diff options
Diffstat (limited to 'megapixels/commands/cv')
| -rw-r--r-- | megapixels/commands/cv/face_attributes.py | 136 | ||||
| -rw-r--r-- | megapixels/commands/cv/face_landmark_2d_68.py | 4 | ||||
| -rw-r--r-- | megapixels/commands/cv/face_pose.py | 11 | ||||
| -rw-r--r-- | megapixels/commands/cv/face_roi.py | 67 | ||||
| -rw-r--r-- | megapixels/commands/cv/face_vector.py | 46 | ||||
| -rw-r--r-- | megapixels/commands/cv/resize.py | 13 | ||||
| -rw-r--r-- | megapixels/commands/cv/resize_dataset.py | 149 |
7 files changed, 369 insertions, 57 deletions
diff --git a/megapixels/commands/cv/face_attributes.py b/megapixels/commands/cv/face_attributes.py new file mode 100644 index 00000000..01fe3bd1 --- /dev/null +++ b/megapixels/commands/cv/face_attributes.py @@ -0,0 +1,136 @@ +""" + +""" + +import click + +from app.settings import types +from app.utils import click_utils +from app.settings import app_cfg as cfg + + +@click.command() +@click.option('-i', '--input', 'opt_fp_in', default=None, + help='Override enum input filename CSV') +@click.option('-o', '--output', 'opt_fp_out', default=None, + help='Override enum output filename CSV') +@click.option('-m', '--media', 'opt_dir_media', default=None, + help='Override enum media directory') +@click.option('--store', 'opt_data_store', + type=cfg.DataStoreVar, + default=click_utils.get_default(types.DataStore.HDD), + show_default=True, + help=click_utils.show_help(types.Dataset)) +@click.option('--dataset', 'opt_dataset', + type=cfg.DatasetVar, + required=True, + show_default=True, + help=click_utils.show_help(types.Dataset)) +@click.option('--size', 'opt_size', + type=(int, int), default=cfg.DEFAULT_SIZE_FACE_DETECT, + help='Processing size for detection') +@click.option('--slice', 'opt_slice', type=(int, int), default=(None, None), + help='Slice list of files') +@click.option('-f', '--force', 'opt_force', is_flag=True, + help='Force overwrite file') +@click.option('-d', '--display', 'opt_display', is_flag=True, + help='Display image for debugging') +@click.pass_context +def cli(ctx, opt_fp_in, opt_fp_out, opt_dir_media, opt_data_store, opt_dataset, + opt_size, opt_slice, opt_force, opt_display): + """Creates 2D 68-point landmarks""" + + import sys + import os + from os.path import join + from pathlib import Path + from glob import glob + + from tqdm import tqdm + import numpy as np + import cv2 as cv + import pandas as pd + + from app.utils import logger_utils, file_utils, im_utils, display_utils, draw_utils + from app.processors import face_age_gender + from app.models.data_store import DataStore + from app.models.bbox import BBox + + # ------------------------------------------------------------------------- + # init here + + log = logger_utils.Logger.getLogger() + # init face processors + age_estimator_apnt = face_age_gender.FaceAgeApparent() + age_estimator_real = face_age_gender.FaceAgeReal() + gender_estimator = face_age_gender.FaceGender() + + # init filepaths + data_store = DataStore(opt_data_store, opt_dataset) + # set file output path + metadata_type = types.Metadata.FACE_ATTRIBUTES + fp_out = data_store.metadata(metadata_type) if opt_fp_out is None else opt_fp_out + if not opt_force and Path(fp_out).exists(): + log.error('File exists. Use "-f / --force" to overwite') + return + + # ------------------------------------------------------------------------- + # load