self.log.debug(f'find match index: {match_idx}, --> roi_index: {roi_index}')
+ fp_im = self.data_store.face(ds_record.subdir, ds_record.fn, ds_record.ext)
+ s3_url = self.data_store_s3.face(ds_record.uuid)
+ image_record = ImageRecord(ds_record, fp_im, s3_url)
+ #roi_index = self._face_vector_roi_idxs[match_idx]
+ #image_record = self.roi_idx_to_record(roi_index)
+ image_records.append(image_record)
+ return image_records
+
+ # ----------------------------------------------------------------------
+ # utilities
+
+ def df_vecs_to_dict(self, df):
+ # convert the DataFrame CSV to float list of vecs
+ return [list(map(float,x.vec.split(','))) for x in df.itertuples()]
+
+ def df_vec_roi_idxs_to_dict(self, df):
+ # convert the DataFrame CSV to float list of vecs
+ #return [x.roi_index for x in df.itertuples()]
+ return [x.roi_index for x in df.itertuples()]
+
+ def similar(self, query_vec, n_results):
+ '''Finds most similar N indices of query face vector
+ :query_vec: (list) of 128 floating point numbers of face encoding
+ :n_results: (int) number of most similar indices to return
+ :returns (list) of (int) indices
+ '''
+ # uses np.linalg based on the ageitgey/face_recognition code
+
+ return top_idxs
+
+
+
+class ImageRecord:
+
+ def __init__(self, ds_record, fp, url, ds_rois=None, ds_identities=None):
+ # maybe more other meta will go there
+ self.image_index = ds_record.index
+ self.sha256 = ds_record.sha256
+ self.uuid = ds_record.uuid
+ self.filepath = fp
+ self.url = url
+ self._identities = []
+ # image records contain ROIs
+ # ROIs are linked to identities
+
+ #self._identities = [Identity(x) for x in ds_identities]
+
+ @property
+ def identity(self, index):
+ return self._identity
+
+ def summarize(self):
+ '''Summarizes data for debugging'''
+ log = Logger.getLogger()
+ log.info(f'filepath: {self.filepath}')
+ log.info(f'sha256: {self.sha256}')
+ log.info(f'UUID: {self.uuid}')
+ log.info(f'S3 url: {self.url}')
+ for identity in self._identities:
+ log.info(f'fullname: {identity.fullname}')
+ log.info(f'description: {identity.description}')
+ log.info(f'gender: {identity.gender}')
+ log.info(f'images: {identity.n_images}')
+
+
+class Identity:
+
+ def __init__(self, idx, name='NA', desc='NA', gender='NA', n_images=1,
+ url='NA', age='NA', nationality='NA'):
+ self.index = idx
+ self.name = name
+ self.description = desc
+ self.gender = gender
+ self.n_images = n_images
+ self.url = url
+ self.age = age
+ self.nationality = nationality
diff --git a/megapixels/app/models/sql_factory.py b/megapixels/app/models/sql_factory.py
new file mode 100644
index 00000000..da95b539
--- /dev/null
+++ b/megapixels/app/models/sql_factory.py
@@ -0,0 +1,224 @@
+import os
+import glob
+import time
+import pandas as pd
+
+from sqlalchemy import create_engine, Table, Column, String, Integer, DateTime, Float
+from sqlalchemy.orm import sessionmaker
+from sqlalchemy.ext.declarative import declarative_base
+
+from app.utils.file_utils import load_recipe, load_csv_safe
+from app.settings import app_cfg as cfg
+
+connection_url = "mysql+mysqlconnector://{}:{}@{}/{}?charset=utf8mb4".format(
+ os.getenv("DB_USER"),
+ os.getenv("DB_PASS"),
+ os.getenv("DB_HOST"),
+ os.getenv("DB_NAME")
+)
+
+datasets = {}
+loaded = False
+Session = None
+
+def list_datasets():
+ return [dataset.describe() for dataset in datasets.values()]
+
+def get_dataset(name):
+ return datasets[name] if name in datasets else None
+
+def get_table(name, table_name):
+ dataset = get_dataset(name)
+ return dataset.get_table(table_name) if dataset else None
+
+def load_sql_datasets(replace=False, base_model=None):
+ global datasets, loaded, Session
+ if loaded:
+ return datasets
+ engine = create_engine(connection_url, encoding="utf-8")
+ # db.set_character_set('utf8')
+ # dbc = db.cursor()
+ # dbc.execute('SET NAMES utf8;')
+ # dbc.execute('SET CHARACTER SET utf8;')
+ # dbc.execute('SET character_set_connection=utf8;')
+ Session = sessionmaker(bind=engine)
+ for path in glob.iglob(os.path.join(cfg.DIR_FAISS_METADATA, "*")):
+ dataset = load_sql_dataset(path, replace, engine, base_model)
+ datasets[dataset.name] = dataset
+ loaded = True
+ return datasets
+
+def load_sql_dataset(path, replace=False, engine=None, base_model=None):
+ name = os.path.basename(path)
+ dataset = SqlDataset(name, base_model=base_model)
+
+ for fn in glob.iglob(os.path.join(path, "*.csv")):
+ key = os.path.basename(fn).replace(".csv", "")
+ table = dataset.get_table(key)
+ if table is None:
+ continue
+ if replace:
+ print('loading dataset {}'.format(fn))
+ df = pd.read_csv(fn)
+ # fix columns that are named "index", a sql reserved word
+ df.columns = table.__table__.columns.keys()
+ df.to_sql(name=table.__tablename__, con=engine, if_exists='replace', index=False)
+ return dataset
+
+class SqlDataset:
+ """
+ Bridge between the facial information CSVs connected to the datasets, and MySQL
+ - each dataset should have files that can be loaded into these database models
+ - names will be fixed to work in SQL (index -> id)
+ - we can then have more generic models for fetching this info after doing a FAISS query
+ """
+ def __init__(self, name, engine=None, base_model=None):
+ self.name = name
+ self.tables = {}
+ if base_model is None:
+ self.engine = create_engine(connection_url)
+ base_model = declarative_base(engine)
+ self.base_model = base_model
+
+ def describe(self):
+ return {
+ 'name': self.name,
+ 'tables': list(self.tables.keys()),
+ }
+
+ def get_identity(self, id):
+ table = self.get_table('identity_meta')
+ # id += 1
+ identity = table.query.filter(table.image_id <= id).order_by(table.image_id.desc()).first().toJSON()
+ return {
+ 'uuid': self.select('uuids', id),
+ 'identity': identity,
+ 'roi': self.select('roi', id),
+ 'pose': self.select('pose', id),
+ }
+
+ def search_name(self, q):
+ table = self.get_table('identity_meta')
+ uuid_table = self.get_table('uuids')
+
+ identity = table.query.filter(table.fullname.like(q)).order_by(table.fullname.desc()).limit(30)
+ identities = []
+ for row in identity:
+ uuid = uuid_table.query.filter(uuid_table.id == row.image_id).first()
+ identities.append({
+ 'uuid': uuid.toJSON(),
+ 'identity': row.toJSON(),
+ })
+ return identities
+
+ def select(self, table, id):
+ table = self.get_table(table)
+ if not table:
+ return None
+ session = Session()
+ # for obj in session.query(table).filter_by(id=id):
+ # print(table)
+ obj = session.query(table).filter(table.id == id).first()
+ session.close()
+ return obj.toJSON()
+
+ def get_table(self, type):
+ if type in self.tables:
+ return self.tables[type]
+ elif type == 'uuids':
+ self.tables[type] = self.uuid_table()
+ elif type == 'roi':
+ self.tables[type] = self.roi_table()
+ elif type == 'identity_meta':
+ self.tables[type] = self.identity_table()
+ elif type == 'pose':
+ self.tables[type] = self.pose_table()
+ else:
+ return None
+ return self.tables[type]
+
+ # ==> uuids.csv <==
+ # index,uuid
+ # 0,f03fd921-2d56-4e83-8115-f658d6a72287
+ def uuid_table(self):
+ class UUID(self.base_model):
+ __tablename__ = self.name + "_uuid"
+ id = Column(Integer, primary_key=True)
+ uuid = Column(String(36, convert_unicode=True), nullable=False)
+ def toJSON(self):
+ return {
+ 'id': self.id,
+ 'uuid': self.uuid,
+ }
+ return UUID
+
+ # ==> roi.csv <==
+ # index,h,image_height,image_index,image_width,w,x,y
+ # 0,0.33000000000000007,250,0,250,0.32999999999999996,0.33666666666666667,0.35
+ def roi_table(self):
+ class ROI(self.base_model):
+ __tablename__ = self.name + "_roi"
+ id = Column(Integer, primary_key=True)
+ h = Column(Float, nullable=False)
+ image_height = Column(Integer, nullable=False)
+ image_index = Column(Integer, nullable=False)
+ image_width = Column(Integer, nullable=False)
