summaryrefslogtreecommitdiff
path: root/crop-equirectangular-2048.py
blob: 77e57e34c75b0e0cabac5c061f358d6d0568308c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import os
import glob
import argparse
from shutil import rmtree
from PIL import Image
from multiprocessing import Pool, cpu_count
from dotenv import load_dotenv, find_dotenv
import subprocess
load_dotenv(find_dotenv())

# This script generates frames from a 360 equirectangular video and crops out the bottom third.

parser = argparse.ArgumentParser()
parser.add_argument('--folder', default="./sequences/venice_360/equi_4096/")
parser.add_argument('--label', default="venice_360")
parser.add_argument('--folder_id', type=int, required=True)
parser.add_argument('--overlap', type=float, default=0.5)
parser.add_argument('--clobber', action='store_false')
opt = parser.parse_args()

src_width = 4096
src_height = 2048

crop_width = 4096
crop_height = 1670

crop_dim = (0, 0, crop_width, crop_height,)

label_0 = opt.label + "_equi_2048"
label_1 = opt.label + "_equi_1024"
labels = [label_0, label_1]
path_0 = os.path.join("sequences", label_0)
path_1 = os.path.join("sequences", label_1)

if opt.clobber:
  if os.path.exists(path_0):
    rmtree(path_0)
  if os.path.exists(path_1):
    rmtree(path_1)

os.makedirs(path_0)
os.makedirs(path_1)

dataset = []
for i, fn in enumerate(sorted(glob.glob(os.path.join(opt.folder, '*.png')))):
  out_fn = "frame_{:05d}.png".format(i + 1)
  if not opt.clobber and os.path.exists(os.path.join(path_1, out_fn)):
     continue
  dataset.append((i, fn,))

def build_thumbnail(i, fn):
  out_fn = "frame_{:05d}.png".format(i + 1)
  if (i % 100) == 0:
    print("{}...".format(i))

  image = Image.open(fn).crop(crop_dim)
  image.resize((2048, 1024,), Image.ANTIALIAS).save(os.path.join(path_0, out_fn))
  image.resize((1024, 512,), Image.ANTIALIAS).save(os.path.join(path_1, out_fn))

chunksize = 3
with Pool(processes=cpu_count()) as pool:
  pool.starmap(build_thumbnail, dataset, chunksize)

if opt.folder_id > 0:
  endpoint = os.getenv('API_REMOTE') + '/api/file/'
  for label in labels:
    subprocess.call([
      "curl",
      "-X", "POST",
      "-d", "folder_id={}".format(opt.folder_id),
      "-d", "module=pix2pixhd",
      "-d", "name={}.mov".format(label),
      "-d", "url=https://s3.amazonaws.com/i.asdf.us/cortex/lens/data/{}/{}.mov".format(opt.folder_id, label),
      "-d", "dataset={}".format(label),
      "-d", "activity=splice",
      "-d", "generated=0",
      "-d", "processed=1",
      "-d", "datatype=video",
      endpoint
    ])