summaryrefslogtreecommitdiff
path: root/megapixels/commands/cv/face_vector.py
diff options
context:
space:
mode:
Diffstat (limited to 'megapixels/commands/cv/face_vector.py')
-rw-r--r--megapixels/commands/cv/face_vector.py46
1 files changed, 29 insertions, 17 deletions
diff --git a/megapixels/commands/cv/face_vector.py b/megapixels/commands/cv/face_vector.py
index 4df647f5..cb155d08 100644
--- a/megapixels/commands/cv/face_vector.py
+++ b/megapixels/commands/cv/face_vector.py
@@ -1,5 +1,8 @@
"""
Converts ROIs to face vector
+NB: the VGG Face2 extractor should be used with MTCNN ROIs (not square)
+ the DLIB face extractor should be used with DLIB ROIs (square)
+see https://github.com/ox-vgg/vgg_face2 for TAR@FAR
"""
import click
@@ -24,12 +27,16 @@ from app.settings import app_cfg as cfg
show_default=True,
help=click_utils.show_help(types.Dataset))
@click.option('--size', 'opt_size',
- type=(int, int), default=(300, 300),
+ type=(int, int), default=cfg.DEFAULT_SIZE_FACE_DETECT,
help='Output image size')
+@click.option('-e', '--extractor', 'opt_extractor',
+ default=click_utils.get_default(types.FaceExtractor.VGG),
+ type=cfg.FaceExtractorVar,
+ help='Type of extractor framework/network to use')
@click.option('-j', '--jitters', 'opt_jitters', default=cfg.DLIB_FACEREC_JITTERS,
- help='Number of jitters')
-@click.option('-p', '--padding', 'opt_padding', default=cfg.DLIB_FACEREC_PADDING,
- help='Percentage padding')
+ help='Number of jitters (only for dlib')
+@click.option('-p', '--padding', 'opt_padding', default=cfg.FACEREC_PADDING,
+ help='Percentage ROI padding')
@click.option('--slice', 'opt_slice', type=(int, int), default=(None, None),
help='Slice list of files')
@click.option('-f', '--force', 'opt_force', is_flag=True,
@@ -38,7 +45,7 @@ from app.settings import app_cfg as cfg
help='GPU index')
@click.pass_context
def cli(ctx, opt_fp_out, opt_dir_media, opt_data_store, opt_dataset, opt_size,
- opt_slice, opt_force, opt_gpu, opt_jitters, opt_padding):
+ opt_extractor, opt_slice, opt_force, opt_gpu, opt_jitters, opt_padding):
"""Converts face ROIs to vectors"""
import sys
@@ -56,7 +63,7 @@ def cli(ctx, opt_fp_out, opt_dir_media, opt_data_store, opt_dataset, opt_size,
from app.models.bbox import BBox
from app.models.data_store import DataStore
from app.utils import logger_utils, file_utils, im_utils
- from app.processors import face_recognition
+ from app.processors import face_extractor
# -------------------------------------------------
@@ -73,11 +80,15 @@ def cli(ctx, opt_fp_out, opt_dir_media, opt_data_store, opt_dataset, opt_size,
return
# init face processors
- facerec = face_recognition.RecognitionDLIB()
+ if opt_extractor == types.FaceExtractor.DLIB:
+ log.debug('set dlib')
+ extractor = face_extractor.ExtractorDLIB(gpu=opt_gpu, jitters=opt_jitters)
+ elif opt_extractor == types.FaceExtractor.VGG:
+ extractor = face_extractor.ExtractorVGG()
# load data
fp_record = data_store.metadata(types.Metadata.FILE_RECORD)
- df_record = pd.read_csv(fp_record).set_index('index')
+ df_record = pd.read_csv(fp_record, dtype=cfg.FILE_RECORD_DTYPES).set_index('index')
fp_roi = data_store.metadata(types.Metadata.FACE_ROI)
df_roi = pd.read_csv(fp_roi).set_index('index')
@@ -85,7 +96,8 @@ def cli(ctx, opt_fp_out, opt_dir_media, opt_data_store, opt_dataset, opt_size,
df_roi = df_roi[opt_slice[0]:opt_slice[1]]
# -------------------------------------------------
- # process here
+ # process images
+
df_img_groups = df_roi.groupby('record_index')
log.debug('processing {:,} groups'.format(len(df_img_groups)))
@@ -95,21 +107,21 @@ def cli(ctx, opt_fp_out, opt_dir_media, opt_data_store, opt_dataset, opt_size,
ds_record = df_record.iloc[record_index]
fp_im = data_store.face(ds_record.subdir, ds_record.fn, ds_record.ext)
im = cv.imread(fp_im)
+ im = im_utils.resize(im, width=opt_size[0], height=opt_size[1])
for roi_index, df_img in df_img_group.iterrows():
# get bbox
x, y, w, h = df_img.x, df_img.y, df_img.w, df_img.h
dim = (ds_record.width, ds_record.height)
- #dim = im.shape[:2][::-1]
# get face vector
- bbox_dim = BBox.from_xywh(x, y, w, h).to_dim(dim) # convert to int real dimensions
+ bbox = BBox.from_xywh(x, y, w, h) # norm
# compute vec
- # padding=opt_padding not yet implemented in dlib===19.16 but merged in master
- vec = facerec.vec(im, bbox_dim, jitters=opt_jitters)
- vec_flat = facerec.flatten(vec)
- vec_flat['roi_index'] = roi_index
- vec_flat['record_index'] = record_index
- vecs.append(vec_flat)
+ vec = extractor.extract(im, bbox) # use normalized BBox
+ vec_str = extractor.to_str(vec)
+ vec_obj = {'vec':vec_str, 'roi_index': roi_index, 'record_index':record_index}
+ vecs.append(vec_obj)
+ # -------------------------------------------------
+ # save data
# create DataFrame and save to CSV
df = pd.DataFrame.from_dict(vecs)