summaryrefslogtreecommitdiff
path: root/inversion/image_inversion_inception.py
diff options
context:
space:
mode:
authorJules Laplace <julescarbon@gmail.com>2019-12-12 15:07:31 +0100
committerJules Laplace <julescarbon@gmail.com>2019-12-12 15:07:31 +0100
commit2eb43a487db9c6f7eee6db1fee0e61075a7c27ac (patch)
tree9ecd1212c1048efde6801b9d58cc6d6633914e41 /inversion/image_inversion_inception.py
parent3a5c6f0b281d445b0b5816bb6f639427763c4330 (diff)
try averaging the two blocks instead
Diffstat (limited to 'inversion/image_inversion_inception.py')
-rw-r--r--inversion/image_inversion_inception.py34
1 files changed, 23 insertions, 11 deletions
diff --git a/inversion/image_inversion_inception.py b/inversion/image_inversion_inception.py
index 6138684..7cadfe6 100644
--- a/inversion/image_inversion_inception.py
+++ b/inversion/image_inversion_inception.py
@@ -223,20 +223,32 @@ if params.features:
gen_feat = gen_feat_ex["InceptionV3/Mixed_7a"]
target_feat = target_feat_ex["InceptionV3/Mixed_7a"]
feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1])
- feat_loss = tf.reduce_mean(feat_square_diff)
- img_feat_err = tf.reduce_mean(feat_square_diff, axis=1)
+ feat_loss = tf.reduce_mean(feat_square_diff) * 0.5
+ img_feat_err = tf.reduce_mean(feat_square_diff, axis=1) * 0.5
- gen_feat = gen_feat_ex["InceptionV3/Mixed_7b"]
- target_feat = target_feat_ex["InceptionV3/Mixed_7b"]
+ gen_feat = gen_feat_ex["InceptionV3/Mixed_6a"]
+ target_feat = target_feat_ex["InceptionV3/Mixed_6a"]
feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1])
- feat_loss += tf.reduce_mean(feat_square_diff)
- img_feat_err += tf.reduce_mean(feat_square_diff, axis=1)
+ feat_loss += tf.reduce_mean(feat_square_diff) * 0.5
+ img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) * 0.5
- gen_feat = gen_feat_ex["InceptionV3/Mixed_7c"]
- target_feat = target_feat_ex["InceptionV3/Mixed_7c"]
- feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1])
- feat_loss += tf.reduce_mean(feat_square_diff)
- img_feat_err += tf.reduce_mean(feat_square_diff, axis=1)
+ # gen_feat = gen_feat_ex["InceptionV3/Mixed_5a"]
+ # target_feat = target_feat_ex["InceptionV3/Mixed_5a"]
+ # feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1])
+ # feat_loss += tf.reduce_mean(feat_square_diff)
+ # img_feat_err += tf.reduce_mean(feat_square_diff, axis=1)
+
+ # gen_feat = gen_feat_ex["InceptionV3/Mixed_7b"]
+ # target_feat = target_feat_ex["InceptionV3/Mixed_7b"]
+ # feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1])
+ # feat_loss += tf.reduce_mean(feat_square_diff)
+ # img_feat_err += tf.reduce_mean(feat_square_diff, axis=1)
+
+ # gen_feat = gen_feat_ex["InceptionV3/Mixed_7c"]
+ # target_feat = target_feat_ex["InceptionV3/Mixed_7c"]
+ # feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1])
+ # feat_loss += tf.reduce_mean(feat_square_diff)
+ # img_feat_err += tf.reduce_mean(feat_square_diff, axis=1)
else:
feat_loss = tf.constant(0.0)