summaryrefslogtreecommitdiff
path: root/megapixels/app/models/dataset.py
diff options
context:
space:
mode:
authorAdam Harvey <adam@ahprojects.com>2018-12-23 01:37:03 +0100
committerAdam Harvey <adam@ahprojects.com>2018-12-23 01:37:03 +0100
commit4452e02e8b04f3476273574a875bb60cfbb4568b (patch)
tree3ffa44f9621b736250a8b94da14a187dc785c2fe /megapixels/app/models/dataset.py
parent2a65f7a157bd4bace970cef73529867b0e0a374d (diff)
parent5340bee951c18910fd764241945f1f136b5a22b4 (diff)
.
Diffstat (limited to 'megapixels/app/models/dataset.py')
-rw-r--r--megapixels/app/models/dataset.py229
1 files changed, 229 insertions, 0 deletions
diff --git a/megapixels/app/models/dataset.py b/megapixels/app/models/dataset.py
new file mode 100644
index 00000000..eb0109a7
--- /dev/null
+++ b/megapixels/app/models/dataset.py
@@ -0,0 +1,229 @@
+"""
+Dataset model: container for all CSVs about a dataset
+"""
+import os
+import sys
+from os.path import join
+from pathlib import Path
+import logging
+
+import pandas as pd
+import numpy as np
+
+from app.settings import app_cfg as cfg
+from app.settings import types
+from app.models.bbox import BBox
+from app.utils import file_utils, im_utils
+from app.models.data_store import DataStore, DataStoreS3
+from app.utils.logger_utils import Logger
+
+# -------------------------------------------------------------------------
+# Dataset
+# -------------------------------------------------------------------------
+
+class Dataset:
+
+ def __init__(self, opt_data_store, opt_dataset_type):
+ self._dataset_type = opt_dataset_type # enum type
+ self.log = Logger.getLogger()
+ self._metadata = {}
+ self._face_vectors = []
+ self._nullframe = pd.DataFrame() # empty placeholder
+ self.data_store = DataStore(opt_data_store, self._dataset_type)
+ self.data_store_s3 = DataStoreS3(self._dataset_type)
+
+ def load_face_vectors(self):
+ metadata_type = types.Metadata.FACE_VECTOR
+ fp_csv = self.data_store.metadata(metadata_type)
+ self.log.info(f'loading: {fp_csv}')
+ if Path(fp_csv).is_file():
+ self._metadata[metadata_type] = pd.read_csv(fp_csv).set_index('index')
+ # convert DataFrame to list of floats
+ self._face_vectors = self.df_vecs_to_dict(self._metadata[metadata_type])
+ self._face_vector_roi_idxs = self.df_vec_roi_idxs_to_dict(self._metadata[metadata_type])
+ self.log.info(f'build face vector dict: {len(self._face_vectors)}')
+ # remove the face vector column, it can be several GB of memory
+ self._metadata[metadata_type].drop('vec', axis=1, inplace=True)
+ else:
+ self.log.error(f'File not found: {fp_csv}. Exiting.')
+ sys.exit()
+
+ def load_records(self):
+ metadata_type = types.Metadata.FILE_RECORD
+ fp_csv = self.data_store.metadata(metadata_type)
+ self.log.info(f'loading: {fp_csv}')
+ if Path(fp_csv).is_file():
+ self._metadata[metadata_type] = pd.read_csv(fp_csv).set_index('index')
+ else:
+ self.log.error(f'File not found: {fp_csv}. Exiting.')
+ sys.exit()
+
+ def load_identities(self):
+ metadata_type = types.Metadata.IDENTITY
+ fp_csv = self.data_store.metadata(metadata_type)
+ self.log.info(f'loading: {fp_csv}')
+ if Path(fp_csv).is_file():
+ self._metadata[metadata_type] = pd.read_csv(fp_csv).set_index('index')
+ else:
+ self.log.error(f'File not found: {fp_csv}. Exiting.')