filepath data + fp_record = data_store.metadata(types.Metadata.FILE_RECORD) + df_record = pd.read_csv(fp_record, dtype=cfg.FILE_RECORD_DTYPES).set_index('index') + # load ROI data + fp_roi = data_store.metadata(types.Metadata.FACE_ROI) + df_roi = pd.read_csv(fp_roi).set_index('index') + # slice if you want + if opt_slice: + df_roi = df_roi[opt_slice[0]:opt_slice[1]] + # group by image index (speedup if multiple faces per image) + df_img_groups = df_roi.groupby('record_index') + log.debug('processing {:,} groups'.format(len(df_img_groups))) + + # store landmarks in list + results = [] + + # ------------------------------------------------------------------------- + # iterate groups with file/record index as key + + for record_index, df_img_group in tqdm(df_img_groups): + + # access file_record DataSeries + file_record = df_record.iloc[record_index] + + # load image + fp_im = data_store.face(file_record.subdir, file_record.fn, file_record.ext) + im = cv.imread(fp_im) + im_resized = im_utils.resize(im, width=opt_size[0], height=opt_size[1]) + dim = im_resized.shape[:2][::-1] + + # iterate ROIs in this image + for roi_index, df_img in df_img_group.iterrows(): + + # find landmarks + bbox_norm = BBox.from_xywh(df_img.x, df_img.y, df_img.w, df_img.h) + bbox_dim = bbox_norm.to_dim(dim) + + age_apnt = age_estimator_apnt.predict(im_resized, bbox_norm) + age_real = age_estimator_real.predict(im_resized, bbox_norm) + gender = gender_estimator.predict(im_resized, bbox_norm) + + attr_obj = { + 'age_real':float(f'{age_real:.2f}'), + 'age_apparent': float(f'{age_apnt:.2f}'), + 'm': float(f'{gender["m"]:.4f}'), + 'f': float(f'{gender["f"]:.4f}'), + 'roi_index': roi_index + } + results.append(attr_obj) + + + # create DataFrame and save to CSV + file_utils.mkdirs(fp_out) + df = pd.DataFrame.from_dict(results) + df.index.name = 'index' + df.to_csv(fp_out) + + # save script + file_utils.write_text(' '.join(sys.argv), '{}.sh'.format(fp_out))
\ No newline at end of file diff --git a/megapixels/commands/cv/face_landmark_2d_68.py b/megapixels/commands/cv/face_landmark_2d_68.py index e24d4b60..c6978a40 100644 --- a/megapixels/commands/cv/face_landmark_2d_68.py +++ b/megapixels/commands/cv/face_landmark_2d_68.py @@ -126,7 +126,7 @@ def cli(ctx, opt_fp_in, opt_fp_out, opt_dir_media, opt_data_store, opt_dataset, bbox = BBox.from_xywh(x, y, w, h).to_dim(dim) points = landmark_detector.landmarks(im_resized, bbox) points_norm = landmark_detector.normalize(points, dim) - points_flat = landmark_detector.flatten(points_norm) + points_str = landmark_detector.to_str(points_norm) # display if optioned if opt_display: @@ -137,7 +137,7 @@ def cli(ctx, opt_fp_in, opt_fp_out, opt_dir_media, opt_data_store, opt_dataset, display_utils.handle_keyboard() # add to results for CSV - results.append(points_flat) + results.append({'vec': points_str, 'roi_index':roi_index}) # create DataFrame and save to CSV diff --git a/megapixels/commands/cv/face_pose.py b/megapixels/commands/cv/face_pose.py index 70ea1f30..cb7ec56c 100644 --- a/megapixels/commands/cv/face_pose.py +++ b/megapixels/commands/cv/face_pose.py @@ -92,7 +92,7 @@ def cli(ctx, opt_fp_in, opt_fp_out, opt_dir_media, opt_data_store, opt_dataset, # load data fp_record = data_store.metadata(types.Metadata.FILE_RECORD) - df_record = pd.read_csv(fp_record).set_index('index') + df_record = pd.read_csv(fp_record, dtype=cfg.FILE_RECORD_DTYPES).set_index('index') # load ROI data fp_roi = data_store.metadata(types.Metadata.FACE_ROI) df_roi = pd.read_csv(fp_roi).set_index('index') @@ -125,10 +125,11 @@ def cli(ctx, opt_fp_in, opt_fp_out, opt_dir_media, opt_data_store, opt_dataset, x, y, w, h = df_img.x, df_img.y, df_img.w, df_img.h #dim = (file_record.width, file_record.height) dim = im_resized.shape[:2][::-1] - bbox = BBox.from_xywh(x, y, w, h).to_dim(dim) + bbox_norm = BBox.from_xywh(x, y, w, h) + bbox_dim = bbox_norm.to_dim(dim) # get pose - landmarks = face_landmarks.landmarks(im_resized, bbox) + landmarks = face_landmarks.landmarks(im_resized, bbox_norm) pose_data = face_pose.pose(landmarks, dim) #pose_degrees = pose_data['degrees'] # only keep the degrees data #pose_degrees['points_nose'] = pose_data @@ -143,8 +144,8 @@ def cli(ctx, opt_fp_in, opt_fp_out, opt_dir_media, opt_data_store, opt_dataset, # add image index and append to result CSV data pose_data['roi_index'] = roi_index for k, v in pose_data['points'].items(): - pose_data[f'point_{k}_x'] = v[0][0] / dim[0] - pose_data[f'point_{k}_y'] = v[0][1] / dim[1] + pose_data[f'point_{k}_x'] = v[0] / dim[0] + pose_data[f'point_{k}_y'] = v[1] / dim[1] # rearrange data structure for DataFrame pose_data.pop('points') diff --git a/megapixels/commands/cv/face_roi.py b/megapixels/commands/cv/face_roi.py index 70fff401..e83b0f61 100644 --- a/megapixels/commands/cv/face_roi.py +++ b/megapixels/commands/cv/face_roi.py @@ -33,7 +33,7 @@ color_filters = {'color': 1, 'gray': 2, 'all': 3} help='Output image size') @click.option('-d', '--detector', 'opt_detector_type', type=cfg.FaceDetectNetVar, - default=click_utils.get_default(types.FaceDetectNet.DLIB_CNN), + default=click_utils.get_default(types.FaceDetectNet.CVDNN), help=click_utils.show_help(types.FaceDetectNet)) @click.option('-g', '--gpu', 'opt_gpu', default=0, help='GPU index') @@ -97,31 +97,37 @@ def cli(ctx, opt_fp_in, opt_dir_media, opt_fp_out, opt_data_store, opt_dataset, detector = face_detector.DetectorDLIBCNN(gpu=opt_gpu) elif opt_detector_type == types.FaceDetectNet.DLIB_HOG: detector = face_detector.DetectorDLIBHOG() - elif opt_detector_type == types.FaceDetectNet.MTCNN: - detector = face_detector.DetectorMTCNN(gpu=opt_gpu) + elif opt_detector_type == types.FaceDetectNet.MTCNN_TF: + detector = face_detector.DetectorMTCNN_TF(gpu=opt_gpu) elif opt_detector_type == types.FaceDetectNet.HAAR: log.error('{} not yet implemented'.format(opt_detector_type.name)) return # get list of files to process - fp_in = data_store.metadata(types.Metadata.FILE_RECORD) if opt_fp_in is None else opt_fp_in - df_records = pd.read_csv(fp_in).set_index('index') + fp_record = data_store.metadata(types.Metadata.FILE_RECORD) if opt_fp_in is None else opt_fp_in + df_record = pd.read_csv(fp_record, dtype=cfg.FILE_RECORD_DTYPES).set_index('index') if opt_slice: - df_records = df_records[opt_slice[0]:opt_slice[1]] - log.debug('processing {:,} files'.format(len(df_records))) + df_record = df_record[opt_slice[0]:opt_slice[1]] + log.debug('processing {:,} files'.format(len(df_record))) # filter out grayscale color_filter = color_filters[opt_color_filter] # set largest flag, to keep all or only largest - opt_largest = opt_largest == 'largest' + opt_largest = (opt_largest == 'largest') data = [] + skipped_files = [] + processed_files = [] - for