summaryrefslogtreecommitdiff
path: root/inversion/image_inversion_inception.py
diff options
context:
space:
mode:
authorJules Laplace <julescarbon@gmail.com>2019-12-12 15:54:58 +0100
committerJules Laplace <julescarbon@gmail.com>2019-12-12 15:54:58 +0100
commit49f139e6c75d93c86f093eaa9314db3edc7d6c28 (patch)
tree09e7b28836a3ea8197702a0a3feea5cea74c1b20 /inversion/image_inversion_inception.py
parent2eb43a487db9c6f7eee6db1fee0e61075a7c27ac (diff)
three mixed layers
Diffstat (limited to 'inversion/image_inversion_inception.py')
-rw-r--r--inversion/image_inversion_inception.py34
1 files changed, 17 insertions, 17 deletions
diff --git a/inversion/image_inversion_inception.py b/inversion/image_inversion_inception.py
index 7cadfe6..c4eb5b5 100644
--- a/inversion/image_inversion_inception.py
+++ b/inversion/image_inversion_inception.py
@@ -223,14 +223,14 @@ if params.features:
gen_feat = gen_feat_ex["InceptionV3/Mixed_7a"]
target_feat = target_feat_ex["InceptionV3/Mixed_7a"]
feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1])
- feat_loss = tf.reduce_mean(feat_square_diff) * 0.5
- img_feat_err = tf.reduce_mean(feat_square_diff, axis=1) * 0.5
+ feat_loss = tf.reduce_mean(feat_square_diff) * 0.34
+ img_feat_err = tf.reduce_mean(feat_square_diff, axis=1) * 0.34
- gen_feat = gen_feat_ex["InceptionV3/Mixed_6a"]
- target_feat = target_feat_ex["InceptionV3/Mixed_6a"]
- feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1])
- feat_loss += tf.reduce_mean(feat_square_diff) * 0.5
- img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) * 0.5
+ # gen_feat = gen_feat_ex["InceptionV3/Mixed_6a"]
+ # target_feat = target_feat_ex["InceptionV3/Mixed_6a"]
+ # feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1])
+ # feat_loss += tf.reduce_mean(feat_square_diff) * 0.5
+ # img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) * 0.5
# gen_feat = gen_feat_ex["InceptionV3/Mixed_5a"]
# target_feat = target_feat_ex["InceptionV3/Mixed_5a"]
@@ -238,17 +238,17 @@ if params.features:
# feat_loss += tf.reduce_mean(feat_square_diff)
# img_feat_err += tf.reduce_mean(feat_square_diff, axis=1)
- # gen_feat = gen_feat_ex["InceptionV3/Mixed_7b"]
- # target_feat = target_feat_ex["InceptionV3/Mixed_7b"]
- # feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1])
- # feat_loss += tf.reduce_mean(feat_square_diff)
- # img_feat_err += tf.reduce_mean(feat_square_diff, axis=1)
+ gen_feat = gen_feat_ex["InceptionV3/Mixed_7b"]
+ target_feat = target_feat_ex["InceptionV3/Mixed_7b"]
+ feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1])
+ feat_loss += tf.reduce_mean(feat_square_diff) * 0.33
+ img_feat_err += tf.reduce_mean(feat_square_diff, axis=1)
- # gen_feat = gen_feat_ex["InceptionV3/Mixed_7c"]
- # target_feat = target_feat_ex["InceptionV3/Mixed_7c"]
- # feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1])
- # feat_loss += tf.reduce_mean(feat_square_diff)
- # img_feat_err += tf.reduce_mean(feat_square_diff, axis=1)
+ gen_feat = gen_feat_ex["InceptionV3/Mixed_7c"]
+ target_feat = target_feat_ex["InceptionV3/Mixed_7c"]
+ feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1])
+ feat_loss += tf.reduce_mean(feat_square_diff) * 0.33
+ img_feat_err += tf.reduce_mean(feat_square_diff, axis=1)
else:
feat_loss = tf.constant(0.0)