summaryrefslogtreecommitdiff
path: root/megapixels/app/server/api.py
diff options
context:
space:
mode:
Diffstat (limited to 'megapixels/app/server/api.py')
-rw-r--r--megapixels/app/server/api.py152
1 files changed, 152 insertions, 0 deletions
diff --git a/megapixels/app/server/api.py b/megapixels/app/server/api.py
new file mode 100644
index 00000000..35862837
--- /dev/null
+++ b/megapixels/app/server/api.py
@@ -0,0 +1,152 @@
+import os
+import re
+import time
+import dlib
+import numpy as np
+from flask import Blueprint, request, jsonify
+from PIL import Image # todo: try to remove PIL dependency
+
+from app.processors import face_recognition
+from app.processors import face_detector
+from app.processors.faiss import load_faiss_databases
+from app.models.sql_factory import load_sql_datasets, list_datasets, get_dataset, get_table
+from app.utils.im_utils import pil2np
+
+sanitize_re = re.compile('[\W]+')
+valid_exts = ['.gif', '.jpg', '.jpeg', '.png']
+
+LIMIT = 9
+THRESHOLD = 0.3
+
+api = Blueprint('api', __name__)
+
+faiss_datasets = load_faiss_databases()
+
+@api.route('/')
+def index():
+ """List the datasets and their fields"""
+ return jsonify({ 'datasets': list_datasets() })
+
+
+@api.route('/dataset/<dataset_name>')
+def show(dataset_name):
+ """Show the data that a dataset will return"""
+ dataset = get_dataset(dataset_name)
+ if dataset:
+ return jsonify(dataset.describe())
+ else:
+ return jsonify({ 'status': 404 })
+
+
+@api.route('/dataset/<dataset_name>/face', methods=['POST'])
+def upload(dataset_name):
+ """Query an image against FAISS and return the matching identities"""
+ start = time.time()
+ dataset = get_dataset(dataset_name)
+ if dataset_name not in faiss_datasets:
+ return jsonify({
+ 'error': 'invalid dataset'
+ })
+ faiss_dataset = faiss_datasets[dataset_name]
+ file = request.files['query_img']
+ fn = file.filename
+ if fn.endswith('blob'):
+ fn = 'filename.jpg'
+
+ basename, ext = os.path.splitext(fn)
+ # print("got {}, type {}".format(basename, ext))
+ if ext.lower() not in valid_exts:
+ return jsonify({ 'error': 'not an image' })
+
+ im = Image.open(file.stream).convert('RGB')
+ im_np = pil2np(im)
+
+ # Face detection
+ detector = face_detector.DetectorDLIBHOG()
+
+ # get detection as BBox object
+ bboxes = detector.detect(im_np, largest=True)
+ if not bboxes or not len(bboxes):
+ return jsonify({
+ 'error': 'bbox'
+ })
+ bbox = bboxes[0]
+ if not bbox:
+ return jsonify({
+ 'error': 'bbox'
+ })
+
+ dim = im_np.shape[:2][::-1]
+ bbox = bbox.to_dim(dim) # convert back to real dimensions
+ # print("got bbox")
+ if not bbox:
+ return jsonify({
+ 'error': 'bbox'
+ })
+
+ # extract 128-D vector
+ recognition = face_recognition.RecognitionDLIB(gpu=-1)
+ vec = recognition.vec(im_np, bbox)
+ query = np.array([ vec ]).astype('float32')
+
+ # query FAISS
+ distances, indexes = faiss_dataset.search(query, LIMIT)
+
+ if len(indexes) == 0 or len(indexes[0]) == 0:
+ return jsonify({
+ 'error': 'nomatch'
+ })
+
+ # get the results for this single query...
+ distances = distances[0]
+ indexes = indexes[0]
+
+ dists = []
+ ids = []
+ for _d, _i in zip(distances, indexes):
+ if _d <= THRESHOLD:
+ dists.append(round(float(_d), 2))
+ ids.append(_i+1)
+
+ results = [ dataset.get_identity(int(_i)) for _i in ids ]
+
+ # print(distances)
+ # print(ids)
+
+ # 'bbox': str(bboxes[0]),
+ # 'bbox_dim': str(bbox),
+ # print(bboxes[0])
+ # print(bbox)
+
+ query = {
+ 'timing': round(time.time() - start, 3),
+ 'bbox': str(bbox),
+ }
+ # print(results)
+ return jsonify({
+ 'query': query,
+ 'results': results,
+ 'distances': dists,
+ })
+
+
+@api.route('/dataset/<dataset_name>/name', methods=['GET','POST'])
+def name_lookup(dataset_name):
+ """Find a name in the dataset"""
+ start = time.time()
+ dataset = get_dataset(dataset_name)
+
+ q = request.args.get('q')
+ # print(q)
+
+ query = {
+ 'q': q,
+ 'timing': time.time() - start,
+ }
+ results = dataset.search_name(q + '%') if q else None
+
+ # print(results)
+ return jsonify({
+ 'query': query,
+ 'results': results,
+ })