df_record in tqdm(df_records.itertuples(), total=len(df_records)): + for df_record in tqdm(df_record.itertuples(), total=len(df_record)): fp_im = data_store.face(str(df_record.subdir), str(df_record.fn), str(df_record.ext)) - im = cv.imread(fp_im) - im_resized = im_utils.resize(im, width=opt_size[0], height=opt_size[1]) + try: + im = cv.imread(fp_im) + im_resized = im_utils.resize(im, width=opt_size[0], height=opt_size[1]) + except Exception as e: + log.debug(f'could not read: {fp_im}') + return # filter out color or grayscale iamges if color_filter != color_filters['all']: try: @@ -134,31 +140,38 @@ def cli(ctx, opt_fp_in, opt_dir_media, opt_fp_out, opt_data_store, opt_dataset, continue try: - bboxes = detector.detect(im_resized, pyramids=opt_pyramids, largest=opt_largest, + bboxes_norm = detector.detect(im_resized, pyramids=opt_pyramids, largest=opt_largest, zone=opt_zone, conf_thresh=opt_conf_thresh) except Exception as e: log.error('could not detect: {}'.format(fp_im)) log.error('{}'.format(e)) continue - for bbox in bboxes: - roi = { - 'record_index': int(df_record.Index), - 'x': bbox.x, - 'y': bbox.y, - 'w': bbox.w, - 'h': bbox.h - } - data.append(roi) - if len(bboxes) == 0: + if len(bboxes_norm) == 0: + skipped_files.append(fp_im) log.warn(f'no faces in: {fp_im}') - + log.warn(f'skipped: {len(skipped_files)}. found:{len(processed_files)} files') + else: + processed_files.append(fp_im) + for bbox in bboxes_norm: + roi = { + 'record_index': int(df_record.Index), + 'x': bbox.x, + 'y': bbox.y, + 'w': bbox.w, + 'h': bbox.h + } + data.append(roi) + # if display optined - if opt_display and len(bboxes): + if opt_display and len(bboxes_norm): # draw each box - for bbox in bboxes: - bbox_dim = bbox.to_dim(im_resized.shape[:2][::-1]) - draw_utils.draw_bbox(im_resized, bbox_dim) + for bbox_norm in bboxes_norm: + dim = im_resized.shape[:2][::-1] + bbox_dim = bbox.to_dim(dim) + if dim[0] > 1000: + im_resized = im_utils.resize(im_resized, width=1000) + im_resized = draw_utils.draw_bbox(im_resized, bbox_norm) # display and wait cv.imshow('', im_resized) diff --git a/megapixels/commands/cv/face_vector.py b/megapixels/commands/cv/face_vector.py index 4df647f5..cb155d08 100644 --- a/megapixels/commands/cv/face_vector.py +++ b/megapixels/commands/cv/face_vector.py @@ -1,5 +1,8 @@ """ Converts ROIs to face vector +NB: the VGG Face2 extractor should be used with MTCNN ROIs (not square) + the DLIB face extractor should be used with DLIB ROIs (square) +see https://github.com/ox-vgg/vgg_face2 for TAR@FAR """ import click @@ -24,12 +27,16 @@ from app.settings import app_cfg as cfg show_default=True, help=click_utils.show_help(types.Dataset)) @click.option('--size', 'opt_size', - type=(int, int), default=(300, 300), + type=(int, int), default=cfg.DEFAULT_SIZE_FACE_DETECT, help='Output image size') +@click.option('-e', '--extractor', 'opt_extractor', + default=click_utils.get_default(types.FaceExtractor.VGG), + type=cfg.FaceExtractorVar, + help='Type of extractor framework/network to use') @click.option('-j', '--jitters', 'opt_jitters', default=cfg.DLIB_FACEREC_JITTERS, - help='Number of jitters') -@click.option('-p', '--padding', 'opt_padding', default=cfg.DLIB_FACEREC_PADDING, - help='Percentage padding') + help='Number of jitters (only for dlib') +@click.option('-p', '--padding', 'opt_padding', default=cfg.FACEREC_PADDING, + help='Percentage