1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
|
# ------------------------------------------------------------------------------
# Implementation of the inverse of Generator by Gradient descent w.r.t.
# generator's inputs, for many intermediate layers.
# ------------------------------------------------------------------------------
import glob
import h5py
import itertools
import numpy as np
import os
import params
import PIL
import scipy
import sys
import tensorflow as tf
import tensorflow_probability as tfp
import tensorflow_hub as hub
import time
import visualize as vs
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
# --------------------------
# Hyper-parameters.
# --------------------------
# Expected parameters:
# generator_path: path to generator module.
# generator_fixed_inputs: dictionary of fixed generator's input parameters.
# dataset: name of the dataset (hdf5 file).
# dataset_out: name for the output inverted dataset (hdf5 file).
# General parameters:
# batch_size: number of images inverted at the same time.
# inv_it: number of iterations to invert an image.
# inv_layer: 'latent' or name of the tensor of the custom layer to be inverted.
# lr: learning rate.
# decay_lr: exponential decay on the learning rate.
# decay_n: number of exponential decays on the learning rate.
# custom_grad_relu: replace relus with custom gradient.
# Logging:
# sample_size: number of images included in sampled images.
# save_progress: whether to save intermediate images during optimization.
# log_z_norm: log the norm of different sections of z.
# log_activation_layer: log the percentage of active neurons in this layer.
# Losses:
# mse: use the mean squared error on pixels for image comparison.
# features: use features extracted by a feature extractor for image comparison.
# feature_extractor_path: path to feature extractor module.
# feature_extractor_output: output name from feature extractor.
# likeli_loss: regularization loss on the log likelihood of encodings.
# norm_loss: regularization loss on the norm of encodings.
# dist_loss: whether to include a loss on the dist between g1(z) and enc.
# lambda_mse: coefficient for mse loss.
# lambda_feat: coefficient for features loss.
# lambda_reg: coefficient for regularization loss on latent.
# lambda_dist: coefficient for l1 regularization on delta.
# Latent:
# clipping: whether to clip encoding values after every update.
# stochastic_clipping: whether to consider stochastic clipping.
# clip: clipping bound.
# pretrained_latent: load pre trained fixed latent.
# fixed_z: do not train the latent vector.
# Initialization:
# init_gen_dist: initialize encodings from the generated distribution.
# init_lo: init min value.
# init_hi: init max value.
if len(sys.argv) < 2:
sys.exit('Must provide a configuration file.')
params = params.Params(sys.argv[1])
# --------------------------
# Global directories.
# --------------------------
LATENT_TAG = 'latent' if params.inv_layer == 'latent' else 'dense'
BATCH_SIZE = params.batch_size
SAMPLE_SIZE = params.sample_size
LOGS_DIR = os.path.join('inverses', params.tag, LATENT_TAG, 'logs')
SAMPLES_DIR = os.path.join('inverses', params.tag, LATENT_TAG, 'samples')
INVERSES_DIR = os.path.join('inverses', params.tag)
if not os.path.exists(LOGS_DIR):
os.makedirs(LOGS_DIR)
if not os.path.exists(SAMPLES_DIR):
os.makedirs(SAMPLES_DIR)
if not os.path.exists(INVERSES_DIR):
os.makedirs(INVERSES_DIR)
# --------------------------
# Util functions.
# --------------------------
# One hot encoding for classes.
def one_hot(values):
return np.eye(N_CLASS)[values]
# --------------------------
# Logging.
# --------------------------
summary_writer = tf.summary.FileWriter(LOGS_DIR)
def log_stats(name, val, it):
summary = tf.Summary(value=[tf.Summary.Value(tag=name, simple_value=val)])
summary_writer.add_summary(summary, it)
# --------------------------
# Load Graph.
# --------------------------
generator = hub.Module(str(params.generator_path))
gen_signature = 'generator'
if 'generator' not in generator.get_signature_names():
gen_signature = 'default'
input_info = generator.get_input_info_dict(gen_signature)
COND_GAN = 'y' in input_info
if COND_GAN:
Z_DIM = input_info['z'].get_shape().as_list()[1]
latent = tf.get_variable(name='latent', dtype=tf.float32,
shape=[BATCH_SIZE, Z_DIM])
N_CLASS = input_info['y'].get_shape().as_list()[1]
label = tf.get_variable(name='label', dtype=tf.float32,
shape=[BATCH_SIZE, N_CLASS])
gen_in = dict(params.generator_fixed_inputs)
gen_in['z'] = latent
gen_in['y'] = label
gen_img = generator(gen_in, signature=gen_signature)
else:
Z_DIM = input_info['default'].get_shape().as_list()[1]
latent = tf.get_variable(name='latent', dtype=tf.float32,
shape=[BATCH_SIZE, Z_DIM])
if (params.generator_fixed_inputs):
gen_in = dict(params.generator_fixed_inputs)
gen_in['z'] = latent
gen_img = generator(gen_in, signature=gen_signature)
else:
gen_img = generator(latent, signature=gen_signature)
