diff options
| author | Jun-Yan Zhu <junyanz@users.noreply.github.com> | 2018-03-26 14:59:33 -0400 |
|---|---|---|
| committer | GitHub <noreply@github.com> | 2018-03-26 14:59:33 -0400 |
| commit | bae3f780dce02baa928e684d92d674ac8acdd95d (patch) | |
| tree | f204dc7b5d82f93c6bdac8529ae1f058b84bc768 | |
| parent | 3a853ff09c1d3b82a649155d8c576f8d10eb1a65 (diff) | |
| parent | 9afd38df3ccf1f86a2754fd5d05fab56bd109eec (diff) | |
Merge pull request #221 from iver56/fix-multiprocessing
Fix multiprocessing for Windows by using if __name__ == '__main__'
| -rw-r--r-- | .gitignore | 1 | ||||
| -rw-r--r-- | environment.yml | 14 | ||||
| -rw-r--r-- | make_dataset_aligned.py | 63 | ||||
| -rw-r--r-- | train.py | 85 |
4 files changed, 121 insertions, 42 deletions
@@ -40,3 +40,4 @@ test/.coverage */**/*.dylib* test/data/legacy_serialized.pt *~ +.idea diff --git a/environment.yml b/environment.yml new file mode 100644 index 0000000..116d052 --- /dev/null +++ b/environment.yml @@ -0,0 +1,14 @@ +name: pytorch-CycleGAN-and-pix2pix +channels: +- peterjc123 +- defaults +dependencies: +- python=3.5.5 +- pytorch=0.3.1 +- scipy +- pip: + - dominate==2.3.1 + - git+https://github.com/pytorch/vision.git + - Pillow==5.0.0 + - numpy==1.14.1 + - visdom==0.1.7 diff --git a/make_dataset_aligned.py b/make_dataset_aligned.py new file mode 100644 index 0000000..739c767 --- /dev/null +++ b/make_dataset_aligned.py @@ -0,0 +1,63 @@ +import os + +from PIL import Image + + +def get_file_paths(folder): + image_file_paths = [] + for root, dirs, filenames in os.walk(folder): + filenames = sorted(filenames) + for filename in filenames: + input_path = os.path.abspath(root) + file_path = os.path.join(input_path, filename) + if filename.endswith('.png') or filename.endswith('.jpg'): + image_file_paths.append(file_path) + + break # prevent descending into subfolders + return image_file_paths + + +def align_images(a_file_paths, b_file_paths, target_path): + if not os.path.exists(target_path): + os.makedirs(target_path) + + for i in range(len(a_file_paths)): + img_a = Image.open(a_file_paths[i]) + img_b = Image.open(b_file_paths[i]) + assert(img_a.size == img_b.size) + + aligned_image = Image.new("RGB", (img_a.size[0] * 2, img_a.size[1])) + aligned_image.paste(img_a, (0, 0)) + aligned_image.paste(img_b, (img_a.size[0], 0)) + aligned_image.save(os.path.join(target_path, '{:04d}.jpg'.format(i))) + + +if __name__ == '__main__': + import argparse + parser = argparse.ArgumentParser() + parser.add_argument( + '--dataset-path', + dest='dataset_path', + help='Which folder to process (it should have subfolders testA, testB, trainA and trainB' + ) + args = parser.parse_args() + + dataset_folder = args.dataset_path + print(dataset_folder) + + test_a_path = os.path.join(dataset_folder, 'testA') + test_b_path = os.path.join(dataset_folder, 'testB') + test_a_file_paths = get_file_paths(test_a_path) + test_b_file_paths = get_file_paths(test_b_path) + assert(len(test_a_file_paths) == len(test_b_file_paths)) + test_path = os.path.join(dataset_folder, 'test') + + train_a_path = os.path.join(dataset_folder, 'trainA') + train_b_path = os.path.join(dataset_folder, 'trainB') + train_a_file_paths = get_file_paths(train_a_path) + train_b_file_paths = get_file_paths(train_b_path) + assert(len(train_a_file_paths) == len(train_b_file_paths)) + train_path = os.path.join(dataset_folder, 'train') + + align_images(test_a_file_paths, test_b_file_paths, test_path) + align_images(train_a_file_paths, train_b_file_paths, train_path) @@ -4,54 +4,55 @@ from data.data_loader import CreateDataLoader from models.models import create_model from util.visualizer import Visualizer -opt = TrainOptions().parse() -data_loader = CreateDataLoader(opt) -dataset = data_loader.load_data() -dataset_size = len(data_loader) -print('#training images = %d' % dataset_size) +if __name__ == '__main__': + opt = TrainOptions().parse() + data_loader = CreateDataLoader(opt) + dataset = data_loader.load_data() + dataset_size = len(data_loader) + print('#training images = %d' % dataset_size) -model = create_model(opt) -visualizer = Visualizer(opt) -total_steps = 0 + model = create_model(opt) + visualizer = Visualizer(opt) + total_steps = 0 -for epoch in range(opt.epoch_count, opt.niter + opt.niter_decay + 1): - epoch_start_time = time.time() - iter_data_time = time.time() - epoch_iter = 0 + for epoch in range(opt.epoch_count, opt.niter + opt.niter_decay + 1): + epoch_start_time = time.time() + iter_data_time = time.time() + epoch_iter = 0 + + for i, data in enumerate(dataset): + iter_start_time = time.time() + if total_steps % opt.print_freq == 0: + t_data = iter_start_time - iter_data_time + visualizer.reset() + total_steps += opt.batchSize + epoch_iter += opt.batchSize + model.set_input(data) + model.optimize_parameters() - for i, data in enumerate(dataset): - iter_start_time = time.time() - if total_steps % opt.print_freq == 0: - t_data = iter_start_time - iter_data_time - visualizer.reset() - total_steps += opt.batchSize - epoch_iter += opt.batchSize - model.set_input(data) - model.optimize_parameters() + if total_steps % opt.display_freq == 0: + save_result = total_steps % opt.update_html_freq == 0 + visualizer.display_current_results(model.get_current_visuals(), epoch, save_result) - if total_steps % opt.display_freq == 0: - save_result = total_steps % opt.update_html_freq == 0 - visualizer.display_current_results(model.get_current_visuals(), epoch, save_result) + if total_steps % opt.print_freq == 0: + errors = model.get_current_errors() + t = (time.time() - iter_start_time) / opt.batchSize + visualizer.print_current_errors(epoch, epoch_iter, errors, t, t_data) + if opt.display_id > 0: + visualizer.plot_current_errors(epoch, float(epoch_iter) / dataset_size, opt, errors) - if total_steps % opt.print_freq == 0: - errors = model.get_current_errors() - t = (time.time() - iter_start_time) / opt.batchSize - visualizer.print_current_errors(epoch, epoch_iter, errors, t, t_data) - if opt.display_id > 0: - visualizer.plot_current_errors(epoch, float(epoch_iter) / dataset_size, opt, errors) + if total_steps % opt.save_latest_freq == 0: + print('saving the latest model (epoch %d, total_steps %d)' % + (epoch, total_steps)) + model.save('latest') - if total_steps % opt.save_latest_freq == 0: - print('saving the latest model (epoch %d, total_steps %d)' % + iter_data_time = time.time() + if epoch % opt.save_epoch_freq == 0: + print('saving the model at the end of epoch %d, iters %d' % (epoch, total_steps)) model.save('latest') + model.save(epoch) - iter_data_time = time.time() - if epoch % opt.save_epoch_freq == 0: - print('saving the model at the end of epoch %d, iters %d' % - (epoch, total_steps)) - model.save('latest') - model.save(epoch) - - print('End of epoch %d / %d \t Time Taken: %d sec' % - (epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time)) - model.update_learning_rate() + print('End of epoch %d / %d \t Time Taken: %d sec' % + (epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time)) + model.update_learning_rate() |