+ w = Column(Float, nullable=False)
+ x = Column(Float, nullable=False)
+ y = Column(Float, nullable=False)
+ def toJSON(self):
+ return {
+ 'id': self.id,
+ 'image_index': self.image_index,
+ 'image_height': self.image_height,
+ 'image_width': self.image_width,
+ 'w': self.w,
+ 'h': self.h,
+ 'x': self.x,
+ 'y': self.y,
+ }
+ return ROI
+
+ # ==> identity.csv <==
+ # index,fullname,description,gender,images,image_index
+ # 0,A. J. Cook,Canadian actress,f,1,0
+ def identity_table(self):
+ class Identity(self.base_model):
+ __tablename__ = self.name + "_identity"
+ id = Column(Integer, primary_key=True)
+ fullname = Column(String(36, convert_unicode=True), nullable=False)
+ description = Column(String(36, convert_unicode=True), nullable=False)
+ gender = Column(String(1, convert_unicode=True), nullable=False)
+ images = Column(Integer, nullable=False)
+ image_id = Column(Integer, nullable=False)
+ def toJSON(self):
+ return {
+ 'id': self.id,
+ 'image_id': self.image_id,
+ 'fullname': self.fullname,
+ 'images': self.images,
+ 'gender': self.gender,
+ 'description': self.description,
+ }
+ return Identity
+
+ # ==> pose.csv <==
+ # index,image_index,pitch,roll,yaw
+ # 0,0,11.16264458441435,10.415885631337728,22.99719032415318
+ def pose_table(self):
+ class Pose(self.base_model):
+ __tablename__ = self.name + "_pose"
+ id = Column(Integer, primary_key=True)
+ image_id = Column(Integer, primary_key=True)
+ pitch = Column(Float, nullable=False)
+ roll = Column(Float, nullable=False)
+ yaw = Column(Float, nullable=False)
+ def toJSON(self):
+ return {
+ 'id': self.id,
+ 'image_id': self.image_id,
+ 'pitch': self.pitch,
+ 'roll': self.roll,
+ 'yaw': self.yaw,
+ }
+ return Pose
diff --git a/megapixels/app/processors/face_age.py b/megapixels/app/processors/face_age.py
new file mode 100644
index 00000000..222858a5
--- /dev/null
+++ b/megapixels/app/processors/face_age.py
@@ -0,0 +1,28 @@
+import os
+from os.path import join
+from pathlib import Path
+import math
+
+import cv2 as cv
+import numpy as np
+import imutils
+
+from app.utils import im_utils, logger_utils
+from app.models.bbox import BBox
+from app.settings import app_cfg as cfg
+from app.settings import types
+
+
+
+class FaceAge:
+
+ # Estimates face age
+
+ def __init__(self):
+ self.log = logger_utils.Logger.getLogger()
+ pass
+
+
+ def age(self):
+ # use enum typed emotions
+ return {'age': types.Age.ADULT, 'confidence': 0.5} \ No newline at end of file
diff --git a/megapixels/app/processors/face_beauty.py b/megapixels/app/processors/face_beauty.py
new file mode 100644
index 00000000..a1ddd9f8
--- /dev/null
+++ b/megapixels/app/processors/face_beauty.py
@@ -0,0 +1,27 @@
+import os
+from os.path import join
+from pathlib import Path
+import math
+
+import cv2 as cv
+import numpy as np
+import imutils
+
+from app.utils import im_utils, logger_utils
+from app.models.bbox import BBox
+from app.settings import app_cfg as cfg
+from app.settings import types
+
+
+
+class FaceBeauty:
+
+ # Estimates beauty using CNN
+
+ def __init__(self):
+ self.log = logger_utils.Logger.getLogger()
+ pass
+
+
+ def beauty(self):
+ return 0.5 \ No newline at end of file
diff --git a/megapixels/app/processors/face_detector.py b/megapixels/app/processors/face_detector.py
index 02d068dc..3a90c557 100644
--- a/megapixels/app/processors/face_detector.py
+++ b/megapixels/app/processors/face_detector.py
@@ -4,71 +4,140 @@ from pathlib import Path
import cv2 as cv
import numpy as np
-import dlib
-# import imutils
+import imutils
+import operator
from app.utils import im_utils, logger_utils
from app.models.bbox import BBox
from app.settings import app_cfg as cfg
+from app.settings import types
+
+
+class DetectorMTCNN:
+
+ # https://github.com/ipazc/mtcnn
+ # pip install mtcnn
+
+ dnn_size = (300, 300)
+
+ def __init__(self, size=(400,400)):
+ from mtcnn.mtcnn import MTCNN
+ self.detector = MTCNN()
+
+ def detect(self, im, size=(400,400), conf_thresh=None, pyramids=None, largest=False):
+ '''Detects face using MTCNN and returns (list) of BBox
+ :param im: (numpy.ndarray) image
+ :returns list of BBox
+ '''
+ bboxes = []
+ #conf_thresh = self.conf_thresh if conf_thresh is None else conf_thresh
+ #pyramids = self.pyramids if pyramids is None else pyramids
+ dnn_size = self.dnn_size if size is None else size
+
+ im = im_utils.resize(im, width=dnn_size[0], height=dnn_size[1])
+ dim = im.shape[:2][::-1]
+ dets = self.detector.detect_faces(im)
+ for det in dets:
+ rect = det['box']
+ #keypoints = det['keypoints'] # not using here. see 'face_landmarks.py'
+ bbox = BBox.from_xywh_dim(*rect, dim)
+ bboxes.append(bbox)
+
+ if largest and len(bboxes) > 1:
+ # only keep largest
+ bboxes.sort(key=operator.attrgetter('area'), reverse=True)
+ bboxes = [bboxes[0]]
+
+ return bboxes
+
+
+class DetectorHaar:
+
+ im_size = (400, 400)
+ cascade_name = types.HaarCascade.FRONTAL
+
+ def __init__(self, cascade=types.HaarCascade.FRONTAL):
+ self.log = logger_utils.Logger.getLogger()
+
+ def detect(self, im, scale_factor=1.05, overlaps=5):
+ pass
+
class DetectorDLIBCNN:
+
dnn_size = (300, 300)
pyramids = 0
conf_thresh = 0.85
- def __init__(self, opt_gpu):
+ def __init__(self, gpu=0):
+ import dlib
self.log = logger_utils.Logger.getLogger()
cuda_visible_devices = os.getenv('CUDA_VISIBLE_DEVICES', '')
- os.environ['CUDA_VISIBLE_DEVICES'] = str(opt_gpu)
+ os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu)
self.log.info('load model: {}'.format(cfg.DIR_MODELS_DLIB_CNN))
self.detector = dlib.cnn_face_detection_model_v1(cfg.DIR_MODELS_DLIB_CNN)
os.environ['CUDA_VISIBLE_DEVICES'] = cuda_visible_devices # reset
- def detect(self, im, opt_size=None, opt_conf_thresh=None, opt_pyramids=None):
- rois = []
- conf_thresh = self.conf_thresh if opt_conf_thresh is None else opt_conf_thresh
- pyramids = self.pyramids if opt_pyramids is None else opt_pyramids
- dnn_size = self.dnn_size if opt_size is None else opt_size
+ def detect(self, im, size=None, conf_thresh=None, pyramids=None, largest=False):
+ bboxes = []
+ conf_thresh = self.conf_thresh if conf_thresh is None else conf_thresh
+ pyramids = self.pyramids if pyramids is None else pyramids
+ dnn_size = self.dnn_size if size is None else size
# resize image
im = im_utils.resize(im, width=dnn_size[0], height=dnn_size[1])
dim = im.shape[:2][::-1]
im = im_utils.bgr2rgb(im) # convert to RGB for dlib
# run detector
- mmod_rects = self.detector(im, 1)
+ mmod_rects = self.detector(im, pyramids)
# sort results
for mmod_rect in mmod_rects:
if mmod_rect.confidence > conf_thresh:
bbox = BBox.from_dlib_dim(mmod_rect.rect, dim)
- rois.append(bbox)
- return rois
+ bboxes.append(bbox)
+
+ if largest and len(bboxes) > 1:
+ # only keep largest
+ bboxes.sort(key=operator.attrgetter('area'), reverse=True)
+ bboxes = [bboxes[0]]
+
+ return bboxes
class DetectorDLIBHOG:
size = (320, 240)
pyramids = 0
+ conf_thresh = 0.85
def __init__(self):
+ import dlib
+ self.log = logger_utils.Logger.getLogger()
self.detector = dlib.get_frontal_face_detector()
- def detect(self, im, opt_size=None, opt_conf_thresh=None, opt_pyramids=0):
- conf_thresh = self.conf_thresh if opt_conf_thresh is None else opt_conf_thresh
- dnn_size = self.size if opt_size is None else opt_size
- pyramids = self.pyramids if opt_pyramids is None else opt_pyramids
+ def detect(self, im, size=None, conf_thresh=None, pyramids=0, largest=False):
+ conf_thresh = self.conf_thresh if conf_thresh is None else conf_thresh
+ dnn_size = self.size if size is None else size
+ pyramids = self.pyramids if pyramids is None else pyramids
- im = im_utils.resize(im, width=opt_size[0], height=opt_size[1])
+ im = im_utils.resize(im, width=dnn_size[0], height=dnn_size[1])
dim = im.shape[:2][::-1]
im = im_utils.bgr2rgb(im) # ?
