1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
|
"""
Dataset model: container for all CSVs about a dataset
"""
import os
import sys
from os.path import join
from pathlib import Path
import logging
import pandas as pd
import numpy as np
from app.settings import app_cfg as cfg
from app.settings import types
from app.models.bbox import BBox
from app.utils import file_utils, im_utils
from app.models.data_store import DataStore, DataStoreS3
from app.utils.logger_utils import Logger
# -------------------------------------------------------------------------
# Dataset
# -------------------------------------------------------------------------
class Dataset:
def __init__(self, opt_data_store, opt_dataset_type):
self._dataset_type = opt_dataset_type # enum type
self.log = Logger.getLogger()
self._metadata = {}
self._face_vectors = []
self._nullframe = pd.DataFrame() # empty placeholder
self.data_store = DataStore(opt_data_store, self._dataset_type)
self.data_store_s3 = DataStoreS3(self._dataset_type)
def load_face_vectors(self):
metadata_type = types.Metadata.FACE_VECTOR
fp_csv = self.data_store.metadata(metadata_type)
self.log.info(f'loading: {fp_csv}')
if Path(fp_csv).is_file():
self._metadata[metadata_type] = pd.read_csv(fp_csv).set_index('index')
# convert DataFrame to list of floats
self._face_vectors = self.df_vecs_to_dict(self._metadata[metadata_type])
self._face_vector_roi_idxs = self.df_vec_roi_idxs_to_dict(self._metadata[metadata_type])
self.log.info(f'build face vector dict: {len(self._face_vectors)}')
# remove the face vector column, it can be several GB of memory
self._metadata[metadata_type].drop('vec', axis=1, inplace=True)
else:
self.log.error(f'File not found: {fp_csv}. Exiting.')
sys.exit()
def load_records(self):
metadata_type = types.Metadata.FILE_RECORD
fp_csv = self.data_store.metadata(metadata_type)
self.log.info(f'loading: {fp_csv}')
if Path(fp_csv).is_file():
self._metadata[metadata_type] = pd.read_csv(fp_csv).set_index('index')
else:
self.log.error(f'File not found: {fp_csv}. Exiting.')
sys.exit()
def load_identities(self):
metadata_type = types.Metadata.IDENTITY
fp_csv = self.data_store.metadata(metadata_type)
self.log.info(f'loading: {fp_csv}')
if Path(fp_csv).is_file():
self._metadata[metadata_type] = pd.read_csv(fp_csv).set_index('index')
else:
self.log.error(f'File not found: {fp_csv}. Exiting.')
sys.exit()
def metadata(self, opt_metadata_type):
return self._metadata.get(opt_metadata_type, None)
def index_to_record(self, index):
# get record meta
df_record = self._metadata[types.Metadata.FILE_RECORD]
ds_record = df_record.iloc[index]
identity_index = ds_record.identity_index
# get identity meta
df_identity = self._metadata[types.Metadata.IDENTITY]
# future datasets can have multiple identities per images
ds_identities = df_identity.iloc[identity_index]
# get filepath and S3 url
fp_im = self.data_store.face(ds_record.subdir, ds_record.fn, ds_record.ext)
s3_url = self.data_store_s3.face(ds_record.uuid)
image_record = ImageRecord(ds_record, fp_im, s3_url, ds_identities=ds_identities)
return image_record
def vector_to_record(self, record_index):
'''Accumulates image and its metadata'''
df_face_vector = self._metadata[types.Metadata.FACE_VECTOR]
ds_face_vector = df_face_vector.iloc[vector_index]
# get the match's ROI index
image_index = ds_face_vector.image_index
# get the roi dataframe
df_face_roi = self._metadata[types.Metadata.FACE_ROI]
ds_roi = df_face_roi.iloc[image_index]
# create BBox
dim = (ds_roi.image_width, ds_roi.image_height)
bbox = BBox.from_xywh_dim(ds_roi.x, ds_roi.y, ds_roi.w, ds_roi.y, dim)
# use the ROI index to get identity index from the identity DataFrame
df_sha256 = self._metadata[types.Metadata.SHA256]
ds_sha256 = df_sha256.iloc[image_index]
sha256 = ds_sha256.sha256
# get the local filepath
df_filepath = self._metadata[types.Metadata.FILEPATH]
ds_file = df_filepath.iloc[image_index]
fp_im = self.data_store.face_image(ds_file.subdir, ds_file.fn, ds_file.ext)\