# Convert generated image to channels_first.
gen_img = tf.transpose(gen_img, [0, 3, 1, 2])
# Override intermediate layer.
if params.inv_layer == 'latent':
encoding = latent
ENC_SHAPE = [Z_DIM]
else:
layer_name = 'module_apply_' + gen_signature + '/' + params.inv_layer
gen_encoding = tf.get_default_graph().get_tensor_by_name(layer_name)
ENC_SHAPE = gen_encoding.get_shape().as_list()[1:]
encoding = tf.get_variable(name='encoding', dtype=tf.float32,
shape=[BATCH_SIZE,] + ENC_SHAPE)
tf.contrib.graph_editor.swap_ts(gen_encoding, tf.convert_to_tensor(encoding))
# Step counter.
inv_step = tf.get_variable('inv_step', initializer=0, trainable=False)
# Define target image.
IMG_SHAPE = gen_img.get_shape().as_list()[1:]
target = tf.get_variable(name='target', dtype=tf.float32, # normally this is the real [0-255]image
shape=[BATCH_SIZE,] + IMG_SHAPE)
# target_img = (tf.cast(target, tf.float32) / 255.) * 2.0 - 1. # Norm to [-1, 1].
target_img = target
# Custom Gradient for Relus.
if params.custom_grad_relu:
grad_lambda = tf.train.exponential_decay(0.1, inv_step, params.inv_it / 5,
0.1, staircase=False)
@tf.custom_gradient
def relu_custom_grad(x):
def grad(dy):
return tf.where(x >= 0, dy,
grad_lambda*tf.where(dy < 0, dy, tf.zeros_like(dy)))
return tf.nn.relu(x), grad
gen_scope = 'module_apply_' + gen_signature + '/'
for op in tf.get_default_graph().get_operations():
if 'Relu' in op.name and gen_scope in op.name:
assert len(op.inputs) == 1
assert len(op.outputs) == 1
new_out = relu_custom_grad(op.inputs[0])
tf.contrib.graph_editor.swap_ts(op.outputs[0], new_out)
# Operations to clip the values of the encodings.
if params.clipping or params.stochastic_clipping:
assert params.clip >= 0
if params.stochastic_clipping:
new_enc = tf.where(tf.abs(latent) >= params.clip,
tf.random.uniform([BATCH_SIZE, Z_DIM], minval=-params.clip,
maxval=params.clip), latent)
else:
new_enc = tf.clip_by_value(latent, -params.clip, params.clip)
clip_latent = tf.assign(latent, new_enc)
# Monitor relu's activation.
if params.log_activation_layer:
gen_scope = 'module_apply_' + gen_signature + '/'
activation_rate = 1.0 - tf.nn.zero_fraction(tf.get_default_graph()\
.get_tensor_by_name(gen_scope + params.log_activation_layer))
# --------------------------
# Reconstruction losses.
# --------------------------
# Mse loss for image comparison.
if params.mse:
pix_square_diff = tf.square((target_img - gen_img) / 2.0)
mse_loss = tf.reduce_mean(pix_square_diff)
img_mse_err = tf.reduce_mean(pix_square_diff, axis=[1,2,3])
else:
mse_loss = tf.constant(0.0)
img_mse_err = tf.constant(0.0)
# Use custom features for image comparison.
if params.features:
feature_extractor = hub.Module(str(params.feature_extractor_path))
# Convert images from range [-1, 1] channels_first to [0, 1] channels_last.
gen_img_1 = tf.transpose(gen_img / 2.0 + 0.5, [0, 2, 3, 1])
target_img_1 = tf.transpose(target_img / 2.0 + 0.5, [0, 2, 3, 1])
