summaryrefslogtreecommitdiff
path: root/megapixels/app/processors
diff options
context:
space:
mode:
Diffstat (limited to 'megapixels/app/processors')
-rw-r--r--megapixels/app/processors/face_detector.py101
-rw-r--r--megapixels/app/processors/face_landmarks.py60
-rw-r--r--megapixels/app/processors/face_pose.py110
-rw-r--r--megapixels/app/processors/face_recognition.py43
4 files changed, 296 insertions, 18 deletions
diff --git a/megapixels/app/processors/face_detector.py b/megapixels/app/processors/face_detector.py
index 747e057b..593e9feb 100644
--- a/megapixels/app/processors/face_detector.py
+++ b/megapixels/app/processors/face_detector.py
@@ -4,12 +4,51 @@ from pathlib import Path
import cv2 as cv
import numpy as np
-import dlib
-# import imutils
+import imutils
+import operator
from app.utils import im_utils, logger_utils
from app.models.bbox import BBox
from app.settings import app_cfg as cfg
+from app.settings import types
+
+
+class DetectorMTCNN:
+
+ # https://github.com/ipazc/mtcnn
+ # pip install mtcnn
+
+ dnn_size = (300, 300)
+
+ def __init__(self, size=(400,400)):
+ from mtcnn.mtcnn import MTCNN
+ self.detector = MTCNN()
+
+ def detect(self, im, opt_size=(400,400), opt_conf_thresh=None, opt_pyramids=None, opt_largest=False):
+ '''Detects face using MTCNN and returns (list) of BBox
+ :param im: (numpy.ndarray) image
+ :returns list of BBox
+ '''
+ bboxes = []
+ #conf_thresh = self.conf_thresh if opt_conf_thresh is None else opt_conf_thresh
+ #pyramids = self.pyramids if opt_pyramids is None else opt_pyramids
+ dnn_size = self.dnn_size if opt_size is None else opt_size
+
+ im = im_utils.resize(im, width=dnn_size[0], height=dnn_size[1])
+ dim = im.shape[:2][::-1]
+ dets = self.detector.detect_faces(im)
+ for det in dets:
+ rect = det['box']
+ #keypoints = det['keypoints'] # not using here. see 'face_landmarks.py'
+ bbox = BBox.from_xywh_dim(*rect, dim)
+ bboxes.append(bbox)
+
+ if opt_largest and len(bboxes) > 1:
+ # only keep largest
+ bboxes.sort(key=operator.attrgetter('area'), reverse=True)
+ bboxes = [bboxes[0]]
+
+ return bboxes
class DetectorHaar:
@@ -21,16 +60,18 @@ class DetectorHaar:
self.log = logger_utils.Logger.getLogger()
def detect(self, im, scale_factor=1.05, overlaps=5):
- return
+ pass
class DetectorDLIBCNN:
+
dnn_size = (300, 300)
pyramids = 0
conf_thresh = 0.85
def __init__(self, opt_gpu=0):
+ import dlib
self.log = logger_utils.Logger.getLogger()
cuda_visible_devices = os.getenv('CUDA_VISIBLE_DEVICES', '')
os.environ['CUDA_VISIBLE_DEVICES'] = str(opt_gpu)
@@ -38,8 +79,8 @@ class DetectorDLIBCNN:
self.detector = dlib.cnn_face_detection_model_v1(cfg.DIR_MODELS_DLIB_CNN)
os.environ['CUDA_VISIBLE_DEVICES'] = cuda_visible_devices # reset
- def detect(self, im, opt_size=None, opt_conf_thresh=None, opt_pyramids=None):
- rois = []
+ def detect(self, im, opt_size=None, opt_conf_thresh=None, opt_pyramids=None, opt_largest=False):
+ bboxes = []
conf_thresh = self.conf_thresh if opt_conf_thresh is None else opt_conf_thresh
pyramids = self.pyramids if opt_pyramids is None else opt_pyramids
dnn_size = self.dnn_size if opt_size is None else opt_size
@@ -48,24 +89,34 @@ class DetectorDLIBCNN:
dim = im.shape[:2][::-1]
im = im_utils.bgr2rgb(im) # convert to RGB for dlib
# run detector
- mmod_rects = self.detector(im, 1)
+ mmod_rects = self.detector(im, opt_pyramids)
# sort results
for mmod_rect in mmod_rects:
+ self.log.debug('conf: {}, this: {}'.format(conf_thresh, mmod_rect.confidence))
if mmod_rect.confidence > conf_thresh:
bbox = BBox.from_dlib_dim(mmod_rect.rect, dim)
- rois.append(bbox)
- return rois
+ bboxes.append(bbox)
+
+ if opt_largest and len(bboxes) > 1:
+ # only keep largest
+ bboxes.sort(key=operator.attrgetter('area'), reverse=True)
+ bboxes = [bboxes[0]]
+
+ return bboxes
class DetectorDLIBHOG:
size = (320, 240)
pyramids = 0
+ conf_thresh = 0.85
def __init__(self):
+ import dlib
+ self.log = logger_utils.Logger.getLogger()
self.detector = dlib.get_frontal_face_detector()
- def detect(self, im, opt_size=None, opt_conf_thresh=None, opt_pyramids=0):
+ def detect(self, im, opt_size=None, opt_conf_thresh=None, opt_pyramids=0, opt_largest=False):
conf_thresh = self.conf_thresh if opt_conf_thresh is None else opt_conf_thresh
dnn_size = self.size if opt_size is None else opt_size
pyramids = self.pyramids if opt_pyramids is None else opt_pyramids
@@ -75,13 +126,20 @@ class DetectorDLIBHOG:
im = im_utils.bgr2rgb(im) # ?
