diff options
| author | adamhrv <adam@ahprojects.com> | 2018-12-13 14:39:07 +0100 |
|---|---|---|
| committer | adamhrv <adam@ahprojects.com> | 2018-12-13 14:39:07 +0100 |
| commit | bd51b3cdf474c93b1d7c667d9e5a33159c97640a (patch) | |
| tree | 6a5ae5524efa971cbd348cc2720d200fbeb2fecb /megapixels/app/processors | |
| parent | 49a49bebe3f972e93add837180f5672a4ae62ce0 (diff) | |
add pose, indexing
Diffstat (limited to 'megapixels/app/processors')
| -rw-r--r-- | megapixels/app/processors/face_detector.py | 101 | ||||
| -rw-r--r-- | megapixels/app/processors/face_landmarks.py | 60 | ||||
| -rw-r--r-- | megapixels/app/processors/face_pose.py | 110 | ||||
| -rw-r--r-- | megapixels/app/processors/face_recognition.py | 43 |
4 files changed, 296 insertions, 18 deletions
diff --git a/megapixels/app/processors/face_detector.py b/megapixels/app/processors/face_detector.py index 747e057b..593e9feb 100644 --- a/megapixels/app/processors/face_detector.py +++ b/megapixels/app/processors/face_detector.py @@ -4,12 +4,51 @@ from pathlib import Path import cv2 as cv import numpy as np -import dlib -# import imutils +import imutils +import operator from app.utils import im_utils, logger_utils from app.models.bbox import BBox from app.settings import app_cfg as cfg +from app.settings import types + + +class DetectorMTCNN: + + # https://github.com/ipazc/mtcnn + # pip install mtcnn + + dnn_size = (300, 300) + + def __init__(self, size=(400,400)): + from mtcnn.mtcnn import MTCNN + self.detector = MTCNN() + + def detect(self, im, opt_size=(400,400), opt_conf_thresh=None, opt_pyramids=None, opt_largest=False): + '''Detects face using MTCNN and returns (list) of BBox + :param im: (numpy.ndarray) image + :returns list of BBox + ''' + bboxes = [] + #conf_thresh = self.conf_thresh if opt_conf_thresh is None else opt_conf_thresh + #pyramids = self.pyramids if opt_pyramids is None else opt_pyramids + dnn_size = self.dnn_size if opt_size is None else opt_size + + im = im_utils.resize(im, width=dnn_size[0], height=dnn_size[1]) + dim = im.shape[:2][::-1] + dets = self.detector.detect_faces(im) + for det in dets: + rect = det['box'] + #keypoints = det['keypoints'] # not using here. see 'face_landmarks.py' + bbox = BBox.from_xywh_dim(*rect, dim) + bboxes.append(bbox) + + if opt_largest and len(bboxes) > 1: + # only keep largest + bboxes.sort(key=operator.attrgetter('area'), reverse=True) + bboxes = [bboxes[0]] + + return bboxes class DetectorHaar: @@ -21,16 +60,18 @@ class DetectorHaar: self.log = logger_utils.Logger.getLogger() def detect(self, im, scale_factor=1.05, overlaps=5): - return + pass class DetectorDLIBCNN: + dnn_size = (300, 300) pyramids = 0 conf_thresh = 0.85 def __init__(self, opt_gpu=0): + import dlib self.log = logger_utils.Logger.getLogger() cuda_visible_devices = os.getenv('CUDA_VISIBLE_DEVICES', '') os.environ['CUDA_VISIBLE_DEVICES'] = str(opt_gpu) @@ -38,8 +79,8 @@ class DetectorDLIBCNN: self.detector = dlib.cnn_face_detection_model_v1(cfg.DIR_MODELS_DLIB_CNN) os.environ['CUDA_VISIBLE_DEVICES'] = cuda_visible_devices # reset - def detect(self, im, opt_size=None, opt_conf_thresh=None, opt_pyramids=None): - rois = [] + def detect(self, im, opt_size=None, opt_conf_thresh=None, opt_pyramids=None, opt_largest=False): + bboxes = [] conf_thresh = self.conf_thresh if opt_conf_thresh is None else opt_conf_thresh pyramids = self.pyramids if opt_pyramids is None else opt_pyramids dnn_size = self.dnn_size if opt_size is None else opt_size @@ -48,24 +89,34 @@ class DetectorDLIBCNN: dim = im.shape[:2][::-1] im = im_utils.bgr2rgb(im) # convert