summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rwxr-xr-xmodels/base_model.py8
-rwxr-xr-xmodels/models.py3
-rwxr-xr-xmodels/pix2pixHD_model.py28
-rwxr-xr-xoptions/base_options.py3
-rwxr-xr-xoptions/test_options.py4
-rwxr-xr-xscripts/test_1024p.sh2
-rwxr-xr-xtest.py14
7 files changed, 47 insertions, 15 deletions
diff --git a/models/base_model.py b/models/base_model.py
index 88e0587..2cda12f 100755
--- a/models/base_model.py
+++ b/models/base_model.py
@@ -68,7 +68,8 @@ class BaseModel(torch.nn.Module):
try:
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
network.load_state_dict(pretrained_dict)
- print('Pretrained network %s has excessive layers; Only loading layers that are used' % network_label)
+ if self.opt.verbose:
+ print('Pretrained network %s has excessive layers; Only loading layers that are used' % network_label)
except:
print('Pretrained network %s has fewer layers; The following are not initialized:' % network_label)
if sys.version_info >= (3,0):
@@ -82,8 +83,9 @@ class BaseModel(torch.nn.Module):
for k, v in model_dict.items():
if k not in pretrained_dict or v.size() != pretrained_dict[k].size():
- not_initialized.add(k.split('.')[0])
- print(sorted(not_initialized))
+ not_initialized.add(k.split('.')[0])
+ if self.opt.verbose:
+ print(sorted(not_initialized))
network.load_state_dict(model_dict)
def update_learning_rate():
diff --git a/models/models.py b/models/models.py
index 0ba442f..805696f 100755
--- a/models/models.py
+++ b/models/models.py
@@ -10,7 +10,8 @@ def create_model(opt):
from .ui_model import UIModel
model = UIModel()
model.initialize(opt)
- print("model [%s] was created" % (model.name()))
+ if opt.verbose:
+ print("model [%s] was created" % (model.name()))
if opt.isTrain and len(opt.gpu_ids):
model = torch.nn.DataParallel(model, device_ids=opt.gpu_ids)
diff --git a/models/pix2pixHD_model.py b/models/pix2pixHD_model.py
index 834fc18..de594ab 100755
--- a/models/pix2pixHD_model.py
+++ b/models/pix2pixHD_model.py
@@ -45,8 +45,8 @@ class Pix2PixHDModel(BaseModel):
if self.gen_features:
self.netE = networks.define_G(opt.output_nc, opt.feat_num, opt.nef, 'encoder',
opt.n_downsample_E, norm=opt.norm, gpu_ids=self.gpu_ids)
-
- print('---------- Networks initialized -------------')
+ if self.opt.verbose:
+ print('---------- Networks initialized -------------')
# load networks
if not self.isTrain or opt.continue_train or opt.load_pretrain:
@@ -76,7 +76,8 @@ class Pix2PixHDModel(BaseModel):
# initialize optimizers
# optimizer G
if opt.niter_fix_global > 0:
- print('------------- Only training the local enhancer network (for %d epochs) ------------' % opt.niter_fix_global)
+ if self.opt.verbose:
+ print('------------- Only training the local enhancer network (for %d epochs) ------------' % opt.niter_fix_global)
params_dict = dict(self.netG.named_parameters())
params = []
for key, value in params_dict.items():
@@ -103,13 +104,15 @@ class Pix2PixHDModel(BaseModel):
oneHot_size = (size[0], self.opt.label_nc, size[2], size[3])
input_label = torch.cuda.FloatTensor(torch.Size(oneHot_size)).zero_()
input_label = input_label.scatter_(1, label_map.data.long().cuda(), 1.0)
+ if self.opt.data_type==16:
+ input_label = input_label.half()
# get edges from instance map
if not self.opt.no_instance:
inst_map = inst_map.data.cuda()
edge_map = self.get_edges(inst_map)
input_label = torch.cat((input_label, edge_map), dim=1)
- input_label = Variable(input_label, volatile=infer)
+ input_label = Variable(input_label, requires_grad = not infer)
# real images for training
if real_image is not None:
@@ -204,7 +207,9 @@ class Pix2PixHDModel(BaseModel):
idx = (inst == i).nonzero()
for k in range(self.opt.feat_num):
- feat_map[idx[:,0], idx[:,1] + k, idx[:,2], idx[:,3]] = feat[cluster_idx, k]
+ feat_map[idx[:,0], idx[:,1] + k, idx[:,2], idx[:,3]] = feat[cluster_idx, k]
+ if self.opt.data_type==16:
+ feat_map = feat_map.half()
return feat_map
def encode_features(self, image, inst):
@@ -235,7 +240,10 @@ class Pix2PixHDModel(BaseModel):
edge[:,:,:,:-1] = edge[:,:,:,:-1] | (t[:,:,:,1:] != t[:,:,:,:-1])
edge[:,:,1:,:] = edge[:,:,1:,:] | (t[:,:,1:,:] != t[:,:,:-1,:])
