summaryrefslogtreecommitdiff
path: root/models/pix2pixHD_model.py
diff options
context:
space:
mode:
authorBoris Fomitchev <bfomitchev@nvidia.com>2018-05-08 00:56:35 -0700
committerBoris Fomitchev <bfomitchev@nvidia.com>2018-05-08 00:56:35 -0700
commit4ca6b1610f9fa65f8bd7d7c15059bfde18a2f02a (patch)
treeec2eeb09cdef6a70ea5612c3e6aa91ed2849414a /models/pix2pixHD_model.py
parent736a2dc9afef418820e9c52f4f3b38460360b9f2 (diff)
Added data size and ONNX export options, FP16 inference is working
Diffstat (limited to 'models/pix2pixHD_model.py')
-rwxr-xr-xmodels/pix2pixHD_model.py28
1 files changed, 19 insertions, 9 deletions
diff --git a/models/pix2pixHD_model.py b/models/pix2pixHD_model.py
index 834fc18..de594ab 100755
--- a/models/pix2pixHD_model.py
+++ b/models/pix2pixHD_model.py
@@ -45,8 +45,8 @@ class Pix2PixHDModel(BaseModel):
if self.gen_features:
self.netE = networks.define_G(opt.output_nc, opt.feat_num, opt.nef, 'encoder',
opt.n_downsample_E, norm=opt.norm, gpu_ids=self.gpu_ids)
-
- print('---------- Networks initialized -------------')
+ if self.opt.verbose:
+ print('---------- Networks initialized -------------')
# load networks
if not self.isTrain or opt.continue_train or opt.load_pretrain:
@@ -76,7 +76,8 @@ class Pix2PixHDModel(BaseModel):
# initialize optimizers
# optimizer G
if opt.niter_fix_global > 0:
- print('------------- Only training the local enhancer network (for %d epochs) ------------' % opt.niter_fix_global)
+ if self.opt.verbose:
+ print('------------- Only training the local enhancer network (for %d epochs) ------------' % opt.niter_fix_global)
params_dict = dict(self.netG.named_parameters())
params = []
for key, value in params_dict.items():
@@ -103,13 +104,15 @@ class Pix2PixHDModel(BaseModel):
oneHot_size = (size[0], self.opt.label_nc, size[2], size[3])
input_label = torch.cuda.FloatTensor(torch.Size(oneHot_size)).zero_()
input_label = input_label.scatter_(1, label_map.data.long().cuda(), 1.0)
+ if self.opt.data_type==16:
+ input_label = input_label.half()
# get edges from instance map
if not self.opt.no_instance:
inst_map = inst_map.data.cuda()
edge_map = self.get_edges(inst_map)
input_label = torch.cat((input_label, edge_map), dim=1)
- input_label = Variable(input_label, volatile=infer)
+ input_label = Variable(input_label, requires_grad = not infer)
# real images for training
if real_image is not None:
@@ -204,7 +207,9 @@ class Pix2PixHDModel(BaseModel):
idx = (inst == i).nonzero()
for k in range(self.opt.feat_num):
- feat_map[idx[:,0], idx[:,1] + k, idx[:,2], idx[:,3]] = feat[cluster_idx, k]
+ feat_map[idx[:,0], idx[:,1] + k, idx[:,2], idx[:,3]] = feat[cluster_idx, k]
+ if self.opt.data_type==16:
+ feat_map = feat_map.half()
return feat_map
def encode_features(self, image, inst):
@@ -235,7 +240,10 @@ class Pix2PixHDModel(BaseModel):
edge[:,:,:,:-1] = edge[:,:,:,:-1] | (t[:,:,:,1:] != t[:,:,:,:-1])
edge[:,:,1:,:] = edge[:,:,1:,:] | (t[:,:,1:,:] != t[:,:,:-1,:])
edge[:,:,:-1,:] = edge[:,:,:-1,:] | (t[:,:,1:,:] != t[:,:,:-1,:])
- return edge.float()
+ if self.opt.data_type==16:
+ return edge.half()
+ else:
+ return edge.float()
def save(self, which_epoch):
self.save_network(self.netG, 'G', which_epoch, self.gpu_ids)
@@ -248,8 +256,9 @@ class Pix2PixHDModel(BaseModel):
params = list(self.netG.parameters())
if self.gen_features:
params += list(self.netE.parameters())
- self.optimizer_G = torch.optim.Adam(params, lr=self.opt.lr, betas=(self.opt.beta1, 0.999))
- print('------------ Now also finetuning global generator -----------')
+ self.optimizer_G = torch.optim.Adam(params, lr=self.opt.lr, betas=(self.opt.beta1, 0.999))
+ if self.opt.verbose:
+ print('------------ Now also finetuning global generator -----------')
def update_learning_rate(self):
lrd = self.opt.lr / self.opt.niter_decay
@@ -258,5 +267,6 @@ class Pix2PixHDModel(BaseModel):
param_group['lr'] = lr
for param_group in self.optimizer_G.param_groups:
param_group['lr'] = lr
- print('update learning rate: %f -> %f' % (self.old_lr, lr))
+ if self.opt.verbose:
+ print('update learning rate: %f -> %f' % (self.old_lr, lr))
self.old_lr = lr