summaryrefslogtreecommitdiff
path: root/models/test_model.py
diff options
context:
space:
mode:
authorjunyanz <junyanz@berkeley.edu>2017-06-12 23:52:56 -0700
committerjunyanz <junyanz@berkeley.edu>2017-06-12 23:52:56 -0700
commite6858e35f0a08c6139c133122d222d0d85e8005d (patch)
tree2647ff13a164c684113eab455123394a49a65dad /models/test_model.py
parent3b72a659c38141e502b74bee65ca08d51dc3eabf (diff)
update dataset mode
Diffstat (limited to 'models/test_model.py')
-rw-r--r--models/test_model.py50
1 files changed, 50 insertions, 0 deletions
diff --git a/models/test_model.py b/models/test_model.py
new file mode 100644
index 0000000..a356263
--- /dev/null
+++ b/models/test_model.py
@@ -0,0 +1,50 @@
+from torch.autograd import Variable
+from collections import OrderedDict
+import util.util as util
+from .base_model import BaseModel
+from . import networks
+
+
+class TestModel(BaseModel):
+ def name(self):
+ return 'TestModel'
+
+ def initialize(self, opt):
+ BaseModel.initialize(self, opt)
+
+ nb = opt.batchSize
+ size = opt.fineSize
+ self.input_A = self.Tensor(nb, opt.input_nc, size, size)
+
+ assert(not self.isTrain)
+ self.netG_A = networks.define_G(opt.input_nc, opt.output_nc,
+ opt.ngf, opt.which_model_netG,
+ opt.norm, opt.use_dropout,
+ self.gpu_ids)
+ which_epoch = opt.which_epoch
+ #AtoB = self.opt.which_direction == 'AtoB'
+ #which_network = 'G_A' if AtoB else 'G_B'
+ self.load_network(self.netG_A, 'G', which_epoch)
+
+ print('---------- Networks initialized -------------')
+ networks.print_network(self.netG_A)
+ print('-----------------------------------------------')
+
+ def set_input(self, input):
+ AtoB = self.opt.which_direction == 'AtoB'
+ input_A = input['A' if AtoB else 'B']
+ self.input_A.resize_(input_A.size()).copy_(input_A)
+ self.image_paths = input['A_paths' if AtoB else 'B_paths']
+
+ def test(self):
+ self.real_A = Variable(self.input_A)
+ self.fake_B = self.netG_A.forward(self.real_A)
+
+ #get image paths
+ def get_image_paths(self):
+ return self.image_paths
+
+ def get_current_visuals(self):
+ real_A = util.tensor2im(self.real_A.data)
+ fake_B = util.tensor2im(self.fake_B.data)
+ return OrderedDict([('real_A', real_A), ('fake_B', fake_B)])