diff options
Diffstat (limited to 'megapixels/app/server/api.py')
| -rw-r--r-- | megapixels/app/server/api.py | 152 |
1 files changed, 152 insertions, 0 deletions
diff --git a/megapixels/app/server/api.py b/megapixels/app/server/api.py new file mode 100644 index 00000000..35862837 --- /dev/null +++ b/megapixels/app/server/api.py @@ -0,0 +1,152 @@ +import os +import re +import time +import dlib +import numpy as np +from flask import Blueprint, request, jsonify +from PIL import Image # todo: try to remove PIL dependency + +from app.processors import face_recognition +from app.processors import face_detector +from app.processors.faiss import load_faiss_databases +from app.models.sql_factory import load_sql_datasets, list_datasets, get_dataset, get_table +from app.utils.im_utils import pil2np + +sanitize_re = re.compile('[\W]+') +valid_exts = ['.gif', '.jpg', '.jpeg', '.png'] + +LIMIT = 9 +THRESHOLD = 0.3 + +api = Blueprint('api', __name__) + +faiss_datasets = load_faiss_databases() + +@api.route('/') +def index(): + """List the datasets and their fields""" + return jsonify({ 'datasets': list_datasets() }) + + +@api.route('/dataset/<dataset_name>') +def show(dataset_name): + """Show the data that a dataset will return""" + dataset = get_dataset(dataset_name) + if dataset: + return jsonify(dataset.describe()) + else: + return jsonify({ 'status': 404 }) + + +@api.route('/dataset/<dataset_name>/face', methods=['POST']) +def upload(dataset_name): + """Query an image against FAISS and return the matching identities""" + start = time.time() + dataset = get_dataset(dataset_name) + if dataset_name not in faiss_datasets: + return jsonify({ + 'error': 'invalid dataset' + }) + faiss_dataset = faiss_datasets[dataset_name] + file = request.files['query_img'] + fn = file.filename + if fn.endswith('blob'): + fn = 'filename.jpg' + + basename, ext = os.path.splitext(fn) + # print("got {}, type {}".format(basename, ext)) + if ext.lower() not in valid_exts: + return jsonify({ 'error': 'not an image' }) + + im = Image.open(file.stream).convert('RGB') + im_np = pil2np(im) + + # Face detection + detector = face_detector.DetectorDLIBHOG() + + # get detection as BBox object + bboxes = detector.detect(im_np, largest=True) + if not bboxes or not len(bboxes): + return jsonify({ + 'error': 'bbox' + }) + bbox = bboxes[0] + if not bbox: + return jsonify({ + 'error': 'bbox' + }) + + dim = im_np.shape[:2][::-1] + bbox = bbox.to_dim(dim) # convert back to real dimensions + # print("got bbox") + if not bbox: + return jsonify({ + 'error': 'bbox' + }) + + # extract 128-D vector + recognition = face_recognition.RecognitionDLIB(gpu=-1) + vec = recognition.vec(im_np, bbox) + query = np.array([ vec ]).astype('float32') + + # query FAISS + distances, indexes = faiss_dataset.search(query, LIMIT) + + if len(indexes) == 0 or len(indexes[0]) == 0: + return jsonify({ + 'error': 'nomatch' + }) + + # get the results for this single query... + distances = distances[0] + indexes = indexes[0] + + dists = [] + ids = [] + for _d, _i in zip(distances, indexes): + if _d <= THRESHOLD: + dists.append(round(float(_d), 2)) + ids.append(_i+1) + + results = [ dataset.get_identity(int(_i)) for _i in ids ] + + # print(distances) + # print(ids) + + # 'bbox': str(bboxes[0]), + # 'bbox_dim': str(bbox), + # print(bboxes[0]) + # print(bbox) + + query = { + 'timing': round(time.time() - start, 3), + 'bbox': str(bbox), + } + # print(results) + return jsonify({ + 'query': query, + 'results': results, + 'distances': dists, + }) + + +@api.route('/dataset/<dataset_name>/name', methods=['GET','POST']) +def name_lookup(dataset_name): + """Find a name in the dataset""" + start = time.time() + dataset = get_dataset(dataset_name) + + q = request.args.get('q') + # print(q) + + query = { + 'q': q, + 'timing': time.time() - start, + } + results = dataset.search_name(q + '%') if q else None + + # print(results) + return jsonify({ + 'query': query, + 'results': results, + }) |
