summaryrefslogtreecommitdiff
path: root/megapixels/commands/cv/face_attributes.py
diff options
context:
space:
mode:
Diffstat (limited to 'megapixels/commands/cv/face_attributes.py')
-rw-r--r--megapixels/commands/cv/face_attributes.py136
1 files changed, 0 insertions, 136 deletions
diff --git a/megapixels/commands/cv/face_attributes.py b/megapixels/commands/cv/face_attributes.py
deleted file mode 100644
index 01fe3bd1..00000000
--- a/megapixels/commands/cv/face_attributes.py
+++ /dev/null
@@ -1,136 +0,0 @@
-"""
-
-"""
-
-import click
-
-from app.settings import types
-from app.utils import click_utils
-from app.settings import app_cfg as cfg
-
-
-@click.command()
-@click.option('-i', '--input', 'opt_fp_in', default=None,
- help='Override enum input filename CSV')
-@click.option('-o', '--output', 'opt_fp_out', default=None,
- help='Override enum output filename CSV')
-@click.option('-m', '--media', 'opt_dir_media', default=None,
- help='Override enum media directory')
-@click.option('--store', 'opt_data_store',
- type=cfg.DataStoreVar,
- default=click_utils.get_default(types.DataStore.HDD),
- show_default=True,
- help=click_utils.show_help(types.Dataset))
-@click.option('--dataset', 'opt_dataset',
- type=cfg.DatasetVar,
- required=True,
- show_default=True,
- help=click_utils.show_help(types.Dataset))
-@click.option('--size', 'opt_size',
- type=(int, int), default=cfg.DEFAULT_SIZE_FACE_DETECT,
- help='Processing size for detection')
-@click.option('--slice', 'opt_slice', type=(int, int), default=(None, None),
- help='Slice list of files')
-@click.option('-f', '--force', 'opt_force', is_flag=True,
- help='Force overwrite file')
-@click.option('-d', '--display', 'opt_display', is_flag=True,
- help='Display image for debugging')
-@click.pass_context
-def cli(ctx, opt_fp_in, opt_fp_out, opt_dir_media, opt_data_store, opt_dataset,
- opt_size, opt_slice, opt_force, opt_display):
- """Creates 2D 68-point landmarks"""
-
- import sys
- import os
- from os.path import join
- from pathlib import Path
- from glob import glob
-
- from tqdm import tqdm
- import numpy as np
- import cv2 as cv
- import pandas as pd
-
- from app.utils import logger_utils, file_utils, im_utils, display_utils, draw_utils
- from app.processors import face_age_gender
- from app.models.data_store import DataStore
- from app.models.bbox import BBox
-
- # -------------------------------------------------------------------------
- # init here
-
- log = logger_utils.Logger.getLogger()
- # init face processors
- age_estimator_apnt = face_age_gender.FaceAgeApparent()
- age_estimator_real = face_age_gender.FaceAgeReal()
- gender_estimator = face_age_gender.FaceGender()
-
- # init filepaths
- data_store = DataStore(opt_data_store, opt_dataset)
- # set file output path
- metadata_type = types.Metadata.FACE_ATTRIBUTES
- fp_out = data_store.metadata(metadata_type) if opt_fp_out is None else opt_fp_out
- if not opt_force and Path(fp_out).exists():
- log.error('File exists. Use "-f / --force" to overwite')
- return
-
- # -------------------------------------------------------------------------
- # load filepath data
- fp_record = data_store.metadata(types.Metadata.FILE_RECORD)
- df_record = pd.read_csv(fp_record, dtype=cfg.FILE_RECORD_DTYPES).set_index('index')
- # load ROI data
- fp_roi = data_store.metadata(types.Metadata.FACE_ROI)
- df_roi = pd.read_csv(fp_roi).set_index('index')
- # slice if you want
- if opt_slice:
- df_roi = df_roi[opt_slice[0]:opt_slice[1]]
- # group by image index (speedup if multiple faces per image)
- df_img_groups = df_roi.groupby('record_index')
- log.debug('processing {:,} groups'.format(len(df_img_groups)))
-
- # store landmarks in list
- results = []
-
- # -------------------------------------------------------------------------
- # iterate groups with file/record index as key
-
- for record_index, df_img_group in tqdm(df_img_groups):
-
- # access file_record DataSeries
- file_record = df_record.iloc[record_index]
-
- # load image
- fp_im = data_store.face(file_record.subdir, file_record.fn, file_record.ext)
- im = cv.imread(fp_im)
- im_resized = im_utils.resize(im, width=opt_size[0], height=opt_size[1])
- dim = im_resized.shape[:2][::-1]
-
- # iterate ROIs in this image
- for roi_index, df_img in df_img_group.iterrows():
-
- # find landmarks
- bbox_norm = BBox.from_xywh(df_img.x, df_img.y, df_img.w, df_img.h)
- bbox_dim = bbox_norm.to_dim(dim)
-
- age_apnt = age_estimator_apnt.predict(im_resized, bbox_norm)
- age_real = age_estimator_real.predict(im_resized, bbox_norm)
- gender = gender_estimator.predict(im_resized, bbox_norm)
-
- attr_obj = {
- 'age_real':float(f'{age_real:.2f}'),
- 'age_apparent': float(f'{age_apnt:.2f}'),
- 'm': float(f'{gender["m"]:.4f}'),
- 'f': float(f'{gender["f"]:.4f}'),
- 'roi_index': roi_index
- }
- results.append(attr_obj)
-
-
- # create DataFrame and save to CSV
- file_utils.mkdirs(fp_out)
- df = pd.DataFrame.from_dict(results)
- df.index.name = 'index'
- df.to_csv(fp_out)
-
- # save script
- file_utils.write_text(' '.join(sys.argv), '{}.sh'.format(fp_out)) \ No newline at end of file