edge[:,:,:-1,:] = edge[:,:,:-1,:] | (t[:,:,1:,:] != t[:,:,:-1,:])
- return edge.float()
+ if self.opt.data_type==16:
+ return edge.half()
+ else:
+ return edge.float()
def save(self, which_epoch):
self.save_network(self.netG, 'G', which_epoch, self.gpu_ids)
@@ -248,8 +256,9 @@ class Pix2PixHDModel(BaseModel):
params = list(self.netG.parameters())
if self.gen_features:
params += list(self.netE.parameters())
- self.optimizer_G = torch.optim.Adam(params, lr=self.opt.lr, betas=(self.opt.beta1, 0.999))
- print('------------ Now also finetuning global generator -----------')
+ self.optimizer_G = torch.optim.Adam(params, lr=self.opt.lr, betas=(self.opt.beta1, 0.999))
+ if self.opt.verbose:
+ print('------------ Now also finetuning global generator -----------')
def update_learning_rate(self):
lrd = self.opt.lr / self.opt.niter_decay
@@ -258,5 +267,6 @@ class Pix2PixHDModel(BaseModel):
param_group['lr'] = lr
for param_group in self.optimizer_G.param_groups:
param_group['lr'] = lr
- print('update learning rate: %f -> %f' % (self.old_lr, lr))
+ if self.opt.verbose:
+ print('update learning rate: %f -> %f' % (self.old_lr, lr))
self.old_lr = lr
diff --git a/options/base_options.py b/options/base_options.py
index de831fe..561a890 100755
--- a/options/base_options.py
+++ b/options/base_options.py
@@ -56,7 +56,8 @@ class BaseOptions():
self.parser.add_argument('--n_downsample_E', type=int, default=4, help='# of downsampling layers in encoder')
self.parser.add_argument('--nef', type=int, default=16, help='# of encoder filters in the first conv layer')
self.parser.add_argument('--n_clusters', type=int, default=10, help='number of clusters for features')
-
+ self.parser.add_argument('--verbose', action='store_true', default = False, help='toggles verbose')
+
self.initialized = True
def parse(self, save=True):
diff --git a/options/test_options.py b/options/test_options.py
index aaeff53..504edf3 100755
--- a/options/test_options.py
+++ b/options/test_options.py
@@ -12,4 +12,8 @@ class TestOptions(BaseOptions):
self.parser.add_argument('--which_epoch', type=str, default='latest', help='which epoch to load? set to latest to use latest cached model')
self.parser.add_argument('--how_many', type=int, default=50, help='how many test images to run')
self.parser.add_argument('--cluster_path', type=str, default='features_clustered_010.npy', help='the path for clustered results of encoded features')
+ self.parser.add_argument("--export_onnx", type=str, help="export ONNX model to a given file")
+ self.parser.add_argument("--engine", type=str, help="run serialized TRT engine")
+ self.parser.add_argument("--onnx", type=str, help="run ONNX model via TRT")
+ self.parser.add_argument("-d", "--data_type", default=32, type=int, choices=[8, 16, 32], help="Supported data type i.e. 8, 16, 32 bit")
self.isTrain = False
diff --git a/scripts/test_1024p.sh b/scripts/test_1024p.sh
index 99c1e24..7526f28 100755
--- a/scripts/test_1024p.sh
+++ b/scripts/test_1024p.sh
@@ -1,3 +1,3 @@
################################ Testing ################################
# labels only
-python test.py --name label2city_1024p --netG local --ngf 32 --resize_or_crop none \ No newline at end of file
+python test.py --name label2city_1024p --netG local --ngf 32 --resize_or_crop none $@
diff --git a/test.py b/test.py
index a9c8729..1effb08 100755
--- a/test.py
+++ b/test.py
@@ -26,6 +26,20 @@ webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.na
for i, data in enumerate(dataset):
if i >= opt.how_many:
break
+ if opt.data_type == 16:
+ model.half()
+ data['label'] = data['label'].half()
+ data['inst'] = data['inst'].half()
+ elif opt.data_type == 8:
+ model.type(torch.uint8)
+
+ if opt.export_onnx:
+ assert opt.export_onnx.endswith(".onnx"), "Export model file should end with .onnx"
+ if opt.verbose:
+ print(model)
+ generated = torch.onnx.export(model, [data['label'], data['inst']],
+ opt.export_onnx, verbose=True)
+
generated = model.inference(data['label'], data['inst'])
visuals = OrderedDict([('input_label', util.tensor2label(data['label'][0], opt.label_nc)),
('synthesized_image', util.tensor2im(generated.data[0]))])