hog_results = self.detector.run(im, pyramids)
- rois = []
+ bboxes = []
if len(hog_results[0]) > 0:
+ self.log.debug(hog_results)
for rect, score, direction in zip(*hog_results):
- if score > opt_conf_thresh:
+ if score > conf_thresh:
bbox = BBox.from_dlib_dim(rect, dim)
- rois.append(bbox)
- return rois
+ bboxes.append(bbox)
+
+ if opt_largest and len(bboxes) > 1:
+ # only keep largest
+ bboxes.sort(key=operator.attrgetter('area'), reverse=True)
+ bboxes = [bboxes[0]]
+
+ return bboxes
class DetectorCVDNN:
@@ -92,13 +150,14 @@ class DetectorCVDNN:
conf_thresh = 0.85
def __init__(self):
+ import dlib
fp_prototxt = join(cfg.DIR_MODELS_CAFFE, 'face_detect', 'opencv_face_detector.prototxt')
fp_model = join(cfg.DIR_MODELS_CAFFE, 'face_detect', 'opencv_face_detector.caffemodel')
self.net = cv.dnn.readNet(fp_prototxt, fp_model)
self.net.setPreferableBackend(cv.dnn.DNN_BACKEND_OPENCV)
self.net.setPreferableTarget(cv.dnn.DNN_TARGET_CPU)
- def detect(self, im, opt_size=None, opt_conf_thresh=None):
+ def detect(self, im, opt_size=None, opt_conf_thresh=None, opt_largest=False, opt_pyramids=None):
"""Detects faces and returns (list) of (BBox)"""
conf_thresh = self.conf_thresh if opt_conf_thresh is None else opt_conf_thresh
dnn_size = self.size if opt_size is None else opt_size
@@ -107,10 +166,16 @@ class DetectorCVDNN:
self.net.setInput(blob)
net_outputs = self.net.forward()
- rois = []
+ bboxes = []
for i in range(0, net_outputs.shape[2]):
conf = net_outputs[0, 0, i, 2]
- if conf > opt_conf_thresh:
+ if conf > conf_thresh:
rect_norm = net_outputs[0, 0, i, 3:7]
- rois.append(BBox(*rect_norm))
- return rois \ No newline at end of file
+ bboxes.append(BBox(*rect_norm))
+
+ if opt_largest and len(bboxes) > 1:
+ # only keep largest
+ bboxes.sort(key=operator.attrgetter('area'), reverse=True)
+ bboxes = [bboxes[0]]
+
+ return bboxes \ No newline at end of file
diff --git a/megapixels/app/processors/face_landmarks.py b/megapixels/app/processors/face_landmarks.py
new file mode 100644
index 00000000..dfcb9ee8
--- /dev/null
+++ b/megapixels/app/processors/face_landmarks.py
@@ -0,0 +1,60 @@
+import os
+from os.path import join
+from pathlib import Path
+
+import cv2 as cv
+import numpy as np
+import imutils
+from app.utils import im_utils, logger_utils
+from app.models.bbox import BBox
+from app.settings import app_cfg as cfg
+from app.settings import types
+from app.models.bbox import BBox
+
+class LandmarksDLIB:
+
+ def __init__(self):
+ # init dlib
+ import dlib
