summaryrefslogtreecommitdiff
path: root/train.py
blob: ee8cff1bc0bf47f01c2bb72feb23935fb2e14c9b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import time
from options.train_options import TrainOptions
from data.data_loader import CreateDataLoader
from models.models import create_model
from util.visualizer import Visualizer

if __name__ == '__main__':
    opt = TrainOptions().parse()
    data_loader = CreateDataLoader(opt)
    dataset = data_loader.load_data()
    dataset_size = len(data_loader)
    print('#training images = %d' % dataset_size)

    model = create_model(opt)
    visualizer = Visualizer(opt)
    total_steps = 0

    for epoch in range(opt.epoch_count, opt.niter + opt.niter_decay + 1):
        epoch_start_time = time.time()
        iter_data_time = time.time()
        epoch_iter = 0

        for i, data in enumerate(dataset):
            iter_start_time = time.time()
            if total_steps % opt.print_freq == 0:
                t_data = iter_start_time - iter_data_time
            visualizer.reset()
            total_steps += opt.batchSize
            epoch_iter += opt.batchSize
            model.set_input(data)
            model.optimize_parameters()

            if total_steps % opt.display_freq == 0:
                save_result = total_steps % opt.update_html_freq == 0
                visualizer.display_current_results(model.get_current_visuals(), epoch, save_result)

            if total_steps % opt.print_freq == 0:
                errors = model.get_current_errors()
                t = (time.time() - iter_start_time) / opt.batchSize
                visualizer.print_current_errors(epoch, epoch_iter, errors, t, t_data)
                if opt.display_id > 0:
                    visualizer.plot_current_errors(epoch, float(epoch_iter) / dataset_size, opt, errors)

            if total_steps % opt.save_latest_freq == 0:
                print('saving the latest model (epoch %d, total_steps %d)' %
                      (epoch, total_steps))
                model.save('latest')

            iter_data_time = time.time()
        if epoch % opt.save_epoch_freq == 0:
            print('saving the model at the end of epoch %d, iters %d' %
                  (epoch, total_steps))
            model.save('latest')
            model.save(epoch)

        print('End of epoch %d / %d \t Time Taken: %d sec' %
              (epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time))
        model.update_learning_rate()