diff options
| author | Jules Laplace <julescarbon@gmail.com> | 2019-12-12 15:07:31 +0100 |
|---|---|---|
| committer | Jules Laplace <julescarbon@gmail.com> | 2019-12-12 15:07:31 +0100 |
| commit | 2eb43a487db9c6f7eee6db1fee0e61075a7c27ac (patch) | |
| tree | 9ecd1212c1048efde6801b9d58cc6d6633914e41 /inversion/image_inversion_inception.py | |
| parent | 3a5c6f0b281d445b0b5816bb6f639427763c4330 (diff) | |
try averaging the two blocks instead
Diffstat (limited to 'inversion/image_inversion_inception.py')
| -rw-r--r-- | inversion/image_inversion_inception.py | 34 |
1 files changed, 23 insertions, 11 deletions
diff --git a/inversion/image_inversion_inception.py b/inversion/image_inversion_inception.py index 6138684..7cadfe6 100644 --- a/inversion/image_inversion_inception.py +++ b/inversion/image_inversion_inception.py @@ -223,20 +223,32 @@ if params.features: gen_feat = gen_feat_ex["InceptionV3/Mixed_7a"] target_feat = target_feat_ex["InceptionV3/Mixed_7a"] feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1]) - feat_loss = tf.reduce_mean(feat_square_diff) - img_feat_err = tf.reduce_mean(feat_square_diff, axis=1) + feat_loss = tf.reduce_mean(feat_square_diff) * 0.5 + img_feat_err = tf.reduce_mean(feat_square_diff, axis=1) * 0.5 - gen_feat = gen_feat_ex["InceptionV3/Mixed_7b"] - target_feat = target_feat_ex["InceptionV3/Mixed_7b"] + gen_feat = gen_feat_ex["InceptionV3/Mixed_6a"] + target_feat = target_feat_ex["InceptionV3/Mixed_6a"] feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1]) - feat_loss += tf.reduce_mean(feat_square_diff) - img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) + feat_loss += tf.reduce_mean(feat_square_diff) * 0.5 + img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) * 0.5 - gen_feat = gen_feat_ex["InceptionV3/Mixed_7c"] - target_feat = target_feat_ex["InceptionV3/Mixed_7c"] - feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1]) - feat_loss += tf.reduce_mean(feat_square_diff) - img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) + # gen_feat = gen_feat_ex["InceptionV3/Mixed_5a"] + # target_feat = target_feat_ex["InceptionV3/Mixed_5a"] + # feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1]) + # feat_loss += tf.reduce_mean(feat_square_diff) + # img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) + + # gen_feat = gen_feat_ex["InceptionV3/Mixed_7b"] + # target_feat = target_feat_ex["InceptionV3/Mixed_7b"] + # feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1]) + # feat_loss += tf.reduce_mean(feat_square_diff) + # img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) + + # gen_feat = gen_feat_ex["InceptionV3/Mixed_7c"] + # target_feat = target_feat_ex["InceptionV3/Mixed_7c"] + # feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1]) + # feat_loss += tf.reduce_mean(feat_square_diff) + # img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) else: feat_loss = tf.constant(0.0) |