to RGB for dlib # run detector - mmod_rects = self.detector(im, 1) + mmod_rects = self.detector(im, opt_pyramids) # sort results for mmod_rect in mmod_rects: + self.log.debug('conf: {}, this: {}'.format(conf_thresh, mmod_rect.confidence)) if mmod_rect.confidence > conf_thresh: bbox = BBox.from_dlib_dim(mmod_rect.rect, dim) - rois.append(bbox) - return rois + bboxes.append(bbox) + + if opt_largest and len(bboxes) > 1: + # only keep largest + bboxes.sort(key=operator.attrgetter('area'), reverse=True) + bboxes = [bboxes[0]] + + return bboxes class DetectorDLIBHOG: size = (320, 240) pyramids = 0 + conf_thresh = 0.85 def __init__(self): + import dlib + self.log = logger_utils.Logger.getLogger() self.detector = dlib.get_frontal_face_detector() - def detect(self, im, opt_size=None, opt_conf_thresh=None, opt_pyramids=0): + def detect(self, im, opt_size=None, opt_conf_thresh=None, opt_pyramids=0, opt_largest=False): conf_thresh = self.conf_thresh if opt_conf_thresh is None else opt_conf_thresh dnn_size = self.size if opt_size is None else opt_size pyramids = self.pyramids if opt_pyramids is None else opt_pyramids @@ -75,13 +126,20 @@ class DetectorDLIBHOG: im = im_utils.bgr2rgb(im) # ? hog_results = self.detector.run(im, pyramids) - rois = [] + bboxes = [] if len(hog_results[0]) > 0: + self.log.debug(hog_results) for rect, score, direction in zip(*hog_results): - if score > opt_conf_thresh: + if score > conf_thresh: bbox = BBox.from_dlib_dim(rect, dim) - rois.append(bbox) - return rois + bboxes.append(bbox) + + if opt_largest and len(bboxes) > 1: + # only keep largest + bboxes.sort(key=operator.attrgetter('area'), reverse=True) + bboxes = [bboxes[0]] + + return bboxes class DetectorCVDNN: @@ -92,13 +150,14 @@ class DetectorCVDNN: conf_thresh = 0.85 def __init__(self): + import dlib fp_prototxt = join(cfg.DIR_MODELS_CAFFE, 'face_detect', 'opencv_face_detector.prototxt') fp_model = join(cfg.DIR_MODELS_CAFFE, 'face_detect', 'opencv_face_detector.caffemodel') self.net = cv.dnn.readNet(fp_prototxt, fp_model) self.net.setPreferableBackend(cv.dnn.DNN_BACKEND_OPENCV) self.net.setPreferableTarget(cv.dnn.DNN_TARGET_CPU) - def detect(self, im, opt_size=None, opt_conf_thresh=None): + def detect(self, im, opt_size=None, opt_conf_thresh=None, opt_largest=False, opt_pyramids=None): """Detects faces and returns (list) of (BBox)""" conf_thresh = self.conf_thresh if opt_conf_thresh is None else opt_conf_thresh dnn_size = self.size if opt_size is None else opt_size @@ -107,10 +166,16 @@ class DetectorCVDNN: self.net.setInput(blob) net_outputs = self.net.forward() - rois = [] + bboxes = [] for i in range(0, net_outputs.shape[2]): conf = net_outputs[0, 0, i, 2] - if conf > opt_conf_thresh: + if conf > conf_thresh: rect_norm = net_outputs[0, 0, i, 3:7] - rois.append(BBox(*rect_norm)) - return rois
\ No newline at end of file + bboxes.append(BBox(*rect_norm)) + + if opt_largest and len(bboxes) > 1: + # only keep largest + bboxes.sort(key=operator.attrgetter('area'), reverse=True) + bboxes = [bboxes[0]] + + return bboxes