+ self.log = logger_utils.Logger.getLogger()
+ self.predictor = dlib.shape_predictor(cfg.DIR_MODELS_DLIB_68PT)
+
+ def landmarks(self, im, bbox):
+ # Draw high-confidence faces
+ dim = im.shape[:2][::-1]
+ bbox = bbox.to_dlib()
+ im_gray = cv.cvtColor(im, cv.COLOR_BGR2GRAY)
+ landmarks = [[p.x, p.y] for p in self.predictor(im_gray, bbox).parts()]
+ return landmarks
+
+
+class LandmarksMTCNN:
+
+ # https://github.com/ipazc/mtcnn
+ # pip install mtcnn
+
+ dnn_size = (400, 400)
+
+ def __init__(self, size=(400,400)):
+ from mtcnn.mtcnn import MTCNN
+ self.detector = MTCNN()
+
+ def detect(self, im, opt_size=None, opt_conf_thresh=None, opt_pyramids=None):
+ '''Detects face using MTCNN and returns (list) of BBox
+ :param im: (numpy.ndarray) image
+ :returns list of BBox
+ '''
+ rois = []
+ dnn_size = self.dnn_size if opt_size is None else opt_size
+ im = im_utils.resize(im, width=dnn_size[0], height=dnn_size[1])
+ dim = im.shape[:2][::-1]
+
+ # run MTCNN
+ dets = self.detector.detect_faces(im)
+
+ for det in dets:
+ rect = det['box']
+ keypoints = det['keypoints'] # not using here. see 'face_landmarks.py'
+ bbox = BBox.from_xywh_dim(*rect, dim)
+ rois.append(bbox)
+ return rois \ No newline at end of file
diff --git a/megapixels/app/processors/face_pose.py b/megapixels/app/processors/face_pose.py
new file mode 100644
index 00000000..67ac685d
--- /dev/null
+++ b/megapixels/app/processors/face_pose.py
@@ -0,0 +1,110 @@
+import os
+from os.path import join
+from pathlib import Path
+import math
+
+import cv2 as cv
+import numpy as np
+import imutils
+
+from app.utils import im_utils, logger_utils
+from app.models.bbox import BBox
+from app.settings import app_cfg as cfg
+from app.settings import types
+
+
+
+class FacePoseDLIB:
+
+
+ dnn_size = (400, 400)
+
+ def __init__(self):
+ pass
+
+ def pose(self, landmarks, dim):
+ '''Calculates pose
+ '''
+ degrees = compute_pose_degrees(landmarks, dim)
+ return degrees
+
+
+# -----------------------------------------------------------
+# utilities
+# -----------------------------------------------------------
+
+def compute_pose_degrees(landmarks, dim):
+ # computes pose using 6 / 68 points from dlib face landmarks
+ # based on learnopencv.com and
+ # https://github.com/jerryhouuu/Face-Yaw-Roll-Pitch-from-Pose-Estimation-using-OpenCV/
+ # NB: not as accurate as MTCNN, see @jerryhouuu for ideas
+
+ pose_points_idx = (30, 8, 36, 45, 48, 54)
+ axis = np.float32([[500,0,0], [0,500,0], [0,0,500]])
+
+ # 3D model points.
