summaryrefslogtreecommitdiff
path: root/models/base_model.py
diff options
context:
space:
mode:
authorBoris Fomitchev <bfomitchev@nvidia.com>2018-05-08 00:56:35 -0700
committerBoris Fomitchev <bfomitchev@nvidia.com>2018-05-08 00:56:35 -0700
commit4ca6b1610f9fa65f8bd7d7c15059bfde18a2f02a (patch)
treeec2eeb09cdef6a70ea5612c3e6aa91ed2849414a /models/base_model.py
parent736a2dc9afef418820e9c52f4f3b38460360b9f2 (diff)
Added data size and ONNX export options, FP16 inference is working
Diffstat (limited to 'models/base_model.py')
-rwxr-xr-xmodels/base_model.py8
1 files changed, 5 insertions, 3 deletions
diff --git a/models/base_model.py b/models/base_model.py
index 88e0587..2cda12f 100755
--- a/models/base_model.py
+++ b/models/base_model.py
@@ -68,7 +68,8 @@ class BaseModel(torch.nn.Module):
try:
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
network.load_state_dict(pretrained_dict)
- print('Pretrained network %s has excessive layers; Only loading layers that are used' % network_label)
+ if self.opt.verbose:
+ print('Pretrained network %s has excessive layers; Only loading layers that are used' % network_label)
except:
print('Pretrained network %s has fewer layers; The following are not initialized:' % network_label)
if sys.version_info >= (3,0):
@@ -82,8 +83,9 @@ class BaseModel(torch.nn.Module):
for k, v in model_dict.items():
if k not in pretrained_dict or v.size() != pretrained_dict[k].size():
- not_initialized.add(k.split('.')[0])
- print(sorted(not_initialized))
+ not_initialized.add(k.split('.')[0])
+ if self.opt.verbose:
+ print(sorted(not_initialized))
network.load_state_dict(model_dict)
def update_learning_rate():