hog_results = self.detector.run(im, pyramids)
- rois = []
+ bboxes = []
if len(hog_results[0]) > 0:
for rect, score, direction in zip(*hog_results):
- if score > opt_conf_thresh:
+ if score > conf_thresh:
bbox = BBox.from_dlib_dim(rect, dim)
- rois.append(bbox)
- return rois
+ bboxes.append(bbox)
+
+ if largest and len(bboxes) > 1:
+ # only keep largest
+ bboxes.sort(key=operator.attrgetter('area'), reverse=True)
+ bboxes = [bboxes[0]]
+
+ return bboxes
class DetectorCVDNN:
@@ -79,25 +148,32 @@ class DetectorCVDNN:
conf_thresh = 0.85
def __init__(self):
+ import dlib
fp_prototxt = join(cfg.DIR_MODELS_CAFFE, 'face_detect', 'opencv_face_detector.prototxt')
fp_model = join(cfg.DIR_MODELS_CAFFE, 'face_detect', 'opencv_face_detector.caffemodel')
self.net = cv.dnn.readNet(fp_prototxt, fp_model)
self.net.setPreferableBackend(cv.dnn.DNN_BACKEND_OPENCV)
self.net.setPreferableTarget(cv.dnn.DNN_TARGET_CPU)
- def detect(self, im, opt_size=None, opt_conf_thresh=None):
+ def detect(self, im, size=None, conf_thresh=None, largest=False, pyramids=None):
"""Detects faces and returns (list) of (BBox)"""
- conf_thresh = self.conf_thresh if opt_conf_thresh is None else opt_conf_thresh
- dnn_size = self.size if opt_size is None else opt_size
+ conf_thresh = self.conf_thresh if conf_thresh is None else conf_thresh
+ dnn_size = self.size if size is None else size
im = cv.resize(im, dnn_size)
blob = cv.dnn.blobFromImage(im, self.dnn_scale, dnn_size, self.dnn_mean)
self.net.setInput(blob)
net_outputs = self.net.forward()
- rois = []
+ bboxes = []
for i in range(0, net_outputs.shape[2]):
conf = net_outputs[0, 0, i, 2]
- if conf > opt_conf_thresh:
+ if conf > conf_thresh:
rect_norm = net_outputs[0, 0, i, 3:7]
- rois.append(BBox(*rect_norm))
- return rois \ No newline at end of file
+ bboxes.append(BBox(*rect_norm))
+
+ if largest and len(bboxes) > 1:
+ # only keep largest
+ bboxes.sort(key=operator.attrgetter('area'), reverse=True)
+ bboxes = [bboxes[0]]
+
+ return bboxes \ No newline at end of file
diff --git a/megapixels/app/processors/face_emotion.py b/megapixels/app/processors/face_emotion.py
new file mode 100644
index 00000000..c45da9ba
--- /dev/null
+++ b/megapixels/app/processors/face_emotion.py
@@ -0,0 +1,28 @@
+import os
+from os.path import join
+from pathlib import Path
+import math
+
+import cv2 as cv
+import numpy as np
+import imutils
+
+from app.utils import im_utils, logger_utils
+from app.models.bbox import BBox
+from app.settings import app_cfg as cfg
+from app.settings import types
+
+
+
+class FaceEmotion:
+
+ # Estimates face emotion
+
+ def __init__(self):
+ self.log = logger_utils.Logger.getLogger()
+ pass
+
+
+ def emotion(self):
+ # use enum typed emotions
+ return {'emotion': types.Emotion.NEUTRAL, 'confidence': 0.5} \ No newline at end of file
diff --git a/megapixels/app/processors/face_gender.py b/megapixels/app/processors/face_gender.py
new file mode 100644
index 00000000..ee152098
--- /dev/null
+++ b/megapixels/app/processors/face_gender.py
@@ -0,0 +1,27 @@
+import os
+from os.path import join
+from pathlib import Path
+import math
+
+import cv2 as cv
+import numpy as np
+import imutils
+
+from app.utils import im_utils, logger_utils
+from app.models.bbox import BBox
+from app.settings import app_cfg as cfg
+from app.settings import types
+
+
+
+class FaceGender:
+
+ # Estimates gender using CNN
+
+ def __init__(self):
+ self.log = logger_utils.Logger.getLogger()
+ pass
+
+
+ def gender(self):
+ return 'm' \ No newline at end of file
diff --git a/megapixels/app/processors/face_landmarks.py b/megapixels/app/processors/face_landmarks.py
new file mode 100644
index 00000000..dfcb9ee8
--- /dev/null
+++ b/megapixels/app/processors/face_landmarks.py
@@ -0,0 +1,60 @@
+import os
+from os.path import join
+from pathlib import Path
+
+import cv2 as cv
+import numpy as np
+import imutils
+from app.utils import im_utils, logger_utils
+from app.models.bbox import BBox
+from app.settings import app_cfg as cfg
+from app.settings import types
+from app.models.bbox import BBox
+
+class LandmarksDLIB:
+
+ def __init__(self):
+ # init dlib
+ import dlib
+ self.log = logger_utils.Logger.getLogger()
+ self.predictor = dlib.shape_predictor(cfg.DIR_MODELS_DLIB_68PT)
+
+ def landmarks(self, im, bbox):
+ # Draw high-confidence faces
+ dim = im.shape[:2][::-1]
+ bbox = bbox.to_dlib()
+ im_gray = cv.cvtColor(im, cv.COLOR_BGR2GRAY)
+ landmarks = [[p.x, p.y] for p in self.predictor(im_gray, bbox).parts()]
+ return landmarks
+
+
+class LandmarksMTCNN:
+
+ # https://github.com/ipazc/mtcnn
+ # pip install mtcnn
+
+ dnn_size = (400, 400)
+
+ def __init__(self, size=(400,400)):
+ from mtcnn.mtcnn import MTCNN
+ self.detector = MTCNN()
+
+ def detect(self, im, opt_size=None, opt_conf_thresh=None, opt_pyramids=None):
+ '''Detects face using MTCNN and returns (list) of BBox
+ :param im: (numpy.ndarray) image
+ :returns list of BBox
+ '''
+ rois = []
+ dnn_size = self.dnn_size if opt_size is None else opt_size
+ im = im_utils.resize(im, width=dnn_size[0], height=dnn_size[1])
+ dim = im.shape[:2][::-1]
+
+ # run MTCNN
+ dets = self.detector.detect_faces(im)
+
+ for det in dets:
+ rect = det['box']
+ keypoints = det['keypoints'] # not using here. see 'face_landmarks.py'
+ bbox = BBox.from_xywh_dim(*rect, dim)
+ rois.append(bbox)
+ return rois \ No newline at end of file
diff --git a/megapixels/app/processors/face_landmarks_3d.py b/megapixels/app/processors/face_landmarks_3d.py
new file mode 100644
index 00000000..84a423b0
--- /dev/null
+++ b/megapixels/app/processors/face_landmarks_3d.py
@@ -0,0 +1,27 @@
+import os
+from os.path import join
+from pathlib import Path
+import math
+
+import cv2 as cv
+import numpy as np
+import imutils
+
+from app.utils import im_utils, logger_utils
+from app.models.bbox import BBox
+from app.settings import app_cfg as cfg
+from app.settings import types
+
+
+
+class FaceLandmarks3D:
+
+ # Estimates 3D facial landmarks
+
+ def __init__(self):
+ self.log = logger_utils.Logger.getLogger()
+ pass
+
+
+ def landmarks(self):
+ return [1,2,3,4,100] \ No newline at end of file
diff --git a/megapixels/app/processors/face_mesh.py b/megapixels/app/processors/face_mesh.py
new file mode 100644
index 00000000..2d3deb4f
--- /dev/null
+++ b/megapixels/app/processors/face_mesh.py
@@ -0,0 +1,27 @@
+import os
+from os.path import join
+from pathlib import Path
+import math
+
+import cv2 as cv
+import numpy as np
+import imutils
+
+from app.utils import im_utils, logger_utils
+from app.models.bbox import BBox
+from app.settings import app_cfg as cfg
+from app.settings import types
+
+
+
+class FaceMesh3D:
+
+ # Estimates 3D face mesh
+
+ def __init__(self):
+ self.log = logger_utils.Logger.getLogger()
+ pass
+
+
+ def mesh(self):
+ return [1,2,3,4,100] \ No newline at end of file
diff --git a/megapixels/app/processors/face_pose.py b/megapixels/app/processors/face_pose.py
new file mode 100644
index 00000000..f2548b32
--- /dev/null
+++ b/megapixels/app/processors/face_pose.py
@@ -0,0 +1,104 @@
+import os
+from os.path import join
+from pathlib import Path
+import math
+
+import cv2 as cv
+import numpy as np
+import imutils
+
+from app.utils import im_utils, logger_utils
+from app.models.bbox import BBox
+from app.settings import app_cfg as cfg
+from app.settings import types
+
+
+
+class FacePoseDLIB:
+
+
+ dnn_size = (400, 400)
+
+ def __init__(self):
+ pass
+
+
+ def pose(self, landmarks, dim, project_points=False):
+ # computes pose using 6 / 68 points from dlib face landmarks
+ # based on learnopencv.com and
+ # https://github.com/jerryhouuu/Face-Yaw-Roll-Pitch-from-Pose-Estimation-using-OpenCV/
+ # NB: not as accurate as MTCNN, see @jerryhouuu for ideas
+
+ pose_points_idx = (30, 8, 36, 45, 48, 54)
+ axis = np.float32([[500,0,0], [0,500,0], [0,0,500]])
+
+ # 3D model points.
