import os import glob import argparse from shutil import rmtree from PIL import Image from multiprocessing import Pool, cpu_count from dotenv import load_dotenv, find_dotenv import subprocess load_dotenv(find_dotenv()) # This script generates frames from a 360 equirectangular video and crops out the bottom third. parser = argparse.ArgumentParser() parser.add_argument('--folder', default="./sequences/venice_360/equi_4096/") parser.add_argument('--label', default="venice_360") parser.add_argument('--folder_id', type=int, required=True) parser.add_argument('--overlap', type=float, default=0.5) parser.add_argument('--clobber', action='store_false') opt = parser.parse_args() src_width = 4096 src_height = 2048 crop_width = 4096 crop_height = 1670 crop_dim = (0, 0, crop_width, crop_height,) label_0 = opt.label + "_equi_2048" label_1 = opt.label + "_equi_1024" labels = [label_0, label_1] path_0 = os.path.join("sequences", label_0) path_1 = os.path.join("sequences", label_1) if opt.clobber: if os.path.exists(path_0): rmtree(path_0) if os.path.exists(path_1): rmtree(path_1) os.makedirs(path_0) os.makedirs(path_1) dataset = [] for i, fn in enumerate(sorted(glob.glob(os.path.join(opt.folder, '*.png')))): out_fn = "frame_{:05d}.png".format(i + 1) if not opt.clobber and os.path.exists(os.path.join(path_1, out_fn)): continue dataset.append((i, fn,)) def build_thumbnail(i, fn): out_fn = "frame_{:05d}.png".format(i + 1) if (i % 100) == 0: print("{}...".format(i)) image = Image.open(fn).crop(crop_dim) image.resize((2048, 1024,), Image.ANTIALIAS).save(os.path.join(path_0, out_fn)) image.resize((1024, 512,), Image.ANTIALIAS).save(os.path.join(path_1, out_fn)) chunksize = 3 with Pool(processes=cpu_count()) as pool: pool.starmap(build_thumbnail, dataset, chunksize) if opt.folder_id > 0: endpoint = os.getenv('API_REMOTE') + '/api/file/' for label in labels: subprocess.call([ "curl", "-X", "POST", "-d", "folder_id={}".format(opt.folder_id), "-d", "module=pix2pixhd", "-d", "name={}.mov".format(label), "-d", "url=https://s3.amazonaws.com/i.asdf.us/cortex/lens/data/{}/{}.mov".format(opt.folder_id, label), "-d", "dataset={}".format(label), "-d", "activity=splice", "-d", "generated=0", "-d", "processed=1", "-d", "datatype=video", endpoint ])