summaryrefslogtreecommitdiff
path: root/megapixels/commands/cv/face_attributes.py
blob: 01fe3bd140493913355195696762f190ad88d1a2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
"""

"""

import click

from app.settings import types
from app.utils import click_utils
from app.settings import app_cfg as cfg


@click.command()
@click.option('-i', '--input', 'opt_fp_in', default=None,
  help='Override enum input filename CSV')
@click.option('-o', '--output', 'opt_fp_out', default=None,
  help='Override enum output filename CSV')
@click.option('-m', '--media', 'opt_dir_media', default=None,
  help='Override enum media directory')
@click.option('--store', 'opt_data_store',
  type=cfg.DataStoreVar,
  default=click_utils.get_default(types.DataStore.HDD),
  show_default=True,
  help=click_utils.show_help(types.Dataset))
@click.option('--dataset', 'opt_dataset',
  type=cfg.DatasetVar,
  required=True,
  show_default=True,
  help=click_utils.show_help(types.Dataset))
@click.option('--size', 'opt_size', 
  type=(int, int), default=cfg.DEFAULT_SIZE_FACE_DETECT,
  help='Processing size for detection')
@click.option('--slice', 'opt_slice', type=(int, int), default=(None, None),
  help='Slice list of files')
@click.option('-f', '--force', 'opt_force', is_flag=True,
  help='Force overwrite file')
@click.option('-d', '--display', 'opt_display', is_flag=True,
  help='Display image for debugging')
@click.pass_context
def cli(ctx, opt_fp_in, opt_fp_out, opt_dir_media, opt_data_store, opt_dataset,
  opt_size, opt_slice, opt_force, opt_display):
  """Creates 2D 68-point landmarks"""
  
  import sys
  import os
  from os.path import join
  from pathlib import Path
  from glob import glob
  
  from tqdm import tqdm
  import numpy as np
  import cv2 as cv
  import pandas as pd

  from app.utils import logger_utils, file_utils, im_utils, display_utils, draw_utils
  from app.processors import face_age_gender
  from app.models.data_store import DataStore
  from app.models.bbox import BBox

  # -------------------------------------------------------------------------
  # init here

  log = logger_utils.Logger.getLogger()
  # init face processors
  age_estimator_apnt = face_age_gender.FaceAgeApparent()
  age_estimator_real = face_age_gender.FaceAgeReal()
  gender_estimator = face_age_gender.FaceGender()

  # init filepaths
  data_store = DataStore(opt_data_store, opt_dataset)
  # set file output path
  metadata_type = types.Metadata.FACE_ATTRIBUTES
  fp_out = data_store.metadata(metadata_type) if opt_fp_out is None else opt_fp_out
  if not opt_force and Path(fp_out).exists():
    log.error('File exists. Use "-f / --force" to overwite')
    return

  # -------------------------------------------------------------------------
  # load filepath data
  fp_record = data_store.metadata(types.Metadata.FILE_RECORD)
  df_record = pd.read_csv(fp_record, dtype=cfg.FILE_RECORD_DTYPES).set_index('index')
  # load ROI data
  fp_roi = data_store.metadata(types.Metadata.FACE_ROI)
  df_roi = pd.read_csv(fp_roi).set_index('index')
  # slice if you want
  if opt_slice:
    df_roi = df_roi[opt_slice[0]:opt_slice[1]]
  # group by image index (speedup if multiple faces per image)
  df_img_groups = df_roi.groupby('record_index')
  log.debug('processing {:,} groups'.format(len(df_img_groups)))

  # store landmarks in list
  results = []

  # -------------------------------------------------------------------------
  # iterate groups with file/record index as key

  for record_index, df_img_group in tqdm(df_img_groups):
    
    # access file_record DataSeries
    file_record = df_record.iloc[record_index]

    # load image
    fp_im = data_store.face(file_record.subdir, file_record.fn, file_record.ext)
    im = cv.imread(fp_im)
    im_resized = im_utils.resize(im, width=opt_size[0], height=opt_size[1])
    dim = im_resized.shape[:2][::-1]
    
    # iterate ROIs in this image
    for roi_index, df_img in df_img_group.iterrows():
      
      # find landmarks
      bbox_norm = BBox.from_xywh(df_img.x, df_img.y, df_img.w, df_img.h)
      bbox_dim = bbox_norm.to_dim(dim)
      
      age_apnt = age_estimator_apnt.predict(im_resized, bbox_norm)
      age_real = age_estimator_real.predict(im_resized, bbox_norm)
      gender = gender_estimator.predict(im_resized, bbox_norm)

      attr_obj = {
        'age_real':float(f'{age_real:.2f}'), 
        'age_apparent': float(f'{age_apnt:.2f}'), 
        'm': float(f'{gender["m"]:.4f}'), 
        'f': float(f'{gender["f"]:.4f}'),
        'roi_index': roi_index
        }
      results.append(attr_obj)


  # create DataFrame and save to CSV
  file_utils.mkdirs(fp_out)
  df = pd.DataFrame.from_dict(results)
  df.index.name = 'index'
  df.to_csv(fp_out)
  
  # save script
  file_utils.write_text(' '.join(sys.argv), '{}.sh'.format(fp_out))