+ model_points = np.array([
+ (0.0, 0.0, 0.0), # Nose tip
+ (0.0, -330.0, -65.0), # Chin
+ (-225.0, 170.0, -135.0), # Left eye left corner
+ (225.0, 170.0, -135.0), # Right eye right corne
+ (-150.0, -150.0, -125.0), # Left Mouth corner
+ (150.0, -150.0, -125.0) # Right mouth corner
+ ])
+
+ # Assuming no lens distortion
+ dist_coeffs = np.zeros((4,1))
+
+ # find 6 pose points
+ pose_points = []
+ for j, idx in enumerate(pose_points_idx):
+ pt = landmarks[idx]
+ pose_points.append((pt[0], pt[1]))
+ pose_points = np.array(pose_points, dtype='double') # convert to double
+
+ # create camera matrix
+ focal_length = dim[0]
+ center = (dim[0]/2, dim[1]/2)
+ cam_mat = np.array(
+ [[focal_length, 0, center[0]],
+ [0, focal_length, center[1]],
+ [0, 1, 1]], dtype = "double")
+
+ # solve PnP for rotation and translation
+ (success, rot_vec, tran_vec) = cv.solvePnP(model_points, pose_points,
+ cam_mat, dist_coeffs,
+ flags=cv.SOLVEPNP_ITERATIVE)
+
+ result = {}
+
+ # project points
+ if project_points:
+ pts_im, jac = cv.projectPoints(axis, rot_vec, tran_vec, cam_mat, dist_coeffs)
+ pts_model, jac2 = cv.projectPoints(model_points, rot_vec, tran_vec, cam_mat, dist_coeffs)
+ result['points_model'] = pts_model
+ result['points_image'] = pts_im
+ result['point_nose'] = tuple(landmarks[pose_points_idx[0]])
+
+ rvec_matrix = cv.Rodrigues(rot_vec)[0]
+
+ # convert to degrees
+ proj_matrix = np.hstack((rvec_matrix, tran_vec))
+ eulerAngles = cv.decomposeProjectionMatrix(proj_matrix)[6]
+ pitch, yaw, roll = [math.radians(x) for x in eulerAngles]
+ pitch = math.degrees(math.asin(math.sin(pitch)))
+ roll = -math.degrees(math.asin(math.sin(roll)))
+ yaw = math.degrees(math.asin(math.sin(yaw)))
+ degrees = {'pitch': pitch, 'roll': roll, 'yaw': yaw}
+ result['degrees'] = degrees
+
+ return result
+
+
+ def draw_pose(self, im, pts_im, pts_model, pt_nose):
+ cv.line(im, pt_nose, tuple(pts_im[1].ravel()), (0,255,0), 3) #GREEN
+ cv.line(im, pt_nose, tuple(pts_im[0].ravel()), (255,0,), 3) #BLUE
+ cv.line(im, pt_nose, tuple(pts_im[2].ravel()), (0,0,255), 3) #RED
+
+
+ def draw_degrees(self, im, degrees, color=(0,255,0)):
+ for i, item in enumerate(degrees.items()):
+ k, v = item
+ t = '{}: {:.2f}'.format(k, v)
+ origin = (10, 30 + (25 * i))
+ cv.putText(im, t, origin, cv.FONT_HERSHEY_SIMPLEX, 0.5, color, thickness=2, lineType=2) \ No newline at end of file
diff --git a/megapixels/app/processors/face_recognition.py b/megapixels/app/processors/face_recognition.py
new file mode 100644
index 00000000..e0b9f752
--- /dev/null
+++ b/megapixels/app/processors/face_recognition.py
@@ -0,0 +1,56 @@
+import os
+from os.path import join
+from pathlib import Path
+
+import cv2 as cv
+import numpy as np
+import dlib
+import imutils
+
+from app.utils import im_utils, logger_utils
+from app.models.bbox import BBox
+from app.settings import app_cfg as cfg
+from app.settings import types
+
+class RecognitionDLIB:
+
+ # https://github.com/davisking/dlib/blob/master/python_examples/face_recognition.py
+ # facerec.compute_face_descriptor(img, shape, 100, 0.25)
+
+ def __init__(self, gpu=0):
+ self.log = logger_utils.Logger.getLogger()
+
+ if gpu > -1:
+ cuda_visible_devices = os.getenv('CUDA_VISIBLE_DEVICES', '')
+ os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu)
+
+ self.predictor = dlib.shape_predictor(cfg.DIR_MODELS_DLIB_5PT)
+ self.facerec = dlib.face_recognition_model_v1(cfg.DIR_MODELS_DLIB_FACEREC_RESNET)
+
+ if gpu > -1:
+ os.environ['CUDA_VISIBLE_DEVICES'] = cuda_visible_devices # reset GPU env
+
+
+ def vec(self, im, bbox, width=100,
+ jitters=cfg.DLIB_FACEREC_JITTERS, padding=cfg.DLIB_FACEREC_PADDING):
+ # Converts image and bbox into 128d vector
+ # scale the image so the face is always 100x100 pixels
+
+ #self.log.debug('compute scale')
+ scale = width / bbox.width
+ #im = cv.resize(im, (scale, scale), cv.INTER_LANCZOS4)
+ #self.log.debug('resize')
+ cv.resize(im, None, fx=scale, fy=scale, interpolation=cv.INTER_LANCZOS4)
+ #self.log.debug('to dlib')
+ bbox_dlib = bbox.to_dlib()
+ #self.log.debug('precitor')
+ face_shape = self.predictor(im, bbox_dlib)
+ # vec = self.facerec.compute_face_descriptor(im, face_shape, jitters, padding)
+ #self.log.debug('vec')
+ vec = self.facerec.compute_face_descriptor(im, face_shape, jitters)
+ #vec = self.facerec.compute_face_descriptor(im, face_shape)
+ return vec
+
+
+ def similarity(self, query_enc, known_enc):
+ return np.linalg.norm(query_enc - known_enc, axis=1)
diff --git a/megapixels/app/processors/faiss.py b/megapixels/app/processors/faiss.py
new file mode 100644
index 00000000..5156ad71
--- /dev/null
+++ b/megapixels/app/processors/faiss.py
@@ -0,0 +1,58 @@
+"""
+Index all of the FAISS datasets
+"""
+
+import os
+import glob
+import faiss
+import time
+import numpy as np
+
+from app.utils.file_utils import load_recipe, load_csv_safe
+from app.settings import app_cfg as cfg
+
+class DefaultRecipe:
+ def __init__(self):
+ self.dim = 128
+ self.factory_type = 'Flat'
+
+def build_all_faiss_databases():
+ datasets = []
+ for fn in glob.iglob(os.path.join(cfg.DIR_FAISS_METADATA, "*")):
+ name = os.path.basename(fn)
+ recipe_fn = os.path.join(cfg.DIR_FAISS_RECIPES, name + ".json")
+ if os.path.exists(recipe_fn):
+ build_faiss_database(name, load_recipe(recipe_fn))
+ else:
+ build_faiss_database(name, DefaultRecipe())
+
+def build_faiss_database(name, recipe):
+ vec_fn = os.path.join(cfg.DIR_FAISS_METADATA, name, "vecs.csv")
+ index_fn = os.path.join(cfg.DIR_FAISS_INDEXES, name + ".index")
+
+ index = faiss.index_factory(recipe.dim, recipe.factory_type)
+
+ keys, rows = load_csv_safe(vec_fn)
+ feats = np.array([ list(map(float, row[3].split(","))) for row in rows ]).astype('float32')
+ n, d = feats.shape
+
+ print("{}: training {} x {} dim vectors".format(name, n, d))
+ print(recipe.factory_type)
+
+ add_start = time.time()
+ index.add(feats)
+ add_end = time.time()
+ add_time = add_end - add_start
+ print("{}: add time: {:.1f}s".format(name, add_time))
+
+ faiss.write_index(index, index_fn)
+
+def load_faiss_databases():
+ faiss_datasets = {}
+ for fn in glob.iglob(os.path.join(cfg.DIR_FAISS_METADATA, "*")):
+ name = os.path.basename(fn)
+ index_fn = os.path.join(cfg.DIR_FAISS_INDEXES, name + ".index")
+ if os.path.exists(index_fn):
+ index = faiss.read_index(index_fn)
+ faiss_datasets[name] = index
+ return faiss_datasets
diff --git a/megapixels/app/server/api.py b/megapixels/app/server/api.py
new file mode 100644
index 00000000..35862837
--- /dev/null
+++ b/megapixels/app/server/api.py
@@ -0,0 +1,152 @@
+import os
+import re
+import time
+import dlib
+import numpy as np
+from flask import Blueprint, request, jsonify
+from PIL import Image # todo: try to remove PIL dependency
+
+from app.processors import face_recognition
+from app.processors import face_detector
+from app.processors.faiss import load_faiss_databases
+from app.models.sql_factory import load_sql_datasets, list_datasets, get_dataset, get_table
+from app.utils.im_utils import pil2np
+
+sanitize_re = re.compile('[\W]+')
+valid_exts = ['.gif', '.jpg', '.jpeg', '.png']
+
+LIMIT = 9
+THRESHOLD = 0.3
+
+api = Blueprint('api', __name__)
+
+faiss_datasets = load_faiss_databases()
+
+@api.route('/')
+def index():
+ """List the datasets and their fields"""
+ return jsonify({ 'datasets': list_datasets() })
+
+
+@api.route('/dataset/<dataset_name>')
+def show(dataset_name):
+ """Show the data that a dataset will return"""
+ dataset = get_dataset(dataset_name)
+ if dataset:
+ return jsonify(dataset.describe())
+ else:
+ return jsonify({ 'status': 404 })
+
+
+@api.route('/dataset/<dataset_name>/face', methods=['POST'])
+def upload(dataset_name):
+ """Query an image against FAISS and return the matching identities"""
+ start = time.time()
+ dataset = get_dataset(dataset_name)
+ if dataset_name not in faiss_datasets:
+ return jsonify({
+ 'error': 'invalid dataset'
+ })
+ faiss_dataset = faiss_datasets[dataset_name]
+ file = request.files['query_img']
+ fn = file.filename
+ if fn.endswith('blob'):
+ fn = 'filename.jpg'
+
+ basename, ext = os.path.splitext(fn)
+ # print("got {}, type {}".format(basename, ext))
+ if ext.lower() not in valid_exts:
+ return jsonify({ 'error': 'not an image' })
+
+ im = Image.open(file.stream).convert('RGB')
+ im_np = pil2np(im)
+
+ # Face detection
+ detector = face_detector.DetectorDLIBHOG()
+
+ # get detection as BBox object
+ bboxes = detector.detect(im_np, largest=True)
+ if not bboxes or not len(bboxes):
+ return jsonify({
+ 'error': 'bbox'
+ })
+ bbox = bboxes[0]
+ if not bbox:
+ return jsonify({
+ 'error': 'bbox'
+ })
+
+ dim = im_np.shape[:2][::-1]
+ bbox = bbox.to_dim(dim) # convert back to real dimensions
+ # print("got bbox")
+ if not bbox:
+ return jsonify({
+ 'error': 'bbox'
+ })
+
+ # extract 128-D vector
+ recognition = face_recognition.RecognitionDLIB(gpu=-1)
+ vec = recognition.vec(im_np, bbox)
+ query = np.array([ vec ]).astype('float32')
+
+ # query FAISS
+ distances, indexes = faiss_dataset.search(query, LIMIT)
+
+ if len(indexes) == 0 or len(indexes[0]) == 0:
+ return jsonify({
+ 'error': 'nomatch'
+ })
+
+ # get the results for this single query...
