summaryrefslogtreecommitdiff
path: root/inversion
diff options
context:
space:
mode:
authorJules Laplace <julescarbon@gmail.com>2019-12-15 03:20:35 +0100
committerJules Laplace <julescarbon@gmail.com>2019-12-15 03:20:35 +0100
commit4f88ceb7729bc4d3f06f61b3ccf7c118f57fc13f (patch)
treefefe4396400d949d90621e9276fed39b4aa3e3e3 /inversion
parentad466e9594feb51b0584901b6429fd6fa93a3e24 (diff)
1247
Diffstat (limited to 'inversion')
-rw-r--r--inversion/image_inversion_inception.py26
1 files changed, 13 insertions, 13 deletions
diff --git a/inversion/image_inversion_inception.py b/inversion/image_inversion_inception.py
index a97bf0f..b220a55 100644
--- a/inversion/image_inversion_inception.py
+++ b/inversion/image_inversion_inception.py
@@ -254,32 +254,32 @@ if params.features:
gen_feat = gen_feat_ex["InceptionV3/Conv2d_1a_3x3"]
target_feat = target_feat_ex["InceptionV3/Conv2d_1a_3x3"]
feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1])
- feat_loss = tf.reduce_mean(feat_square_diff) * 0.2
- img_feat_err = tf.reduce_mean(feat_square_diff, axis=1) * 0.2
+ feat_loss = tf.reduce_mean(feat_square_diff) * 0.25
+ img_feat_err = tf.reduce_mean(feat_square_diff, axis=1) * 0.25
gen_feat = gen_feat_ex["InceptionV3/Conv2d_2a_3x3"]
target_feat = target_feat_ex["InceptionV3/Conv2d_2a_3x3"]
feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1])
- feat_loss += tf.reduce_mean(feat_square_diff) * 0.2
- img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) * 0.2
+ feat_loss += tf.reduce_mean(feat_square_diff) * 0.25
+ img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) * 0.25
- gen_feat = gen_feat_ex["InceptionV3/Conv2d_3b_1x1"]
- target_feat = target_feat_ex["InceptionV3/Conv2d_3b_1x1"]
- feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1])
- feat_loss += tf.reduce_mean(feat_square_diff) * 0.2
- img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) * 0.2
+ # gen_feat = gen_feat_ex["InceptionV3/Conv2d_3b_1x1"]
+ # target_feat = target_feat_ex["InceptionV3/Conv2d_3b_1x1"]
+ # feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1])
+ # feat_loss += tf.reduce_mean(feat_square_diff) * 0.2
+ # img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) * 0.2
gen_feat = gen_feat_ex["InceptionV3/Conv2d_4a_3x3"]
target_feat = target_feat_ex["InceptionV3/Conv2d_4a_3x3"]
feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1])
- feat_loss += tf.reduce_mean(feat_square_diff) * 0.2
- img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) * 0.2
+ feat_loss += tf.reduce_mean(feat_square_diff) * 0.25
+ img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) * 0.25
gen_feat = gen_feat_ex["InceptionV3/Mixed_7a"]
target_feat = target_feat_ex["InceptionV3/Mixed_7a"]
feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1])
- feat_loss += tf.reduce_mean(feat_square_diff) * 0.2
- img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) * 0.2
+ feat_loss += tf.reduce_mean(feat_square_diff) * 0.25
+ img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) * 0.25
else:
feat_loss = tf.constant(0.0)