diff options
Diffstat (limited to 'models/test_model.py')
| -rw-r--r-- | models/test_model.py | 50 |
1 files changed, 50 insertions, 0 deletions
diff --git a/models/test_model.py b/models/test_model.py new file mode 100644 index 0000000..a356263 --- /dev/null +++ b/models/test_model.py @@ -0,0 +1,50 @@ +from torch.autograd import Variable +from collections import OrderedDict +import util.util as util +from .base_model import BaseModel +from . import networks + + +class TestModel(BaseModel): + def name(self): + return 'TestModel' + + def initialize(self, opt): + BaseModel.initialize(self, opt) + + nb = opt.batchSize + size = opt.fineSize + self.input_A = self.Tensor(nb, opt.input_nc, size, size) + + assert(not self.isTrain) + self.netG_A = networks.define_G(opt.input_nc, opt.output_nc, + opt.ngf, opt.which_model_netG, + opt.norm, opt.use_dropout, + self.gpu_ids) + which_epoch = opt.which_epoch + #AtoB = self.opt.which_direction == 'AtoB' + #which_network = 'G_A' if AtoB else 'G_B' + self.load_network(self.netG_A, 'G', which_epoch) + + print('---------- Networks initialized -------------') + networks.print_network(self.netG_A) + print('-----------------------------------------------') + + def set_input(self, input): + AtoB = self.opt.which_direction == 'AtoB' + input_A = input['A' if AtoB else 'B'] + self.input_A.resize_(input_A.size()).copy_(input_A) + self.image_paths = input['A_paths' if AtoB else 'B_paths'] + + def test(self): + self.real_A = Variable(self.input_A) + self.fake_B = self.netG_A.forward(self.real_A) + + #get image paths + def get_image_paths(self): + return self.image_paths + + def get_current_visuals(self): + real_A = util.tensor2im(self.real_A.data) + fake_B = util.tensor2im(self.fake_B.data) + return OrderedDict([('real_A', real_A), ('fake_B', fake_B)]) |