+ distances = distances[0]
+ indexes = indexes[0]
+
+ dists = []
+ ids = []
+ for _d, _i in zip(distances, indexes):
+ if _d <= THRESHOLD:
+ dists.append(round(float(_d), 2))
+ ids.append(_i+1)
+
+ results = [ dataset.get_identity(int(_i)) for _i in ids ]
+
+ # print(distances)
+ # print(ids)
+
+ # 'bbox': str(bboxes[0]),
+ # 'bbox_dim': str(bbox),
+ # print(bboxes[0])
+ # print(bbox)
+
+ query = {
+ 'timing': round(time.time() - start, 3),
+ 'bbox': str(bbox),
+ }
+ # print(results)
+ return jsonify({
+ 'query': query,
+ 'results': results,
+ 'distances': dists,
+ })
+
+
+@api.route('/dataset/<dataset_name>/name', methods=['GET','POST'])
+def name_lookup(dataset_name):
+ """Find a name in the dataset"""
+ start = time.time()
+ dataset = get_dataset(dataset_name)
+
+ q = request.args.get('q')
+ # print(q)
+
+ query = {
+ 'q': q,
+ 'timing': time.time() - start,
+ }
+ results = dataset.search_name(q + '%') if q else None
+
+ # print(results)
+ return jsonify({
+ 'query': query,
+ 'results': results,
+ })
diff --git a/megapixels/app/server/create.py b/megapixels/app/server/create.py
new file mode 100644
index 00000000..4b1333b9
--- /dev/null
+++ b/megapixels/app/server/create.py
@@ -0,0 +1,49 @@
+from flask import Flask, Blueprint, jsonify, send_from_directory
+from flask_sqlalchemy import SQLAlchemy
+from app.models.sql_factory import connection_url, load_sql_datasets
+
+from app.server.api import api
+
+db = SQLAlchemy()
+
+def create_app(script_info=None):
+ """
+ functional pattern for creating the flask app
+ """
+ app = Flask(__name__, static_folder='static', static_url_path='')
+ app.config['SQLALCHEMY_DATABASE_URI'] = connection_url
+ app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False
+
+ db.init_app(app)
+ datasets = load_sql_datasets(replace=False, base_model=db.Model)
+
+ app.register_blueprint(api, url_prefix='/api')
+ app.add_url_rule('/<path:file_relative_path_to_root>', 'serve_page', serve_page, methods=['GET'])
+
+ @app.route('/', methods=['GET'])
+ def index():
+ return app.send_static_file('index.html')
+
+ @app.shell_context_processor
+ def shell_context():
+ return { 'app': app, 'db': db }
+
+ @app.route("/site-map")
+ def site_map():
+ links = []
+ for rule in app.url_map.iter_rules():
+ # url = url_for(rule.endpoint, **(rule.defaults or {}))
+ # print(url)
+ links.append((rule.endpoint))
+ return(jsonify(links))
+
+ return app
+
+def serve_page(file_relative_path_to_root):
+ """
+ trying to get this to serve /path/ with /path/index.html,
+ ...but it doesnt actually matter for production...
+ """
+ if file_relative_path_to_root[-1] == '/':
+ file_relative_path_to_root += 'index.html'
+ return send_from_directory("static", file_relative_path_to_root)
diff --git a/megapixels/app/server/json_encoder.py b/megapixels/app/server/json_encoder.py
new file mode 100644
index 00000000..89af578a
--- /dev/null
+++ b/megapixels/app/server/json_encoder.py
@@ -0,0 +1,17 @@
+from sqlalchemy.ext.declarative import DeclarativeMeta
+from flask import json
+
+class AlchemyEncoder(json.JSONEncoder):
+ def default(self, o):
+ if isinstance(o.__class__, DeclarativeMeta):
+ data = {}
+ fields = o.__json__() if hasattr(o, '__json__') else dir(o)
+ for field in [f for f in fields if not f.startswith('_') and f not in ['metadata', 'query', 'query_class']]:
+ value = o.__getattribute__(field)
+ try:
+ json.dumps(value)
+ data[field] = value
+ except TypeError:
+ data[field] = None
+ return data
+ return json.JSONEncoder.default(self, o)
diff --git a/megapixels/app/server/static b/megapixels/app/server/static
new file mode 120000
index 00000000..1dc7a639
--- /dev/null
+++ b/megapixels/app/server/static
@@ -0,0 +1 @@
+../../../site/public \ No newline at end of file
diff --git a/megapixels/app/settings/app_cfg.py b/megapixels/app/settings/app_cfg.py
index 739ddce2..55fed166 100644
--- a/megapixels/app/settings/app_cfg.py
+++ b/megapixels/app/settings/app_cfg.py
@@ -2,27 +2,36 @@ import os
from os.path import join
import logging
import collections
-
-import cv2 as cv
+from dotenv import load_dotenv
from app.settings import types
from app.utils import click_utils
+import codecs
+codecs.register(lambda name: codecs.lookup('utf8') if name == 'utf8mb4' else None)
# -----------------------------------------------------------------------------
# Enun lists used for custom Click Params
# -----------------------------------------------------------------------------
FaceDetectNetVar = click_utils.ParamVar(types.FaceDetectNet)
-
+HaarCascadeVar = click_utils.ParamVar(types.HaarCascade)
LogLevelVar = click_utils.ParamVar(types.LogLevel)
+MetadataVar = click_utils.ParamVar(types.Metadata)
+DatasetVar = click_utils.ParamVar(types.Dataset)
+DataStoreVar = click_utils.ParamVar(types.DataStore)
# # data_store
DATA_STORE = '/data_store_hdd/'
+DATA_STORE_NAS = '/data_store_nas/'
+DATA_STORE_HDD = '/data_store_hdd/'
+DATA_STORE_SSD = '/data_store_ssd/'
DIR_DATASETS = join(DATA_STORE,'datasets')
+DIR_DATSET_NAS = join(DIR_DATASETS, 'people')
DIR_APPS = join(DATA_STORE,'apps')
DIR_APP = join(DIR_APPS,'megapixels')
DIR_MODELS = join(DIR_APP,'models')
+DIR_PEOPLE = 'people'
# # Frameworks
DIR_MODELS_CAFFE = join(DIR_MODELS,'caffe')
@@ -36,23 +45,39 @@ DIR_MODELS_DLIB = join(DIR_MODELS,'dlib')
DIR_MODELS_DLIB_CNN = join(DIR_MODELS_DLIB, 'mmod_human_face_detector.dat')
DIR_MODELS_DLIB_5PT = join(DIR_MODELS_DLIB, 'shape_predictor_5_face_landmarks.dat')
DIR_MODELS_DLIB_68PT = join(DIR_MODELS_DLIB, 'shape_predictor_68_face_landmarks.dat')
+DIR_MODELS_DLIB_FACEREC_RESNET = join(DIR_MODELS_DLIB, 'dlib_face_recognition_resnet_model_v1.dat')
+DIR_FAISS = join(DIR_APP, 'faiss')
+DIR_FAISS_INDEXES = join(DIR_FAISS, 'indexes')
+DIR_FAISS_METADATA = join(DIR_FAISS, 'metadata')
+DIR_FAISS_RECIPES = join(DIR_FAISS, 'recipes')
# Test images
DIR_TEST_IMAGES = join(DIR_APP, 'test', 'images')
# -----------------------------------------------------------------------------
+# .env config for keys
+# -----------------------------------------------------------------------------
+
+# DIR_DOTENV = join(DIR_APP, '.env')
+load_dotenv() # dotenv_path=DIR_DOTENV)
+
+# -----------------------------------------------------------------------------
# Drawing, GUI settings
# -----------------------------------------------------------------------------
DIR_ASSETS = join(DIR_APP, 'assets')
FP_FONT = join(DIR_ASSETS, 'font')
-
# -----------------------------------------------------------------------------
# click chair settings
# -----------------------------------------------------------------------------
-DIR_COMMANDS_PROCESSOR_ADMIN = 'admin/commands'
-DIR_COMMANDS_PROCESSOR_DATASETS = 'datasets/commands'
+DIR_COMMANDS_CV = 'commands/cv'
+DIR_COMMANDS_ADMIN = 'commands/admin'
+DIR_COMMANDS_DATASETS = 'commands/datasets'
+DIR_COMMANDS_FAISS = 'commands/faiss'
+DIR_COMMANDS_MISC = 'commands/misc'
+DIR_COMMANDS_SITE = 'commands/site'
+DIR_COMMANDS_DEMO = 'commands/demo'
# -----------------------------------------------------------------------------
# Filesystem settings
@@ -64,6 +89,16 @@ CKPT_ZERO_PADDING = 9
HASH_TREE_DEPTH = 3
HASH_BRANCH_SIZE = 3
+DLIB_FACEREC_JITTERS = 5 # number of face recognition jitters
+DLIB_FACEREC_PADDING = 0.25 # default dlib
+
+POSE_MINMAX_YAW = (-25,25)
+POSE_MINMAX_ROLL = (-15,15)
+POSE_MINMAX_PITCH = (-10,10)
+
+POSE_MINMAX_YAW = (-40,40)
+POSE_MINMAX_ROLL = (-35,35)
+POSE_MINMAX_PITCH = (-25,25)
# -----------------------------------------------------------------------------
# Logging options exposed for custom click Params
# -----------------------------------------------------------------------------
@@ -87,4 +122,23 @@ black, red, green, yellow, blue, purple, cyan and white.