# Convert images to appropriate size for feature extraction.
height, width = hub.get_expected_image_size(feature_extractor)
gen_img_1 = tf.image.resize_images(gen_img_1, [height, width])
target_img_1 = tf.image.resize_images(target_img_1, [height, width])
gen_feat_ex = feature_extractor(dict(images=gen_img_1), as_dict=True, signature='image_feature_vector')
target_feat_ex = feature_extractor(dict(images=target_img_1), as_dict=True, signature='image_feature_vector')
gen_feat = gen_feat_ex["InceptionV3/Mixed_7a"]
target_feat = target_feat_ex["InceptionV3/Mixed_7a"]
feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1])
feat_loss = tf.reduce_mean(feat_square_diff) * 0.5
img_feat_err = tf.reduce_mean(feat_square_diff, axis=1) * 0.5
gen_feat = gen_feat_ex["InceptionV3/Mixed_6a"]
target_feat = target_feat_ex["InceptionV3/Mixed_6a"]
feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1])
feat_loss += tf.reduce_mean(feat_square_diff) * 0.5
img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) * 0.5
# gen_feat = gen_feat_ex["InceptionV3/Mixed_5a"]
# target_feat = target_feat_ex["InceptionV3/Mixed_5a"]
# feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1])
# feat_loss += tf.reduce_mean(feat_square_diff)
# img_feat_err += tf.reduce_mean(feat_square_diff, axis=1)
# gen_feat = gen_feat_ex["InceptionV3/Mixed_7b"]
# target_feat = target_feat_ex["InceptionV3/Mixed_7b"]
# feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1])
# feat_loss += tf.reduce_mean(feat_square_diff)
# img_feat_err += tf.reduce_mean(feat_square_diff, axis=1)
# gen_feat = gen_feat_ex["InceptionV3/Mixed_7c"]
# target_feat = target_feat_ex["InceptionV3/Mixed_7c"]
# feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1])
# feat_loss += tf.reduce_mean(feat_square_diff)
# img_feat_err += tf.reduce_mean(feat_square_diff, axis=1)
else:
feat_loss = tf.constant(0.0)
img_feat_err = tf.constant(0.0)
# --------------------------
# Regularization losses.
# --------------------------
# Loss on the norm of the encoding.
if params.norm_loss:
dim = 20
chi2_dist = tfp.distributions.Chi2(dim)
mode = dim - 2
mode_log_prob = chi2_dist.log_prob(mode)
norm_loss = 0.0
for i in range(int(Z_DIM / dim)):
squared_l2 = tf.reduce_sum(tf.square(latent[:,i*dim:(i+1)*dim]), axis=1)
over_mode = tf.nn.relu(squared_l2 - mode)
norm_loss -= tf.reduce_mean(chi2_dist.log_prob(mode + over_mode))
norm_loss += mode_log_prob
else:
norm_loss = tf.constant(0.0)
# Loss on the likelihood of the encoding.
if params.likeli_loss:
norm_dist = tfp.distributions.Normal(0.0, 1.0)
likeli_loss = - tf.reduce_mean(norm_dist.log_prob(latent))
mode_log_prob = norm_dist.log_prob(0.0)
likeli_loss += mode_log_prob
else:
likeli_loss = tf.constant(0.0)
# Regularization loss.
reg_loss = norm_loss + likeli_loss
# Loss on the l1 distance between gen_encoding and inverted encoding.
if params.dist_loss:
dist_loss = tf.reduce_mean(tf.abs(encoding - gen_encoding))
else:
dist_loss = tf.constant(0.0)
# Per image reconstruction error.
img_rec_err = params.lambda_mse * img_mse_err\
+ params.lambda_feat * img_feat_err
# Batch reconstruction error.
rec_loss = params.lambda_mse * mse_loss + params.lambda_feat * feat_loss
# Total inversion loss.
inv_loss = rec_loss + params.lambda_reg * reg_loss\
+ params.lambda_dist * dist_loss
# --------------------------
# Optimizer.
# --------------------------
if params.decay_lr:
lrate = tf.train.exponential_decay(params.lr, inv_step,
params.inv_it / params.decay_n, 0.1, staircase=True)
else:
lrate = tf.constant(params.lr)
trained_params = [encoding] if params.fixed_z else [latent, encoding]
optimizer = tf.train.AdamOptimizer(learning_rate=lrate, beta1=0.9, beta2=0.999)
inv_train_op = optimizer.minimize(inv_loss, var_list=trained_params,
global_step=inv_step)
reinit_optimizer = tf.variables_initializer(optimizer.variables())
# --------------------------
# Noise source.
# --------------------------
def noise_sampler():
return np.random.normal(size=[BATCH_SIZE, Z_DIM])
def small_init(shape=[BATCH_SIZE, Z_DIM]):
return np.random.uniform(low=params.init_lo, high=params.init_hi, size=shape)
# --------------------------
# Dataset.
# --------------------------
if params.dataset.endswith('.hdf5'):
in_file = h5py.File(params.dataset, 'r')
sample_images = in_file['xtrain'][()]
if COND_GAN:
sample_labels = in_file['ytrain'][()]
sample_fns = in_file['fn'][()]
NUM_IMGS = sample_images.shape[0] # number of images to be inverted.
