diff options
| author | Boris Fomitchev <bfomitchev@nvidia.com> | 2018-05-08 20:18:10 -0700 |
|---|---|---|
| committer | Boris Fomitchev <bfomitchev@nvidia.com> | 2018-05-08 20:18:10 -0700 |
| commit | 25e205604e7eafa83867a15cfda526461fe58455 (patch) | |
| tree | fcce10851fb0d1627b60cc23100659506f1462bb | |
| parent | 4ca6b1610f9fa65f8bd7d7c15059bfde18a2f02a (diff) | |
ONNX export is working
| -rwxr-xr-x | models/models.py | 7 | ||||
| -rwxr-xr-x | models/pix2pixHD_model.py | 7 | ||||
| -rw-r--r-- | run_engine.py | 173 | ||||
| -rwxr-xr-x | scripts/test_1024p.sh | 7 | ||||
| -rwxr-xr-x | test.py | 40 |
5 files changed, 218 insertions, 16 deletions
diff --git a/models/models.py b/models/models.py index 805696f..8e72e46 100755 --- a/models/models.py +++ b/models/models.py @@ -4,8 +4,11 @@ import torch def create_model(opt): if opt.model == 'pix2pixHD': - from .pix2pixHD_model import Pix2PixHDModel - model = Pix2PixHDModel() + from .pix2pixHD_model import Pix2PixHDModel, InferenceModel + if opt.isTrain: + model = Pix2PixHDModel() + else: + model = InferenceModel() else: from .ui_model import UIModel model = UIModel() diff --git a/models/pix2pixHD_model.py b/models/pix2pixHD_model.py index de594ab..631a10f 100755 --- a/models/pix2pixHD_model.py +++ b/models/pix2pixHD_model.py @@ -270,3 +270,10 @@ class Pix2PixHDModel(BaseModel): if self.opt.verbose: print('update learning rate: %f -> %f' % (self.old_lr, lr)) self.old_lr = lr + +class InferenceModel(Pix2PixHDModel): + def forward(self, inp): + label, inst = inp + return self.inference(label, inst) + + diff --git a/run_engine.py b/run_engine.py new file mode 100644 index 0000000..700494d --- /dev/null +++ b/run_engine.py @@ -0,0 +1,173 @@ +import os +import sys +from random import randint +import numpy as np +import tensorrt + +try: + from PIL import Image + import pycuda.driver as cuda + import pycuda.gpuarray as gpuarray + import pycuda.autoinit + import argparse +except ImportError as err: + sys.stderr.write("""ERROR: failed to import module ({}) +Please make sure you have pycuda and the example dependencies installed. +https://wiki.tiker.net/PyCuda/Installation/Linux +pip(3) install tensorrt[examples] +""".format(err)) + exit(1) + +try: + import tensorrt as trt + from tensorrt.parsers import caffeparser + from tensorrt.parsers import onnxparser +except ImportError as err: + sys.stderr.write("""ERROR: failed to import module ({}) +Please make sure you have the TensorRT Library installed +and accessible in your LD_LIBRARY_PATH +""".format(err)) + exit(1) + + +G_LOGGER = trt.infer.ConsoleLogger(trt.infer.LogSeverity.INFO) + +class Profiler(trt.infer.Profiler): + """ + Example Implimentation of a Profiler + Is identical to the Profiler class in trt.infer so it is possible + to just use that instead of implementing this if further + functionality is not needed + """ + def __init__(self, timing_iter): + trt.infer.Profiler.__init__(self) + self.timing_iterations = timing_iter + self.profile = [] + + def report_layer_time(self, layerName, ms): + record = next((r for r in self.profile if r[0] == layerName), (None, None)) + if record == (None, None): + self.profile.append((layerName, ms)) + else: + self.profile[self.profile.index(record)] = (record[0], record[1] + ms) + + def print_layer_times(self): + totalTime = 0 + for i in range(len(self.profile)): + print("{:40.40} {:4.3f}ms".format(self.profile[i][0], self.profile[i][1] / self.timing_iterations)) + totalTime += self.profile[i][1] + print("Time over all layers: {:4.2f} ms per iteration".format(totalTime / self.timing_iterations)) + + +def get_input_output_names(trt_engine): + nbindings = trt_engine.get_nb_bindings(); + maps = [] + + for b in range(0, nbindings): + dims = trt_engine.get_binding_dimensions(b).to_DimsCHW() + name = trt_engine.get_binding_name(b) + type = trt_engine.get_binding_data_type(b) + + if (trt_engine.binding_is_input(b)): + maps.append(name) + print("Found input: ", name) + else: + maps.append(name) + print("Found output: ", name) + + print("shape=" + str(dims.C()) + " , " + str(dims.H()) + " , " + str(dims.W())) + print("dtype=" + str(type)) + return maps + +def create_memory(engine, name, buf, mem, batchsize, inp, inp_idx): + binding_idx = engine.get_binding_index(name) + if binding_idx == -1: + raise AttributeError("Not a valid binding") + print("Binding: name={}, bindingIndex={}".format(name, str(binding_idx))) + dims = engine.get_binding_dimensions(binding_idx).to_DimsCHW() + eltCount = dims.C() * dims.H() * dims.W() * batchsize + + if engine.binding_is_input(binding_idx): + h_mem = inp[inp_idx] + inp_idx = inp_idx + 1 + else: + h_mem = np.random.uniform(0.0, 255.0, eltCount).astype(np.dtype('f4')) + + d_mem = cuda.mem_alloc(eltCount * 4) + cuda.memcpy_htod(d_mem, h_mem) + buf.insert(binding_idx, int(d_mem)) + mem.append(d_mem) + return inp_idx + + +#Run inference on device +def time_inference(engine, batch_size, inp): + bindings = [] + mem = [] + inp_idx = 0 + for io in get_input_output_names(engine): + inp_idx = create_memory(engine, io, bindings, mem, + batch_size, inp, inp_idx) + + context = engine.create_execution_context() + g_prof = Profiler(500) + context.set_profiler(g_prof) + for i in range(iter): + context.execute(batch_size, bindings) + g_prof.print_layer_times() + + context.destroy() + return + + +def convert_to_datatype(v): + if v==8: + return trt.infer.DataType.INT8 + elif v==16: + return trt.infer.DataType.HALF + elif v==32: + return trt.infer.DataType.FLOAT + else: + print("ERROR: Invalid model data type bit depth: " + str(v)) + return trt.infer.DataType.INT8 + +def run_trt_engine(engine_file, bs, it): + engine = trt.utils.load_engine(G_LOGGER, engine_file) + time_inference(engine, bs, it) + +def run_onnx(onnx_file, data_type, bs, inp): + # Create onnx_config + apex = onnxparser.create_onnxconfig() + apex.set_model_file_name(onnx_file) + apex.set_model_dtype(convert_to_datatype(data_type)) + + # create parser + trt_parser = onnxparser.create_onnxparser(apex) + assert(trt_parser) + data_type = apex.get_model_dtype() + onnx_filename = apex.get_model_file_name() + trt_parser.parse(onnx_filename, data_type) + trt_parser.report_parsing_info() + trt_parser.convert_to_trtnetwork() + trt_network = trt_parser.get_trtnetwork() + assert(trt_network) + + # create infer builder + trt_builder = trt.infer.create_infer_builder(G_LOGGER) + trt_builder.set_max_batch_size(max_batch_size) + trt_builder.set_max_workspace_size(max_workspace_size) + + if (apex.get_model_dtype() == trt.infer.DataType_kHALF): + print("------------------- Running FP16 -----------------------------") + trt_builder.set_half2_mode(True) + elif (apex.get_model_dtype() == trt.infer.DataType_kINT8): + print("------------------- Running INT8 -----------------------------") + trt_builder.set_int8_mode(True) + else: + print("------------------- Running FP32 -----------------------------") + + print("----- Builder is Done -----") + print("----- Creating Engine -----") + trt_engine = trt_builder.build_cuda_engine(trt_network) + print("----- Engine is built -----") + time_inference(engine, bs, inp) diff --git a/scripts/test_1024p.sh b/scripts/test_1024p.sh index 7526f28..319803c 100755 --- a/scripts/test_1024p.sh +++ b/scripts/test_1024p.sh @@ -1,3 +1,4 @@ -################################ Testing ################################
-# labels only
-python test.py --name label2city_1024p --netG local --ngf 32 --resize_or_crop none $@
+#!/bin/bash +################################ Testing ################################ +# labels only +python test.py --name label2city_1024p --netG local --ngf 32 --resize_or_crop none $@ @@ -8,6 +8,8 @@ from models.models import create_model import util.util as util from util.visualizer import Visualizer from util import html +import torch +from run_engine import run_trt_engine, run_onnx opt = TestOptions().parse(save=False) opt.nThreads = 1 # test code only supports nThreads = 1 @@ -17,30 +19,46 @@ opt.no_flip = True # no flip data_loader = CreateDataLoader(opt) dataset = data_loader.load_data() -model = create_model(opt) visualizer = Visualizer(opt) # create website web_dir = os.path.join(opt.results_dir, opt.name, '%s_%s' % (opt.phase, opt.which_epoch)) webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.name, opt.phase, opt.which_epoch)) # test + +if not opt.engine and not opt.onnx: + model = create_model(opt) + if opt.data_type == 16: + model.half() + elif opt.data_type == 8: + model.type(torch.uint8) + + if opt.verbose: + print(model) + + for i, data in enumerate(dataset): if i >= opt.how_many: break if opt.data_type == 16: - model.half() data['label'] = data['label'].half() data['inst'] = data['inst'].half() elif opt.data_type == 8: - model.type(torch.uint8) - + data['label'] = data['label'].uint8() + data['inst'] = data['inst'].uint8() if opt.export_onnx: - assert opt.export_onnx.endswith(".onnx"), "Export model file should end with .onnx" - if opt.verbose: - print(model) - generated = torch.onnx.export(model, [data['label'], data['inst']], - opt.export_onnx, verbose=True) - - generated = model.inference(data['label'], data['inst']) + print ("Exporting to ONNX: ", opt.export_onnx) + assert opt.export_onnx.endswith("onnx"), "Export model file should end with .onnx" + torch.onnx.export(model, [data['label'], data['inst']], + opt.export_onnx, verbose=True) + exit(0) + minibatch = 1 + if opt.engine: + generated = run_trt_engine(opt.engine, minibatch, [data['label'], data['inst']]) + elif opt.onnx: + generated = run_onnx(opt.onnx, opt.data_type, minibatch, [data['label'], data['inst']]) + else: + generated = model.inference(data['label'], data['inst']) + visuals = OrderedDict([('input_label', util.tensor2label(data['label'][0], opt.label_nc)), ('synthesized_image', util.tensor2im(generated.data[0]))]) img_path = data['path'] |