bold, bold_{color}, fg_bold_{color}, bg_bold_{color}: Bold/bright colors.
reset: Clear all formatting (both foreground and background colors).
"""
-LOGFILE_FORMAT = "%(log_color)s%(levelname)-8s%(reset)s %(cyan)s%(filename)s:%(lineno)s:%(bold_cyan)s%(funcName)s() %(reset)s%(message)s" \ No newline at end of file
+LOGFILE_FORMAT = "%(log_color)s%(levelname)-8s%(reset)s %(cyan)s%(filename)s:%(lineno)s:%(bold_cyan)s%(funcName)s() %(reset)s%(message)s"
+
+# -----------------------------------------------------------------------------
+# S3 storage
+# -----------------------------------------------------------------------------
+S3_ROOT_URL = 's3://megapixels/v1/'
+S3_MEDIA_URL = join(S3_ROOT_URL, 'media')
+S3_METADATA_URL = join(S3_ROOT_URL, 'metadata')
+S3_HTTP_URL = 'https://megapixels.nyc3.digitaloceanspaces.com/v1/'
+S3_HTTP_MEDIA_URL = join(S3_HTTP_URL, 'media')
+S3_HTTP_METADATA_URL = join(S3_HTTP_URL, 'metadata')
+
+# -----------------------------------------------------------------------------
+# Static site generator
+# -----------------------------------------------------------------------------
+S3_SITE_PATH = "v1/site"
+S3_DATASETS_PATH = "v1" # datasets is already in the filename
+DIR_SITE_PUBLIC = "../site/public"
+DIR_SITE_CONTENT = "../site/content"
+DIR_SITE_TEMPLATES = "../site/templates"
diff --git a/megapixels/app/settings/types.py b/megapixels/app/settings/types.py
index 0c3d7942..0805c5bd 100644
--- a/megapixels/app/settings/types.py
+++ b/megapixels/app/settings/types.py
@@ -7,10 +7,9 @@ def find_type(name, enum_type):
return None
-
class FaceDetectNet(Enum):
"""Scene text detector networks"""
- HAAR, DLIB_CNN, DLIB_HOG, CVDNN = range(4)
+ HAAR, DLIB_CNN, DLIB_HOG, CVDNN, MTCNN = range(5)
class CVBackend(Enum):
"""OpenCV 3.4.2+ DNN target type"""
@@ -20,6 +19,18 @@ class CVTarget(Enum):
"""OpenCV 3.4.2+ DNN backend processor type"""
CPU, OPENCL, OPENCL_FP16, MYRIAD = range(4)
+class HaarCascade(Enum):
+ FRONTAL, ALT, ALT2, PROFILE = range(4)
+
+
+# ---------------------------------------------------------------------
+# Storage
+# --------------------------------------------------------------------
+
+class DataStore(Enum):
+ """Storage devices. Paths are symlinked to root (eg /data_store_nas)"""
+ NAS, HDD, SSD, S3 = range(4)
+
# ---------------------------------------------------------------------
# Logger, monitoring
# --------------------------------------------------------------------
@@ -27,3 +38,47 @@ class CVTarget(Enum):
class LogLevel(Enum):
"""Loger vebosity"""
DEBUG, INFO, WARN, ERROR, CRITICAL = range(5)
+
+
+# ---------------------------------------------------------------------
+# Metadata types
+# --------------------------------------------------------------------
+
+class Metadata(Enum):
+ IDENTITY, FILE_RECORD, FACE_VECTOR, FACE_POSE, FACE_ROI, FACE_LANDMARKS_68, \
+ FACE_LANDMARKS_3D = range(7)
+
+class Dataset(Enum):
+ LFW, VGG_FACE2, MSCELEB, UCCS, UMD_FACES = range(5)
+
+
+# ---------------------------------------------------------------------
+# Face analysis types
+# --------------------------------------------------------------------
+class FaceEmotion(Enum):
+ # Map these to text strings for web display
+ NEUTRAL, HAPPY, SAD, ANGRY, FRUSTURATED = range(5)
+
+class FaceBeauty(Enum):
+ # Map these to text strings for web display
+ AVERAGE, BELOW_AVERAGE, ABOVE_AVERAGE = range(3)
+
+class FaceYaw(Enum):
+ # Map these to text strings for web display
+ FAR_LEFT, LEFT, CENTER, RIGHT, FAR_RIGHT = range(5)
+
+class FacePitch(Enum):
+ # Map these to text strings for web display
+ FAR_DOWN, DOWN, CENTER, UP, FAR_UP = range(5)
+
+class FaceRoll(Enum):
+ # Map these to text strings for web display
+ FAR_DOWN, DOWN, CENTER, UP, FAR_UP = range(5)
+
+class FaceAge(Enum):
+ # Map these to text strings for web display
+ CHILD, TEENAGER, YOUNG_ADULT, ADULT, MATURE_ADULT, SENIOR = range(6)
+
+class Confidence(Enum):
+ # Map these to text strings for web display
+ VERY_LOW, LOW, MEDIUM, MEDIUM_HIGH, HIGH, VERY_HIGH = range(6) \ No newline at end of file
diff --git a/megapixels/app/site/README.md b/megapixels/app/site/README.md
new file mode 100644
index 00000000..1a6d3a1e
--- /dev/null
+++ b/megapixels/app/site/README.md
@@ -0,0 +1,21 @@
+Megapixels Static Site Generator
+================================
+
+The index, blog, and about other pages are built using this static site generator.
+
+## Metadata
+
+```
+status: published|draft|private
+title: From 1 to 100 Pixels
+desc: High resolution insights from low resolution imagery
+slug: from-1-to-100-pixels
+published: 2018-12-04
+updated: 2018-12-04
+authors: Adam Harvey, Berit Gilma, Matthew Stender
+```
+
+## S3 Assets
+
+Static assets: `v1/site/about/assets/picture.jpg`
+Dataset assets: `v1/datasets/lfw/assets/picture.jpg`
diff --git a/megapixels/app/site/builder.py b/megapixels/app/site/builder.py
new file mode 100644
index 00000000..ff1a0c83
--- /dev/null
+++ b/megapixels/app/site/builder.py
@@ -0,0 +1,103 @@
+#!/usr/bin/python
+
+import os
+import glob
+from jinja2 import Environment, FileSystemLoader, select_autoescape
+
+import app.settings.app_cfg as cfg
+
+import app.site.s3 as s3
+import app.site.parser as parser
+
+env = Environment(
+ loader=FileSystemLoader(cfg.DIR_SITE_TEMPLATES),
+ autoescape=select_autoescape([])
+)
+
+def build_page(fn, research_posts):
+ """
+ build a single page from markdown into the appropriate template
+ - writes it to site/public/
+ - syncs any assets with s3
+ - handles certain index pages...
