summaryrefslogtreecommitdiff
path: root/test.py
diff options
context:
space:
mode:
authorBoris Fomitchev <bfomitchev@nvidia.com>2018-05-08 20:18:10 -0700
committerBoris Fomitchev <bfomitchev@nvidia.com>2018-05-08 20:18:10 -0700
commit25e205604e7eafa83867a15cfda526461fe58455 (patch)
treefcce10851fb0d1627b60cc23100659506f1462bb /test.py
parent4ca6b1610f9fa65f8bd7d7c15059bfde18a2f02a (diff)
ONNX export is working
Diffstat (limited to 'test.py')
-rwxr-xr-xtest.py40
1 files changed, 29 insertions, 11 deletions
diff --git a/test.py b/test.py
index 1effb08..203d887 100755
--- a/test.py
+++ b/test.py
@@ -8,6 +8,8 @@ from models.models import create_model
import util.util as util
from util.visualizer import Visualizer
from util import html
+import torch
+from run_engine import run_trt_engine, run_onnx
opt = TestOptions().parse(save=False)
opt.nThreads = 1 # test code only supports nThreads = 1
@@ -17,30 +19,46 @@ opt.no_flip = True # no flip
data_loader = CreateDataLoader(opt)
dataset = data_loader.load_data()
-model = create_model(opt)
visualizer = Visualizer(opt)
# create website
web_dir = os.path.join(opt.results_dir, opt.name, '%s_%s' % (opt.phase, opt.which_epoch))
webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.name, opt.phase, opt.which_epoch))
# test
+
+if not opt.engine and not opt.onnx:
+ model = create_model(opt)
+ if opt.data_type == 16:
+ model.half()
+ elif opt.data_type == 8:
+ model.type(torch.uint8)
+
+ if opt.verbose:
+ print(model)
+
+
for i, data in enumerate(dataset):
if i >= opt.how_many:
break
if opt.data_type == 16:
- model.half()
data['label'] = data['label'].half()
data['inst'] = data['inst'].half()
elif opt.data_type == 8:
- model.type(torch.uint8)
-
+ data['label'] = data['label'].uint8()
+ data['inst'] = data['inst'].uint8()
if opt.export_onnx:
- assert opt.export_onnx.endswith(".onnx"), "Export model file should end with .onnx"
- if opt.verbose:
- print(model)
- generated = torch.onnx.export(model, [data['label'], data['inst']],
- opt.export_onnx, verbose=True)
-
- generated = model.inference(data['label'], data['inst'])
+ print ("Exporting to ONNX: ", opt.export_onnx)
+ assert opt.export_onnx.endswith("onnx"), "Export model file should end with .onnx"
+ torch.onnx.export(model, [data['label'], data['inst']],
+ opt.export_onnx, verbose=True)
+ exit(0)
+ minibatch = 1
+ if opt.engine:
+ generated = run_trt_engine(opt.engine, minibatch, [data['label'], data['inst']])
+ elif opt.onnx:
+ generated = run_onnx(opt.onnx, opt.data_type, minibatch, [data['label'], data['inst']])
+ else:
+ generated = model.inference(data['label'], data['inst'])
+
visuals = OrderedDict([('input_label', util.tensor2label(data['label'][0], opt.label_nc)),
('synthesized_image', util.tensor2im(generated.data[0]))])
img_path = data['path']