+ sys.exit()
+
+ def metadata(self, opt_metadata_type):
+ return self._metadata.get(opt_metadata_type, None)
+
+ def index_to_record(self, index):
+ # get record meta
+ df_record = self._metadata[types.Metadata.FILE_RECORD]
+ ds_record = df_record.iloc[index]
+ identity_index = ds_record.identity_index
+ # get identity meta
+ df_identity = self._metadata[types.Metadata.IDENTITY]
+ # future datasets can have multiple identities per images
+ ds_identities = df_identity.iloc[identity_index]
+ # get filepath and S3 url
+ fp_im = self.data_store.face(ds_record.subdir, ds_record.fn, ds_record.ext)
+ s3_url = self.data_store_s3.face(ds_record.uuid)
+ image_record = ImageRecord(ds_record, fp_im, s3_url, ds_identities=ds_identities)
+ return image_record
+
+ def vector_to_record(self, record_index):
+ '''Accumulates image and its metadata'''
+ df_face_vector = self._metadata[types.Metadata.FACE_VECTOR]
+ ds_face_vector = df_face_vector.iloc[vector_index]
+ # get the match's ROI index
+ image_index = ds_face_vector.image_index
+ # get the roi dataframe
+ df_face_roi = self._metadata[types.Metadata.FACE_ROI]
+ ds_roi = df_face_roi.iloc[image_index]
+ # create BBox
+ dim = (ds_roi.image_width, ds_roi.image_height)
+ bbox = BBox.from_xywh_dim(ds_roi.x, ds_roi.y, ds_roi.w, ds_roi.y, dim)
+ # use the ROI index to get identity index from the identity DataFrame
+ df_sha256 = self._metadata[types.Metadata.SHA256]
+ ds_sha256 = df_sha256.iloc[image_index]
+ sha256 = ds_sha256.sha256
+ # get the local filepath
+ df_filepath = self._metadata[types.Metadata.FILEPATH]
+ ds_file = df_filepath.iloc[image_index]
+ fp_im = self.data_store.face_image(ds_file.subdir, ds_file.fn, ds_file.ext)\
+ # get remote path
+ df_uuid = self._metadata[types.Metadata.UUID]
+ ds_uuid = df_uuid.iloc[image_index]
+ uuid = ds_uuid.uuid
+ fp_url = self.data_store_s3.face_image(uuid)
+ fp_url_crop = self.data_store_s3.face_image_crop(uuid)
+
+ image_record = ImageRecord(image_index, sha256, uuid, bbox, fp_im, fp_url)
+ # now get the identity index (if available)
+ identity_index = ds_sha256.identity_index
+ if identity_index > -1:
+ # then use the identity index to get the identity meta
+ df_identity = df_filepath = self._metadata[types.Metadata.IDENTITY]
+ ds_identity = df_identity.iloc[identity_index]
+ # get the name and description
+ name = ds_identity.fullname
+ desc = ds_identity.description
+ gender = ds_identity.gender
+ n_images = ds_identity.images
+ url = '(url)' # TODO
+ age = '(age)' # TODO
+ nationality = '(nationality)'
+ identity = Identity(identity_index, name=name, desc=desc, gender=gender, n_images=n_images,
+ url=url, age=age, nationality=nationality)
+ image_record.identity = identity
+ else:
+ self.log.info(f'no identity index: {ds_sha256}')
+
+ return image_record
+
+
+ def find_matches(self, query_vec, n_results=5, threshold=0.6):
+ image_records = [] # list of image matches w/identity if available
+ # find most similar feature vectors indexes
+ #match_idxs = self.similar(query_vec, n_results, threshold)
+ sim_scores = np.linalg.norm(np.array([query_vec]) - np.array(self._face_vectors), axis=1)
+ match_idxs = np.argpartition(sim_scores, n_results)[:n_results]
+
+ for match_idx in match_idxs:
+ # get the corresponding face vector row
+ roi_index = self._face_vector_roi_idxs[match_idx]
+ df_record = self._metadata[types.Metadata.FILE_RECORD]
+ ds_record = df_record.iloc[roi_index]
+ self.log.debug(f'find match index: {match_idx}, --> roi_index: {roi_index}')
+ fp_im = self.data_store.face(ds_record.subdir, ds_record.fn, ds_record.ext)
+ s3_url = self.data_store_s3.face(ds_record.uuid)
+ image_record = ImageRecord(ds_record, fp_im, s3_url)
+ #roi_index = self._face_vector_roi_idxs[match_idx]
+ #image_record = self.roi_idx_to_record(roi_index)
+ image_records.append(image_record)
+ return image_records
+
+ # ----------------------------------------------------------------------
+ # utilities
+
+ def df_vecs_to_dict(self, df):
+ # convert the DataFrame CSV to float list of vecs
+ return [list(map(float,x.vec.split(','))) for x in df.itertuples()]
+
+ def df_vec_roi_idxs_to_dict(self, df):
+ # convert the DataFrame CSV to float list of vecs
+ #return [x.roi_index for x in df.itertuples()]
+ return [x.roi_index for x in df.itertuples()]
+
+ def similar(self, query_vec, n_results):
+ '''Finds most similar N indices of query face vector
+ :query_vec: (list) of 128 floating point numbers of face encoding
+ :n_results: (int) number of most similar indices to return
+ :returns (list) of (int) indices
+ '''
+ # uses np.linalg based on the ageitgey/face_recognition code
+
+ return top_idxs
+
+
+
+class ImageRecord:
+
+ def __init__(self, ds_record, fp, url, ds_rois=None, ds_identities=None):
+ # maybe more other meta will go there
+ self.image_index = ds_record.index
+ self.sha256 = ds_record.sha256
+ self.uuid = ds_record.uuid
+ self.filepath = fp
+ self.url = url
+ self._identities = []
+ # image records contain ROIs
+ # ROIs are linked to identities
+
+ #self._identities = [Identity(x) for x in ds_identities]
+
+ @property
+ def identity(self, index):
+ return self._identity
+
+ def summarize(self):
+ '''Summarizes data for debugging'''
+ log = Logger.getLogger()
+ log.info(f'filepath: {self.filepath}')
+ log.info(f'sha256: {self.sha256}')
+ log.info(f'UUID: {self.uuid}')
+ log.info(f'S3 url: {self.url}')
+ for identity in self._identities:
+ log.info(f'fullname: {identity.fullname}')
+ log.info(f'description: {identity.description}')
+ log.info(f'gender: {identity.gender}')
+ log.info(f'images: {identity.n_images}')
+
+
+class Identity:
+
+ def __init__(self, idx, name='NA', desc='NA', gender='NA', n_images=1,
+ url='NA', age='NA', nationality='NA'):
+ self.index = idx
+ self.name = name
+ self.description = desc
+ self.gender = gender
+ self.n_images = n_images
+ self.url = url
+ self.age = age
+ self.nationality = nationality