+ model_points = np.array([
+ (0.0, 0.0, 0.0), # Nose tip
+ (0.0, -330.0, -65.0), # Chin
+ (-225.0, 170.0, -135.0), # Left eye left corner
+ (225.0, 170.0, -135.0), # Right eye right corne
+ (-150.0, -150.0, -125.0), # Left Mouth corner
+ (150.0, -150.0, -125.0) # Right mouth corner
+ ])
+
+ # Assuming no lens distortion
+ dist_coeffs = np.zeros((4,1))
+
+ # find 6 pose points
+ pose_points = []
+ for j, idx in enumerate(pose_points_idx):
+ pt = landmarks[idx]
+ pose_points.append((pt[0], pt[1]))
+ pose_points = np.array(pose_points, dtype='double') # convert to double
+
+ # create camera matrix
+ focal_length = dim[0]
+ center = (dim[0]/2, dim[1]/2)
+ cam_mat = np.array(
+ [[focal_length, 0, center[0]],
+ [0, focal_length, center[1]],
+ [0, 1, 1]], dtype = "double")
+
+ # solve PnP for rotation and translation
+ (success, rot_vec, tran_vec) = cv.solvePnP(model_points, pose_points,
+ cam_mat, dist_coeffs,
+ flags=cv.SOLVEPNP_ITERATIVE)
+
+ # project points
+ #pts_im, jac = cv.projectPoints(axis, rot_vec, tran_vec, cam_mat, dist_coeffs)
+ #pts_model, jac2 = cv.projectPoints(model_points, rot_vec, tran_vec, cam_mat, dist_coeffs)
+ rvec_matrix = cv.Rodrigues(rot_vec)[0]
+
+ # convert to degrees
+ proj_matrix = np.hstack((rvec_matrix, tran_vec))
+ eulerAngles = cv.decomposeProjectionMatrix(proj_matrix)[6]
+ pitch, yaw, roll = [math.radians(x) for x in eulerAngles]
+ pitch = math.degrees(math.asin(math.sin(pitch)))
+ roll = -math.degrees(math.asin(math.sin(roll)))
+ yaw = math.degrees(math.asin(math.sin(yaw)))
+ degrees = {'pitch': pitch, 'roll': roll, 'yaw': yaw}
+
+ # add nose point
+ #pt_nose = tuple(landmarks[pose_points_idx[0]])
+ return degrees
+ #return pts_im, pts_model, degrees, pt_nose
+
+
+def draw_pose(im, pts_im, pts_model, pt_nose):
+ cv.line(im, pt_nose, tuple(pts_im[1].ravel()), (0,255,0), 3) #GREEN
+ cv.line(im, pt_nose, tuple(pts_im[0].ravel()), (255,0,), 3) #BLUE
+ cv.line(im, pt_nose, tuple(pts_im[2].ravel()), (0,0,255), 3) #RED
+ return im
+
+
+def draw_degrees(im, degrees, color=(0,255,0)):
+ for i, item in enumerate(degrees.items()):
+ k, v = item
+ t = '{}: {:.2f}'.format(k, v)
+ origin = (10, 30 + (25 * i))
+ cv.putText(im, t, origin, cv.FONT_HERSHEY_SIMPLEX, 0.5, color, thickness=2, lineType=2) \ No newline at end of file
diff --git a/megapixels/app/processors/face_recognition.py b/megapixels/app/processors/face_recognition.py
new file mode 100644
index 00000000..9c3a301d
--- /dev/null
+++ b/megapixels/app/processors/face_recognition.py
@@ -0,0 +1,43 @@
+import os
+from os.path import join
+from pathlib import Path
+
+import cv2 as cv
+import numpy as np
+import dlib
+import imutils
+
+from app.utils import im_utils, logger_utils
+from app.models.bbox import BBox
+from app.settings import app_cfg as cfg
+from app.settings import types
+
+class RecognitionDLIB:
+
+ # https://github.com/davisking/dlib/blob/master/python_examples/face_recognition.py
+ # facerec.compute_face_descriptor(img, shape, 100, 0.25)
+
+ def __init__(self, opt_gpu=0):
+ self.log = logger_utils.Logger.getLogger()
+ if opt_gpu > 0:
+ cuda_visible_devices = os.getenv('CUDA_VISIBLE_DEVICES', '')
+ os.environ['CUDA_VISIBLE_DEVICES'] = str(opt_gpu)
+ self.predictor = dlib.shape_predictor(cfg.DIR_MODELS_DLIB_5PT)
+ self.facerec = dlib.face_recognition_model_v1(cfg.DIR_MODELS_DLIB_FACEREC_RESNET)
+ os.environ['CUDA_VISIBLE_DEVICES'] = cuda_visible_devices # reset GPU env
+
+ def vec(self, im, bbox, width=100,
+ jitters=cfg.DLIB_FACEREC_JITTERS, padding=cfg.DLIB_FACEREC_PADDING):
+ # Converts image and bbox into 128d vector
+ # scale the image so the face is always 100x100 pixels
+
+ scale = width / bbox.width
+ im = cv.resize(im, (scale, scale), interploation=cv.INTER_LANCZOS4)
+ bbox_dlib = bbox.to_dlib()
+ face_shape = self.predictor(im, bbox_dlib)
+ vec = self.facerec.compute_face_descriptor(im, face_shape, jitters, padding)
+ return vec
+
+
+ def similarity(self, query_enc, known_enc):
+ return np.linalg.norm(query_enc - known_enc, axis=1)