summaryrefslogtreecommitdiff
path: root/inversion
diff options
context:
space:
mode:
authorJules Laplace <julescarbon@gmail.com>2019-12-15 02:17:03 +0100
committerJules Laplace <julescarbon@gmail.com>2019-12-15 02:17:03 +0100
commitad466e9594feb51b0584901b6429fd6fa93a3e24 (patch)
tree25e71006fc7790d470635724b9711de4a615e455 /inversion
parent92ddbd73d20e3292de517bbfaaf66078c4d47314 (diff)
try 12347
Diffstat (limited to 'inversion')
-rw-r--r--inversion/image_inversion_inception.py22
1 files changed, 14 insertions, 8 deletions
diff --git a/inversion/image_inversion_inception.py b/inversion/image_inversion_inception.py
index 570c1ac..a97bf0f 100644
--- a/inversion/image_inversion_inception.py
+++ b/inversion/image_inversion_inception.py
@@ -254,26 +254,32 @@ if params.features:
gen_feat = gen_feat_ex["InceptionV3/Conv2d_1a_3x3"]
target_feat = target_feat_ex["InceptionV3/Conv2d_1a_3x3"]
feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1])
- feat_loss = tf.reduce_mean(feat_square_diff) * 0.25
- img_feat_err = tf.reduce_mean(feat_square_diff, axis=1) * 0.25
+ feat_loss = tf.reduce_mean(feat_square_diff) * 0.2
+ img_feat_err = tf.reduce_mean(feat_square_diff, axis=1) * 0.2
gen_feat = gen_feat_ex["InceptionV3/Conv2d_2a_3x3"]
target_feat = target_feat_ex["InceptionV3/Conv2d_2a_3x3"]
feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1])
- feat_loss += tf.reduce_mean(feat_square_diff) * 0.25
- img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) * 0.25
+ feat_loss += tf.reduce_mean(feat_square_diff) * 0.2
+ img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) * 0.2
gen_feat = gen_feat_ex["InceptionV3/Conv2d_3b_1x1"]
target_feat = target_feat_ex["InceptionV3/Conv2d_3b_1x1"]
feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1])
- feat_loss += tf.reduce_mean(feat_square_diff) * 0.25
- img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) * 0.25
+ feat_loss += tf.reduce_mean(feat_square_diff) * 0.2
+ img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) * 0.2
gen_feat = gen_feat_ex["InceptionV3/Conv2d_4a_3x3"]
target_feat = target_feat_ex["InceptionV3/Conv2d_4a_3x3"]
feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1])
- feat_loss += tf.reduce_mean(feat_square_diff) * 0.25
- img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) * 0.25
+ feat_loss += tf.reduce_mean(feat_square_diff) * 0.2
+ img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) * 0.2
+
+ gen_feat = gen_feat_ex["InceptionV3/Mixed_7a"]
+ target_feat = target_feat_ex["InceptionV3/Mixed_7a"]
+ feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1])
+ feat_loss += tf.reduce_mean(feat_square_diff) * 0.2
+ img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) * 0.2
else:
feat_loss = tf.constant(0.0)