ROI padding') @click.option('--slice', 'opt_slice', type=(int, int), default=(None, None), help='Slice list of files') @click.option('-f', '--force', 'opt_force', is_flag=True, @@ -38,7 +45,7 @@ from app.settings import app_cfg as cfg help='GPU index') @click.pass_context def cli(ctx, opt_fp_out, opt_dir_media, opt_data_store, opt_dataset, opt_size, - opt_slice, opt_force, opt_gpu, opt_jitters, opt_padding): + opt_extractor, opt_slice, opt_force, opt_gpu, opt_jitters, opt_padding): """Converts face ROIs to vectors""" import sys @@ -56,7 +63,7 @@ def cli(ctx, opt_fp_out, opt_dir_media, opt_data_store, opt_dataset, opt_size, from app.models.bbox import BBox from app.models.data_store import DataStore from app.utils import logger_utils, file_utils, im_utils - from app.processors import face_recognition + from app.processors import face_extractor # ------------------------------------------------- @@ -73,11 +80,15 @@ def cli(ctx, opt_fp_out, opt_dir_media, opt_data_store, opt_dataset, opt_size, return # init face processors - facerec = face_recognition.RecognitionDLIB() + if opt_extractor == types.FaceExtractor.DLIB: + log.debug('set dlib') + extractor = face_extractor.ExtractorDLIB(gpu=opt_gpu, jitters=opt_jitters) + elif opt_extractor == types.FaceExtractor.VGG: + extractor = face_extractor.ExtractorVGG() # load data fp_record = data_store.metadata(types.Metadata.FILE_RECORD) - df_record = pd.read_csv(fp_record).set_index('index') + df_record = pd.read_csv(fp_record, dtype=cfg.FILE_RECORD_DTYPES).set_index('index') fp_roi = data_store.metadata(types.Metadata.FACE_ROI) df_roi = pd.read_csv(fp_roi).set_index('index') @@ -85,7 +96,8 @@ def cli(ctx, opt_fp_out, opt_dir_media, opt_data_store, opt_dataset, opt_size, df_roi = df_roi[opt_slice[0]:opt_slice[1]] # ------------------------------------------------- - # process here + # process images + df_img_groups = df_roi.groupby('record_index') log.debug('processing {:,} groups'.format(len(df_img_groups))) @@ -95,21 +107,21 @@ def cli(ctx, opt_fp_out, opt_dir_media, opt_data_store, opt_dataset, opt_size, ds_record = df_record.iloc[record_index] fp_im = data_store.face(ds_record.subdir, ds_record.fn, ds_record.ext) im = cv.imread(fp_im) + im = im_utils.resize(im, width=opt_size[0], height=opt_size[1]) for roi_index, df_img in df_img_group.iterrows(): # get bbox x, y, w, h = df_img.x, df_img.y, df_img.w, df_img.h dim = (ds_record.width, ds_record.height) - #dim = im.shape[:2][::-1] # get face vector - bbox_dim = BBox.from_xywh(x, y, w, h).to_dim(dim) # convert to int real dimensions + bbox = BBox.from_xywh(x, y, w, h) # norm # compute vec - # padding=opt_padding not yet implemented in dlib===19.16 but merged in master - vec = facerec.vec(im, bbox_dim, jitters=opt_jitters) - vec_flat = facerec.flatten(vec) - vec_flat['roi_index'] = roi_index - vec_flat['record_index'] = record_index - vecs.append(vec_flat) + vec = extractor.extract(im, bbox) # use normalized BBox + vec_str = extractor.to_str(vec) + vec_obj = {'vec':vec_str, 'roi_index': roi_index, 'record_index':record_index} + vecs.append(vec_obj) + # ------------------------------------------------- + # save data # create DataFrame and save to CSV df = pd.DataFrame.from_dict(vecs) diff --git a/megapixels/commands/cv/resize.py b/megapixels/commands/cv/resize.py index dcd621b3..7409ee6f 100644 --- a/megapixels/commands/cv/resize.py +++ b/megapixels/commands/cv/resize.py @@ -49,7 +49,7 @@ centerings = { help='File glob ext') @click.option('--size', 'opt_size', type=(int, int), default=(256, 256), - help='Output image size (square)') + help='Max output size') @click.option('--method', 'opt_scale_method', type=click.Choice(methods.keys()), default='lanczos', @@ -88,7 +88,7 @@ def cli(ctx, opt_dir_in, opt_dir_out, opt_glob_ext, opt_size, opt_scale_method, # ------------------------------------------------- # process here - def pool_resize(fp_im, opt_size, scale_method, centering): + def pool_resize(fp_im, opt_size, scale_method): # Threaded image resize function try: pbar.update(1) @@ -100,7 +100,7 @@ def cli(ctx, opt_dir_in, opt_dir_out, opt_glob_ext, opt_size, opt_scale_method, log.error(e) return False - im = ImageOps.fit(im, opt_size, method=scale_method, centering=centering) + #im = ImageOps.fit(im, opt_size, method=scale_method, centering=centering) if opt_equalize: im_np = im_utils.pil2np(im) @@ -117,8 +117,8 @@ def cli(ctx, opt_dir_in, opt_dir_out, opt_glob_ext, opt_size, opt_scale_method, except: return False - centering = centerings[opt_center] - scale_method = methods[opt_scale_method] + #centering = centerings[opt_center] + #scale_method = methods[opt_scale_method] # get list of files to process fp_ims = glob(join(opt_dir_in, '*.{}'.format(opt_glob_ext))) @@ -132,7 +132,8 @@ def cli(ctx, opt_dir_in, opt_dir_out, opt_glob_ext, opt_size, opt_scale_method, # setup multithreading pbar = tqdm(total=len(fp_ims)) - pool_resize = partial(pool_resize, opt_size=opt_size, scale_method=scale_method, centering=centering) + #pool_resize = partial(pool_resize, opt_size=opt_size, scale_method=scale_method, centering=centering) + pool_resize = partial(pool_resize, opt_size=opt_size) #result_list = pool.map(prod_x, data_list) pool = ThreadPool(opt_threads) with tqdm(total=len(fp_ims)) as pbar: diff --git a/megapixels/commands/cv/resize_dataset.py b/megapixels/commands/cv/resize_dataset.py new file mode 100644 index 00000000..3a6ec15f --- /dev/null +++ b/megapixels/commands/cv/resize_dataset.py @@ -0,0 +1,149 @@ +""" +Crop images to prepare for training +""" + +import click +import cv2 as cv +from PIL import Image, ImageOps, ImageFilter + +from app.settings import types +from app.utils import click_utils +from app.settings import app_cfg as cfg + +cv_resize_algos = { + 'area': cv.INTER_AREA, + 'lanco': cv.INTER_LANCZOS4, + 'linear': cv.INTER_LINEAR, + 'linear_exact': cv.INTER_LINEAR_EXACT, + 'nearest': cv.INTER_NEAREST +} +""" +Filter Q-Down Q-Up Speed +NEAREST ⭐⭐⭐⭐⭐ +BOX ⭐ ⭐⭐⭐⭐ +BILINEAR ⭐ ⭐ ⭐⭐⭐ +HAMMING ⭐⭐ ⭐⭐⭐ +BICUBIC ⭐⭐⭐ ⭐⭐⭐ ⭐⭐ +LANCZOS ⭐⭐⭐⭐ ⭐⭐⭐⭐ ⭐ +""" +pil_resize_algos = { + 'antialias': Image.ANTIALIAS, + 'lanczos': Image.LANCZOS, + 'bicubic': Image.BICUBIC, + 'hamming': Image.HAMMING, + 'bileaner': Image.BILINEAR, + 'box': Image.BOX, + 'nearest': Image.NEAREST + } + +@click.command() +@click.option('--dataset', 'opt_dataset', + type=cfg.DatasetVar, + required=True, + show_default=True, + help=click_utils.show_help(types.Dataset)) +@click.option('--store', 'opt_data_store', + type=cfg.DataStoreVar, + default=click_utils.get_default(types.DataStore.HDD), + show_default=True, + help=click_utils.show_help(types.Dataset)) +@click.option('-o', '--output', 'opt_dir_out', required=True, + help='Output