print("Number of images: {}".format(NUM_IMGS))
print("Batch size: {}".format(BATCH_SIZE))
def sample_images_gen():
for i in range(int(NUM_IMGS / BATCH_SIZE)):
i_1, i_2 = i*BATCH_SIZE, (i+1)*BATCH_SIZE
if COND_GAN:
yield sample_images[i_1:i_2], sample_labels[i_1:i_2]
else:
yield sample_images[i_1:i_2], np.zeros(BATCH_SIZE)
image_gen = sample_images_gen()
if 'latent' in in_file:
sample_latents = in_file['latent']
def sample_latent_gen():
for i in range(int(NUM_IMGS / BATCH_SIZE)):
i_1, i_2 = i*BATCH_SIZE, (i+1)*BATCH_SIZE
yield sample_latents[i_1:i_2]
latent_gen = sample_latent_gen()
if NUM_IMGS % BATCH_SIZE != 0:
REMAINDER = BATCH_SIZE - (NUM_IMGS % BATCH_SIZE)
NUM_IMGS += REMAINDER
sample_images = np.append(sample_images, sample_images[-REMAINDER:,...], axis=0)
sample_labels = np.append(sample_labels, sample_labels[-REMAINDER:,...], axis=0)
sample_fns = np.append(sample_fns, sample_fns[-REMAINDER:], axis=0)
assert(NUM_IMGS % BATCH_SIZE == 0)
else:
sys.exit('Unknown dataset {}.'.format(params.dataset))
# --------------------------
# Training.
# --------------------------
# Start session.
sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
sess.run(tf.global_variables_initializer())
sess.run(tf.tables_initializer())
if params.max_batches > 0:
NUM_IMGS_TO_PROCESS = params.max_batches * BATCH_SIZE
else:
NUM_IMGS_TO_PROCESS = NUM_IMGS
# Output file.
out_file = h5py.File(os.path.join(INVERSES_DIR, params.out_dataset), 'w')
out_images = out_file.create_dataset('xtrain', [NUM_IMGS_TO_PROCESS,] + IMG_SHAPE, dtype='float32')
out_enc = out_file.create_dataset('encoding', [NUM_IMGS_TO_PROCESS,] + ENC_SHAPE, dtype='float32')
out_lat = out_file.create_dataset('latent', [NUM_IMGS_TO_PROCESS, Z_DIM], dtype='float32')
out_fns = out_file.create_dataset('fn', [NUM_IMGS_TO_PROCESS], dtype=h5py.string_dtype())
if COND_GAN:
out_labels = out_file.create_dataset('ytrain', (NUM_IMGS_TO_PROCESS, N_CLASS,), dtype='float32')
out_err = out_file.create_dataset('err', (NUM_IMGS_TO_PROCESS,))
out_fns[:] = sample_fns[:NUM_IMGS_TO_PROCESS]
# Gradient descent w.r.t. generator's inputs.
it = 0
out_pos = 0
start_time = time.time()
for image_batch, label_batch in image_gen:
# Save target.
sess.run(target.assign(image_batch))
if COND_GAN:
sess.run(label.assign(label_batch))
# Initialize encodings to random values.
if params.pre_trained_latent:
sess.run(latent.assign(next(latent_gen)))
if params.inv_layer != 'latent':
sess.run(encoding.assign(gen_encoding))
else:
if params.init_gen_dist:
sess.run(latent.assign(noise_sampler()))
if params.inv_layer != 'latent':
sess.run(encoding.assign(gen_encoding))
else:
sess.run(latent.assign(small_init()))
if params.inv_layer != 'latent':
sess.run(encoding.assign(small_init(shape=[BATCH_SIZE,] + ENC_SHAPE)))
# Init optimizer.
sess.run(inv_step.assign(0))
sess.run(reinit_optimizer)
# Main optimization loop.
print("Total iterations: {}".format(params.inv_it))
for _ in range(params.inv_it):
_inv_loss, _mse_loss, _feat_loss, _rec_loss, _reg_loss, _dist_loss,\
_lrate, _ = sess.run([inv_loss, mse_loss, feat_loss,
rec_loss, reg_loss, dist_loss, lrate, inv_train_op])
if params.clipping or params.stochastic_clipping:
sess.run(clip_latent)