# get remote path
df_uuid = self._metadata[types.Metadata.UUID]
ds_uuid = df_uuid.iloc[image_index]
uuid = ds_uuid.uuid
fp_url = self.data_store_s3.face_image(uuid)
fp_url_crop = self.data_store_s3.face_image_crop(uuid)
image_record = ImageRecord(image_index, sha256, uuid, bbox, fp_im, fp_url)
# now get the identity index (if available)
identity_index = ds_sha256.identity_index
if identity_index > -1:
# then use the identity index to get the identity meta
df_identity = df_filepath = self._metadata[types.Metadata.IDENTITY]
ds_identity = df_identity.iloc[identity_index]
# get the name and description
name = ds_identity.fullname
desc = ds_identity.description
gender = ds_identity.gender
n_images = ds_identity.images
url = '(url)' # TODO
age = '(age)' # TODO
nationality = '(nationality)'
identity = Identity(identity_index, name=name, desc=desc, gender=gender, n_images=n_images,
url=url, age=age, nationality=nationality)
image_record.identity = identity
else:
self.log.info(f'no identity index: {ds_sha256}')
return image_record
def find_matches(self, query_vec, n_results=5, threshold=0.6):
image_records = [] # list of image matches w/identity if available
# find most similar feature vectors indexes
#match_idxs = self.similar(query_vec, n_results, threshold)
sim_scores = np.linalg.norm(np.array([query_vec]) - np.array(self._face_vectors), axis=1)
match_idxs = np.argpartition(sim_scores, n_results)[:n_results]
for match_idx in match_idxs:
# get the corresponding face vector row
roi_index = self._face_vector_roi_idxs[match_idx]
df_record = self._metadata[types.Metadata.FILE_RECORD]
ds_record = df_record.iloc[roi_index]
self.log.debug(f'find match index: {match_idx}, --> roi_index: {roi_index}')
fp_im = self.data_store.face(ds_record.subdir, ds_record.fn, ds_record.ext)
s3_url = self.data_store_s3.face(ds_record.uuid)
image_record = ImageRecord(ds_record, fp_im, s3_url)
#roi_index = self._face_vector_roi_idxs[match_idx]
#image_record = self.roi_idx_to_record(roi_index)
image_records.append(image_record)
return image_records
# ----------------------------------------------------------------------
# utilities
def df_vecs_to_dict(self, df):
# convert the DataFrame CSV to float list of vecs
return [list(map(float,x.vec.split(','))) for x in df.itertuples()]
def df_vec_roi_idxs_to_dict(self, df):
# convert the DataFrame CSV to float list of vecs
#return [x.roi_index for x in df.itertuples()]
return [x.roi_index for x in df.itertuples()]
def similar(self, query_vec, n_results):
'''Finds most similar N indices of query face vector
:query_vec: (list) of 128 floating point numbers of face encoding
:n_results: (int) number of most similar indices to return
:returns (list) of (int) indices
'''
# uses np.linalg based on the ageitgey/face_recognition code
return top_idxs
class ImageRecord:
def __init__(self, ds_record, fp, url, ds_rois=None, ds_identities=None):
# maybe more other meta will go there
self.image_index = ds_record.index
self.sha256 = ds_record.sha256
self.uuid = ds_record.uuid
self.filepath = fp
self.url = url
self._identities = []
# image records contain ROIs
# ROIs are linked to identities
#self._identities = [Identity(x) for x in ds_identities]
@property
def identity(self, index):
return self._identity
def summarize(self):
'''Summarizes data for debugging'''
log = Logger.getLogger()
log.info(f'filepath: {self.filepath}')
log.info(f'sha256: {self.sha256}')
log.info(f'UUID: {self.uuid}')
log.info(f'S3 url: {self.url}')
for identity in self._identities:
log.info(f'fullname: {identity.fullname}')
log.info(f'description: {identity.description}')
log.info(f'gender: {identity.gender}')
log.info(f'images: {identity.n_images}')
class Identity:
def __init__(self, idx, name='NA', desc='NA', gender='NA', n_images=1,
url='NA', age='NA', nationality='NA'):
self.index = idx
self.name = name
self.description = desc
self.gender = gender
self.n_images = n_images
self.url = url
self.age = age
self.nationality = nationality
|