diff options
| author | Jules Laplace <julescarbon@gmail.com> | 2019-12-15 03:20:35 +0100 |
|---|---|---|
| committer | Jules Laplace <julescarbon@gmail.com> | 2019-12-15 03:20:35 +0100 |
| commit | 4f88ceb7729bc4d3f06f61b3ccf7c118f57fc13f (patch) | |
| tree | fefe4396400d949d90621e9276fed39b4aa3e3e3 | |
| parent | ad466e9594feb51b0584901b6429fd6fa93a3e24 (diff) | |
1247
| -rw-r--r-- | inversion/image_inversion_inception.py | 26 |
1 files changed, 13 insertions, 13 deletions
diff --git a/inversion/image_inversion_inception.py b/inversion/image_inversion_inception.py index a97bf0f..b220a55 100644 --- a/inversion/image_inversion_inception.py +++ b/inversion/image_inversion_inception.py @@ -254,32 +254,32 @@ if params.features: gen_feat = gen_feat_ex["InceptionV3/Conv2d_1a_3x3"] target_feat = target_feat_ex["InceptionV3/Conv2d_1a_3x3"] feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1]) - feat_loss = tf.reduce_mean(feat_square_diff) * 0.2 - img_feat_err = tf.reduce_mean(feat_square_diff, axis=1) * 0.2 + feat_loss = tf.reduce_mean(feat_square_diff) * 0.25 + img_feat_err = tf.reduce_mean(feat_square_diff, axis=1) * 0.25 gen_feat = gen_feat_ex["InceptionV3/Conv2d_2a_3x3"] target_feat = target_feat_ex["InceptionV3/Conv2d_2a_3x3"] feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1]) - feat_loss += tf.reduce_mean(feat_square_diff) * 0.2 - img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) * 0.2 + feat_loss += tf.reduce_mean(feat_square_diff) * 0.25 + img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) * 0.25 - gen_feat = gen_feat_ex["InceptionV3/Conv2d_3b_1x1"] - target_feat = target_feat_ex["InceptionV3/Conv2d_3b_1x1"] - feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1]) - feat_loss += tf.reduce_mean(feat_square_diff) * 0.2 - img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) * 0.2 + # gen_feat = gen_feat_ex["InceptionV3/Conv2d_3b_1x1"] + # target_feat = target_feat_ex["InceptionV3/Conv2d_3b_1x1"] + # feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1]) + # feat_loss += tf.reduce_mean(feat_square_diff) * 0.2 + # img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) * 0.2 gen_feat = gen_feat_ex["InceptionV3/Conv2d_4a_3x3"] target_feat = target_feat_ex["InceptionV3/Conv2d_4a_3x3"] feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1]) - feat_loss += tf.reduce_mean(feat_square_diff) * 0.2 - img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) * 0.2 + feat_loss += tf.reduce_mean(feat_square_diff) * 0.25 + img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) * 0.25 gen_feat = gen_feat_ex["InceptionV3/Mixed_7a"] target_feat = target_feat_ex["InceptionV3/Mixed_7a"] feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1]) - feat_loss += tf.reduce_mean(feat_square_diff) * 0.2 - img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) * 0.2 + feat_loss += tf.reduce_mean(feat_square_diff) * 0.25 + img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) * 0.25 else: feat_loss = tf.constant(0.0) |