# Save logs with training information.
if it % 500 == 0:
# Log losses.
etime = time.time() - start_time
print('It [{:8d}] time [{:5.1f}] total [{:.4f}] mse [{:.4f}] '
'feat [{:.4f}] rec [{:.4f}] reg [{:.4f}] dist [{:.4f}] '
'lr [{:.4f}]'.format(it, etime, _inv_loss, _mse_loss,
_feat_loss, _rec_loss, _reg_loss, _dist_loss, _lrate))
if params.log_z_norm:
_lat = sess.run(latent)
dim = 20 if Z_DIM == 120 else Z_DIM
for i in range(int(Z_DIM/dim)):
_subset = _lat[:,i*dim:(i+1)*dim]
print('section {:1d}: norm={:.4f} (exp={:.4f}) min={:.4f} max={:.4f}'\
.format(i, np.mean(np.linalg.norm(_subset, axis=1)),
np.sqrt(dim-2), np.min(_subset), np.max(_subset)))
if params.log_activation_layer:
_act_rate = sess.run(activation_rate)
print('activation_rate={:.4f}'.format(_act_rate))
log_stats('activation rate', _act_rate, it)
sys.stdout.flush()
# Log tensorboard's statistics.
log_stats('total loss', _inv_loss, it)
log_stats('mse loss', _mse_loss, it)
log_stats('feat loss', _feat_loss, it)
log_stats('rec loss', _rec_loss, it)
log_stats('reg loss', _reg_loss, it)
log_stats('dist loss', _dist_loss, it)
log_stats('out pos', out_pos, it)
log_stats('lrate', _lrate, it)
summary_writer.flush()
# Save target images and reconstructions.
if params.save_progress:
assert SAMPLE_SIZE <= BATCH_SIZE
gen_images = sess.run(gen_img)
inv_batch = vs.interleave(vs.data2img(image_batch[BATCH_SIZE - SAMPLE_SIZE:]),
vs.data2img(gen_images[BATCH_SIZE - SAMPLE_SIZE:]))
inv_batch = vs.grid_transform(inv_batch)
vs.save_image('{}/progress_{}_{}.png'.format(SAMPLES_DIR, params.tag, it), inv_batch)
# It counter.
it += 1
if params.save_progress:
# Save linear interpolation between the actual and generated encodings.
if params.dist_loss:
enc_batch, gen_enc = sess.run([encoding, gen_encoding])
for j in range(10):
custom_enc = gen_enc * (1-(j/10.0)) + enc_batch * (j/10.0)
sess.run(encoding.assign(custom_enc))
gen_images = sess.run(gen_img)
inv_batch = vs.interleave(vs.data2img(image_batch[BATCH_SIZE - SAMPLE_SIZE:]),
vs.data2img(gen_images[BATCH_SIZE - SAMPLE_SIZE:]))
inv_batch = vs.grid_transform(inv_batch)
vs.save_image('{}/progress_{}_{}_lat_{}.png'.format(SAMPLES_DIR,params.tag,it,j),
inv_batch)
sess.run(encoding.assign(enc_batch))
# Save samples of inverted images.
if SAMPLE_SIZE > 0:
assert SAMPLE_SIZE <= BATCH_SIZE
gen_images = sess.run(gen_img)
inv_batch = vs.interleave(vs.data2img(image_batch[BATCH_SIZE - SAMPLE_SIZE:]),
vs.data2img(gen_images[BATCH_SIZE - SAMPLE_SIZE:]))
inv_batch = vs.grid_transform(inv_batch)
vs.save_image('{}/{}_{}.png'.format(SAMPLES_DIR, params.tag, out_pos), inv_batch)
print('Saved samples for out_pos: {}.'.format(out_pos))
# Save images that are ready.
latent_batch, enc_batch, rec_err_batch =\
sess.run([latent, encoding, img_rec_err])
out_lat[out_pos:out_pos+BATCH_SIZE] = latent_batch
out_enc[out_pos:out_pos+BATCH_SIZE] = enc_batch
out_images[out_pos:out_pos+BATCH_SIZE] = image_batch
if COND_GAN:
out_labels[out_pos:out_pos+BATCH_SIZE] = label_batch
out_err[out_pos:out_pos+BATCH_SIZE] = rec_err_batch
out_pos += BATCH_SIZE
if params.max_batches > 0 and (out_pos / BATCH_SIZE) >= params.max_batches:
break
print('Mean reconstruction error: {}'.format(np.mean(out_err)))
print('Stdev reconstruction error: {}'.format(np.std(out_err)))
print('End of inversion.')
out_file.close()
sess.close()
|