directory') +@click.option('-e', '--ext', 'opt_glob_ext', + default='png', type=click.Choice(['jpg', 'png']), + help='File glob ext') +@click.option('--size', 'opt_size', + type=(int, int), default=(256, 256), + help='Output image size max (w,h)') +@click.option('--interp', 'opt_interp_algo', + type=click.Choice(pil_resize_algos.keys()), + default='bicubic', + help='Interpolation resizing algorithms') +@click.option('--slice', 'opt_slice', type=(int, int), default=(None, None), + help='Slice the input list') +@click.option('-t', '--threads', 'opt_threads', default=8, + help='Number of threads') +@click.option('--recursive/--no-recursive', 'opt_recursive', is_flag=True, default=False, + help='Use glob recursion (slower)') +@click.pass_context +def cli(ctx, opt_dataset, opt_data_store, opt_dir_out, opt_glob_ext, opt_size, opt_interp_algo, + opt_slice, opt_threads, opt_recursive): + """Resize dataset images""" + + import os + from os.path import join + from pathlib import Path + from glob import glob + from tqdm import tqdm + from multiprocessing.dummy import Pool as ThreadPool + from functools import partial + import pandas as pd + import numpy as np + + from app.utils import logger_utils, file_utils, im_utils + from app.models.data_store import DataStore + + # ------------------------------------------------- + # init + + log = logger_utils.Logger.getLogger() + + + # ------------------------------------------------- + # process here + + def pool_resize(fp_in, dir_in, dir_out, im_size, interp_algo): + # Threaded image resize function + pbar.update(1) + try: + im = Image.open(fp_in).convert('RGB') + im.verify() # throws error if image is corrupt + im.thumbnail(im_size, interp_algo) + fp_out = fp_in.replace(dir_in, dir_out) + file_utils.mkdirs(fp_out) + im.save(fp_out, quality=100) + except Exception as e: + log.warn(f'Could not open: {fp_in}, Error: {e}') + return False + return True + + + data_store = DataStore(opt_data_store, opt_dataset) + fp_records = data_store.metadata(types.Metadata.FILE_RECORD) + df_records = pd.read_csv(fp_records, dtype=cfg.FILE_RECORD_DTYPES).set_index('index') + dir_in = data_store.media_images_original() + + # get list of files to process + #fp_ims = file_utils.glob_multi(opt_dir_in, ['jpg', 'png'], recursive=opt_recursive) + fp_ims = [] + for ds_record in df_records.itertuples(): + fp_im = data_store.face(ds_record.subdir, ds_record.fn, ds_record.ext) + fp_ims.append(fp_im) + + if opt_slice: + fp_ims = fp_ims[opt_slice[0]:opt_slice[1]] + if not fp_ims: + log.error('No images. Try with "--recursive"') + return + log.info(f'processing {len(fp_ims):,} images') + + # algorithm to use for resizing + interp_algo = pil_resize_algos[opt_interp_algo] + log.info(f'using {interp_algo} for interpoloation') + + # ensure output dir exists + file_utils.mkdirs(opt_dir_out) + + # setup multithreading + pbar = tqdm(total=len(fp_ims)) + # fixed arguments for pool function + map_pool_resize = partial(pool_resize, dir_in=dir_in, dir_out=opt_dir_out, im_size=opt_size, interp_algo=interp_algo) + #result_list = pool.map(prod_x, data_list) # simple + pool = ThreadPool(opt_threads) + # start multithreading + with tqdm(total=len(fp_ims)) as pbar: + results = pool.map(map_pool_resize, fp_ims) + # end multithreading + pbar.close() + + log.info(f'Resized: {results.count(True)} / {len(fp_ims)} images')
\ No newline at end of file |