+ """
+ metadata, sections = parser.read_metadata(fn)
+
+ if metadata is None:
+ print("{} has no metadata".format(fn))
+ return
+
+ print(metadata['url'])
+
+ dirname = os.path.dirname(fn)
+ output_path = cfg.DIR_SITE_PUBLIC + metadata['url']
+ output_fn = os.path.join(output_path, "index.html")
+
+ skip_h1 = False
+
+ if metadata['url'] == '/':
+ template = env.get_template("home.html")
+ elif 'research/' in fn:
+ skip_h1 = True
+ template = env.get_template("research.html")
+ else:
+ template = env.get_template("page.html")
+
+ if 'datasets/' in fn:
+ s3_dir = cfg.S3_DATASETS_PATH
+ else:
+ s3_dir = cfg.S3_SITE_PATH
+
+ s3_path = s3.make_s3_path(s3_dir, metadata['path'])
+
+ if 'index.md' in fn:
+ s3.sync_directory(dirname, s3_dir, metadata)
+
+ content = parser.parse_markdown(sections, s3_path, skip_h1=skip_h1)
+
+ html = template.render(
+ metadata=metadata,
+ content=content,
+ research_posts=research_posts,
+ latest_research_post=research_posts[-1],
+ )
+
+ os.makedirs(output_path, exist_ok=True)
+ with open(output_fn, "w") as file:
+ file.write(html)
+
+def build_research_index(research_posts):
+ """
+ build the index of research (blog) posts
+ """
+ metadata, sections = parser.read_metadata('../site/content/research/index.md')
+ template = env.get_template("page.html")
+ s3_path = s3.make_s3_path(cfg.S3_SITE_PATH, metadata['path'])
+ content = parser.parse_markdown(sections, s3_path, skip_h1=False)
+ content += parser.parse_research_index(research_posts)
+ html = template.render(
+ metadata=metadata,
+ content=content,
+ research_posts=research_posts,
+ latest_research_post=research_posts[-1],
+ )
+ output_fn = cfg.DIR_SITE_PUBLIC + '/research/index.html'
+ with open(output_fn, "w") as file:
+ file.write(html)
+
+def build_site():
+ """
+ build the site! =^)
+ """
+ research_posts = parser.read_research_post_index()
+ for fn in glob.iglob(os.path.join(cfg.DIR_SITE_CONTENT, "**/*.md"), recursive=True):
+ build_page(fn, research_posts)
+ build_research_index(research_posts)
+
+def build_file(fn):
+ """
+ build just one page from a filename! =^)
+ """
+ research_posts = parser.read_research_post_index()
+ fn = os.path.join(cfg.DIR_SITE_CONTENT, fn)
+ build_page(fn, research_posts)
diff --git a/megapixels/app/site/parser.py b/megapixels/app/site/parser.py
new file mode 100644
index 00000000..b3d3a8c2
--- /dev/null
+++ b/megapixels/app/site/parser.py
@@ -0,0 +1,238 @@
+import os
+import re
+import glob
+import simplejson as json
+import mistune
+
+import app.settings.app_cfg as cfg
+import app.site.s3 as s3
+
+renderer = mistune.Renderer(escape=False)
+markdown = mistune.Markdown(renderer=renderer)
+
+def fix_images(lines, s3_path):
+ """
+ do our own tranformation of the markdown around images to handle wide images etc
+ lines: markdown lines
+ """
+ real_lines = []
+ block = "\n\n".join(lines)
+ for line in block.split("\n"):
+ if "![" in line:
+ line = line.replace('![', '')
+ alt_text, tail = line.split('](', 1)
+ url, tail = tail.split(')', 1)
+ if ':' in alt_text:
+ tail, alt_text = alt_text.split(':', 1)
+ img_tag = "<img src='{}' alt='{}'>".format(s3_path + url, alt_text.replace("'", ""))
+ if len(alt_text):
+ line = "<div class='image'>{}<div class='caption'>{}</div></div>".format(img_tag, alt_text)
+ else:
+ line = "<div class='image'>{}</div>".format(img_tag, alt_text)
+ real_lines.append(line)
+ return "\n".join(real_lines)
+
+def format_section(lines, s3_path, type=''):
+ """
+ format a normal markdown section
+ """
+ if len(lines):
+ lines = fix_images(lines, s3_path)
+ if type:
+ return "<section class='{}'>{}</section>".format(type, markdown(lines))
+ else:
+ return "<section>" + markdown(lines) + "</section>"
+ return ""
+
+def format_metadata(section):
+ """
+ format a metadata section (+ key: value pairs)
+ """
+ meta = []
+ for line in section.split('\n'):
+ key, value = line[2:].split(': ', 1)
+ meta.append("<div><div class='gray'>{}</div><div>{}</div></div>".format(key, value))
+ return "<section><div class='meta'>{}</div></section>".format(''.join(meta))
+
+def format_applet(section, s3_path):
+ # print(section)
+ payload = section.strip('```').strip().strip('```').strip().split('\n')
+ applet = {}
+ print(payload)
+ if ': ' in payload[0]:
+ command, opt = payload[0].split(': ')
+ else:
+ command = payload[0]
+ opt = None
+ if command == 'python' or command == 'javascript' or command == 'code':
+ return format_section([ section ], s3_path)
+
+ applet['command'] = command
+ if opt:
+ applet['opt'] = opt
+ if command == 'load_file':
+ if opt[0:4] != 'http':
+ applet['opt'] = s3_path + opt
+ if len(payload) > 1:
+ applet['fields'] = payload[1:]
+ return "<section class='applet_container'><div class='applet' data-payload='{}'></div></section>".format(json.dumps(applet))
+
+def parse_markdown(sections, s3_path, skip_h1=False):
+ """
+ parse page into sections, preprocess the markdown to handle our modifications
+ """
+ groups = []
+ current_group = []
+ for section in sections:
+ if skip_h1 and section.startswith('# '):
+ continue
+ elif section.strip().startswith('```'):
+ groups.append(format_section(current_group, s3_path))
+ current_group = []
+ current_group.append(section)
+ if section.strip().endswith('```'):
+ groups.append(format_applet("\n\n".join(current_group), s3_path))
+ current_group = []
+ elif section.strip().endswith('```'):
+ current_group.append(section)
+ groups.append(format_applet("\n\n".join(current_group), s3_path))
+ current_group = []
+ elif section.startswith('+ '):
+ groups.append(format_section(current_group, s3_path))
+ groups.append(format_metadata(section))
+ current_group = []
+ elif '![wide:' in section:
+ groups.append(format_section(current_group, s3_path))
+ groups.append(format_section([section], s3_path, type='wide'))
+ current_group = []
+ elif '![' in section:
+ groups.append(format_section(current_group, s3_path))
+ groups.append(format_section([section], s3_path, type='images'))
+ current_group = []
+ else:
+ current_group.append(section)
+ groups.append(format_section(current_group, s3_path))
+ content = "".join(groups)
+ return content
+
+def parse_research_index(research_posts):
+ """
+ Generate an index file for the research pages
+ """
+ content = "<div class='research_index'>"
+ for post in research_posts:
+ s3_path = s3.make_s3_path(cfg.S3_SITE_PATH, post['path'])
+ if 'image' in post:
+ post_image = s3_path + post['image']
+ else:
+ post_image = ''
+ row = "<a href='{}'><section class='wide'><img src='{}' alt='Research post' /><section><h1>{}</h1><h2>{}</h2></section></section></a>".format(
+ post['path'],
+ post_image,
+ post['title'],
+ post['tagline'])
+ content += row
+ content += '</div>'
+ return content
+
+def read_metadata(fn):
+ """
+ Read in read a markdown file and extract the metadata
+ """
+ with open(fn, "r") as file:
+ data = file.read()
+ data = data.replace("\n ", "\n")
+ if "\n" in data:
+ data = data.replace("\r", "")
+ else:
+ data = data.replace("\r", "\n")
+ sections = data.split("\n\n")
+ return parse_metadata(fn, sections)
+
+default_metadata = {
+ 'status': 'published',
+ 'title': 'Untitled Page',
+ 'desc': '',
+ 'slug': '',
+ 'published': '2018-12-31',
+ 'updated': '2018-12-31',
+ 'authors': 'Adam Harvey',
+ 'sync': 'true',
+ 'tagline': '',
+}
+
+def parse_metadata_section(metadata, section):
+ """
+ parse a metadata key: value pair
+ """
+ for line in section.split("\n"):
+ if ': ' not in line:
+ continue
+ key, value = line.split(': ', 1)
+ metadata[key.lower()] = value
+
+def parse_metadata(fn, sections):
+ """
+ parse the metadata headers in a markdown file
+ (everything before the second ---------)
+ also generates appropriate urls for this page :)
+ """
+ found_meta = False
+ metadata = {}
+ valid_sections = []
+ for section in sections:
+ if not found_meta and ': ' in section:
+ found_meta = True
+ parse_metadata_section(metadata, section)
+ continue
+ if '-----' in section:
+ continue
+ if found_meta:
+ valid_sections.append(section)
+
+ if 'title' not in metadata:
+ print('warning: {} has no title'.format(fn))
+ for key in default_metadata:
+ if key not in metadata:
+ metadata[key] = default_metadata[key]
+
+ basedir = os.path.dirname(fn.replace(cfg.DIR_SITE_CONTENT, ''))
+ basename = os.path.basename(fn)
+ if basedir == '/':
+ metadata['path'] = '/'
+ metadata['url'] = '/'
+ elif basename == 'index.md':
+ metadata['path'] = basedir + '/'
+ metadata['url'] = metadata['path']
+ else:
+ metadata['path'] = basedir + '/'
+ metadata['url'] = metadata['path'] + basename.replace('.md', '') + '/'
+
+ if metadata['status'] == 'published|draft|private':
+ metadata['status'] = 'published'
+
+ metadata['sync'] = metadata['sync'] != 'false'
+
+ metadata['author_html'] = '<br>'.join(metadata['authors'].split(','))
+
+ return metadata, valid_sections
+
+def read_research_post_index():
+ """
+ Generate an index of the research (blog) posts
+ """
+ posts = []
+ for fn in sorted(glob.glob('../site/content/research/*/index.md')):
+ metadata, valid_sections = read_metadata(fn)
+ if metadata is None or metadata['status'] == 'private' or metadata['status'] == 'draft':
+ continue
+ posts.append(metadata)
+ if not len(posts):
+ posts.append({
+ 'title': 'Placeholder',
+ 'slug': 'placeholder',
+ 'date': 'Placeholder',
+ 'url': '/',
+ })
+ return posts
+
diff --git a/megapixels/app/site/s3.py b/megapixels/app/site/s3.py
new file mode 100644
index 00000000..18133078
--- /dev/null
+++ b/megapixels/app/site/s3.py
@@ -0,0 +1,66 @@
+import os
+import glob
+import boto3
+
+def sync_directory(base_fn, s3_path, metadata):
+ """
+ Synchronize a local assets folder with S3
+ """
+ if not metadata['sync']:
+ return
+
+ fns = {}
+ for fn in glob.glob(os.path.join(base_fn, 'assets/*')):
+ # print(fn)
+ fns[os.path.basename(fn)] = True
+
+ remote_path = s3_path + metadata['url']
+
+ session = boto3.session.Session()
+
+ s3_client = session.client(
+ service_name='s3',
+ aws_access_key_id=os.getenv('S3_KEY'),
+ aws_secret_access_key=os.getenv('S3_SECRET'),
+ endpoint_url=os.getenv('S3_ENDPOINT'),
+ region_name=os.getenv('S3_REGION'),
+ )
+
+ directory = s3_client.list_objects(Bucket=os.getenv('S3_BUCKET'), Prefix=remote_path)
+ prefixes = []
+
+ if 'Contents' in directory:
+ for obj in directory['Contents']:
+ s3_fn = obj['Key']
+ # print(s3_fn)
+ fn = os.path.basename(s3_fn)
+ local_fn = os.path.join(base_fn, 'assets', fn)
+ if fn in fns:
+ del fns[fn]
+ if obj['LastModified'].timestamp() < os.path.getmtime(os.path.join(local_fn)):
+ print("s3 update {}".format(s3_fn))
+ s3_client.upload_file(
+ local_fn,
+ os.getenv('S3_BUCKET'),
+ s3_fn,
+ ExtraArgs={ 'ACL': 'public-read' })
+ else:
+ print("s3 delete {}".format(s3_fn))
+ response = s3_client.delete_object(
+ Bucket=os.getenv('S3_BUCKET'),
+ Key=s3_fn,
+ )
+
+ for fn in fns:
+ local_fn = os.path.join(base_fn, 'assets', fn)
+ s3_fn = os.path.join(remote_path, 'assets', fn)
+ print(s3_fn)
+ print("s3 create {}".format(s3_fn))
+ s3_client.upload_file(
+ local_fn,
+ os.getenv('S3_BUCKET'),
+ s3_fn,
+ ExtraArgs={ 'ACL': 'public-read' })
+
+def make_s3_path(s3_dir, metadata_path):
+ return "{}/{}/{}{}".format(os.getenv('S3_ENDPOINT'), os.getenv('S3_BUCKET'), s3_dir, metadata_path)
diff --git a/megapixels/app/utils/file_utils.py b/megapixels/app/utils/file_utils.py
index 773667b1..5c7b39d1 100644
--- a/megapixels/app/utils/file_utils.py
+++ b/megapixels/app/utils/file_utils.py
@@ -40,10 +40,16 @@ log = logging.getLogger(cfg.LOGGER_NAME)
# File I/O read/write little helpers
# ------------------------------------------
-def glob_multi(dir_in, exts):
+def glob_multi(dir_in, exts, recursive=False):
files = []
- for e in exts:
- files.append(glob(join(dir_in, '*.{}'.format(e))))
+ for ext in exts:
+ if recursive:
+ fp_glob = join(dir_in, '**/*.{}'.format(ext))
+ log.info(f'glob {fp_glob}')
+ files += glob(fp_glob, recursive=True)
+ else:
+ fp_glob = join(dir_in, '*.{}'.format(ext))
+ files += glob(fp_glob)
return files
@@ -77,7 +83,7 @@ def load_csv(fp_in, as_list=True):
:returns: list of all CSV data
"""
if not Path(fp_in).exists():
- log.info('loading {}'.format(fp_in))
+ log.info('not found: {}'.format(fp_in))
log.info('loading: {}'.format(fp_in))
with open(fp_in, 'r') as fp:
items = csv.DictReader(fp)
@@ -86,6 +92,50 @@ def load_csv(fp_in, as_list=True):
log.info('returning {:,} items'.format(len(items)))
return items
+def unfussy_csv_reader(reader):
+ """Loads a CSV while ignoring possible data errors
+ :param reader: Special reader for load_csv_safe which ignores CSV parse errors
+ """
+ while True:
+ try:
+ yield next(reader)
+ except StopIteration:
+ return
+ except csv.Error:
+ print(csv.Error)
+ # log the problem or whatever
+ continue
+
+def load_csv_safe(fp_in, keys=True, create=False):
+ """Loads a CSV while ignoring possible data errors
+ :param fp_in: string filepath to JSON file
+ :param keys: boolean set to false if the first line is not headers (for some reason)
+ :param create: boolean set to true to return an empty keys/values if the CSV does not exist
+ """
+ try:
+ with open(fp_in, 'r', newline='', encoding='utf-8') as f:
+ # reader = csv.reader( (line.replace('\0','') for line in f) )
+ reader = csv.reader(f)
+ lines = list(unfussy_csv_reader(reader))
+ if keys:
+ keys = lines[0]
+ lines = lines[1:]
+ return keys, lines
+ return lines
+ except:
+ if create:
+ if keys:
+ return {}, []
+ return []
+ raise
+
+def load_recipe(fp_in):
+ """Loads a JSON file as an object with properties accessible with dot syntax
+ :param fp_in: string filepath to JSON file
+ """
+ with open(path) as fh:
+ return json.load(fh, object_hook=lambda d: collections.namedtuple('X', d.keys())(*d.values()))
+
def lazywrite(data, fp_out, sort_keys=True):
"""Writes JSON or Pickle data"""
@@ -175,7 +225,7 @@ def write_pickle(data, fp_out, ensure_path=True):
pickle.dump(data, fp)
-def write_json(data, fp_out, minify=True, ensure_path=True, sort_keys=True):
+def write_json(data, fp_out, minify=True, ensure_path=True, sort_keys=True, verbose=False):
"""
"""
if ensure_path:
@@ -185,6 +235,8 @@ def write_json(data, fp_out, minify=True, ensure_path=True, sort_keys=True):
json.dump(data, fp, separators=(',',':'), sort_keys=sort_keys)
else:
json.dump(data, fp, indent=2, sort_keys=sort_keys)
+ if verbose:
+ log.info('Wrote JSON: {}'.format(fp_out))
def write_csv(data, fp_out, header=None):
""" """
@@ -277,7 +329,7 @@ def sha256(fp_in, block_size=65536):
"""
sha256 = hashlib.sha256()
with open(fp_in, 'rb') as fp:
- for block in iter(lambda: f.read(block_size), b''):
+ for block in iter(lambda: fp.read(block_size), b''):
sha256.update(block)
return sha256.hexdigest()
diff --git a/megapixels/app/utils/im_utils.py b/megapixels/app/utils/im_utils.py
index a0f23cd2..d5e92aa3 100644
--- a/megapixels/app/utils/im_utils.py
+++ b/megapixels/app/utils/im_utils.py
@@ -22,6 +22,16 @@ import datetime
+def is_grayscale(im, threshold=5):
+ """Returns True if image is grayscale
+ :param im: (numpy.array) image
+ :return (bool) of if image is grayscale"""
+ b = im[:,:,0]
+ g = im[:,:,1]
+ mean = np.mean(np.abs(g - b))
+ return mean < threshold
+
+
def compute_features(fe,frames,phashes,phash_thresh=1):
"""
Get vector embedding using FeatureExtractor
@@ -40,7 +50,7 @@ def compute_features(fe,frames,phashes,phash_thresh=1):
return vals
-def ensure_pil(im, bgr2rgb=False):
+def np2pil(im, swap=True):
"""Ensure image is Pillow format
:param im: image in numpy or PIL.Image format
:returns: image in Pillow RGB format
@@ -49,35 +59,44 @@ def ensure_pil(im, bgr2rgb=False):
im.verify()
return im
except:
- if bgr2rgb:
+ if swap:
im = cv.cvtColor(im,cv.COLOR_BGR2RGB)
return Image.fromarray(im.astype('uint8'), 'RGB')
-def ensure_np(im):
+def pil2np(im, swap=True):
"""Ensure image is Numpy.ndarry format
:param im: image in numpy or PIL.Image format
:returns: image in Numpy uint8 format
"""
if type(im) == np.ndarray:
- return im
- return np.asarray(im, np.uint8)
+ return im
+ im = np.asarray(im, np.uint8)
+ if swap:
+ im = cv.cvtColor(im, cv.COLOR_RGB2BGR)
+ return im
-def resize(im,width=0,height=0):
+def resize(im, width=0, height=0):
"""resize image using imutils. Use w/h=[0 || None] to prioritize other edge size
:param im: a Numpy.ndarray image
:param wh: a tuple of (width, height)
"""
+ # TODO change to cv.resize and add algorithm choices
w = width
h = height
if w is 0 and h is 0:
return im
elif w > 0 and h > 0:
- return imutils.resize(im,width=w,height=h)
+ ws = im.shape[1] / w
+ hs = im.shape[0] / h
+ if ws > hs:
+ return imutils.resize(im, width=w)
+ else:
+ return imutils.resize(im, height=h)
elif w > 0 and h is 0:
- return imutils.resize(im,width=w)
+ return imutils.resize(im, width=w)
elif w is 0 and h > 0:
- return imutils.resize(im,height=h)
+ return imutils.resize(im, height=h)
else:
return im