\ No newline at end of file diff --git a/megapixels/app/processors/face_landmarks.py b/megapixels/app/processors/face_landmarks.py new file mode 100644 index 00000000..dfcb9ee8 --- /dev/null +++ b/megapixels/app/processors/face_landmarks.py @@ -0,0 +1,60 @@ +import os +from os.path import join +from pathlib import Path + +import cv2 as cv +import numpy as np +import imutils +from app.utils import im_utils, logger_utils +from app.models.bbox import BBox +from app.settings import app_cfg as cfg +from app.settings import types +from app.models.bbox import BBox + +class LandmarksDLIB: + + def __init__(self): + # init dlib + import dlib + self.log = logger_utils.Logger.getLogger() + self.predictor = dlib.shape_predictor(cfg.DIR_MODELS_DLIB_68PT) + + def landmarks(self, im, bbox): + # Draw high-confidence faces + dim = im.shape[:2][::-1] + bbox = bbox.to_dlib() + im_gray = cv.cvtColor(im, cv.COLOR_BGR2GRAY) + landmarks = [[p.x, p.y] for p in self.predictor(im_gray, bbox).parts()] + return landmarks + + +class LandmarksMTCNN: + + # https://github.com/ipazc/mtcnn + # pip install mtcnn + + dnn_size = (400, 400) + + def __init__(self, size=(400,400)): + from mtcnn.mtcnn import MTCNN + self.detector = MTCNN() + + def detect(self, im, opt_size=None, opt_conf_thresh=None, opt_pyramids=None): + '''Detects face using MTCNN and returns (list) of BBox + :param im: (numpy.ndarray) image + :returns list of BBox + ''' + rois = [] + dnn_size = self.dnn_size if opt_size is None else opt_size + im = im_utils.resize(im, width=dnn_size[0], height=dnn_size[1]) + dim = im.shape[:2][::-1] + + # run MTCNN + dets = self.detector.detect_faces(im) + + for det in dets: + rect = det['box'] + keypoints = det['keypoints'] # not using here. see 'face_landmarks.py' + bbox = BBox.from_xywh_dim(*rect, dim) + rois.append(bbox) + return rois
\ No newline at end of file diff --git a/megapixels/app/processors/face_pose.py b/megapixels/app/processors/face_pose.py new file mode 100644 index 00000000..67ac685d --- /dev/null +++ b/megapixels/app/processors/face_pose.py @@ -0,0 +1,110 @@ +import os +from os.path import join +from pathlib import Path +import math + +import cv2 as cv +import numpy as np +import imutils + +from app.utils import im_utils, logger_utils +from app.models.bbox import BBox +from app.settings import app_cfg as cfg +from app.settings import types + + + +class FacePoseDLIB: + + + dnn_size = (400, 400) + + def __init__(self): + pass + + def pose(self, landmarks, dim): + '''Calculates pose + ''' + degrees = compute_pose_degrees(landmarks, dim) + return degrees + + +# ----------------------------------------------------------- +# utilities +# ----------------------------------------------------------- + +def compute_pose_degrees(landmarks, dim): + # computes pose using 6 / 68 points from dlib face landmarks + # based on learnopencv.com and + # https://github.com/jerryhouuu/Face-Yaw-Roll-Pitch-from-Pose-Estimation-using-OpenCV/ + # NB: not as accurate as MTCNN, see @jerryhouuu for ideas + + pose_points_idx = (30, 8, 36, 45, 48, 54) + axis = np.float32([[500,0,0], [0,500,0], [0,0,500]]) + + # 3D model points. + model_points = np.array([ + (0.0, 0.0, 0.0), # Nose tip + (0.0, -330.0, -65.0), # Chin + (-225.0, 170.0, -135.0), # Left eye left corner + (225.0, 170.0, -135.0), # Right eye right corne + (-150.0, -150.0, -125.0), # Left Mouth corner + (150.0, -150.0, -125.0) # Right mouth corner + ]) + + # Assuming no lens distortion + dist_coeffs = np.zeros((4,1)) + + # find 6 pose points + pose_points = [] + for j, idx in enumerate(pose_points_idx): + pt = landmarks[idx] + pose_points.append((pt[0], pt[1])) + pose_points = np.array(pose_points, dtype='double') # convert to double + + # create camera matrix + focal_length = dim[0] + center = (dim[0]/2, dim[1]/2) + cam_mat = np.array( + [[focal_length, 0, center[0]], + [0, focal_length, center[1]], + [0, 1, 1]], dtype = "double") + + # solve PnP for rotation and translation + (success, rot_vec, tran_vec) = cv.solvePnP(model_points, pose_points, + cam_mat, dist_coeffs, + flags=cv.SOLVEPNP_ITERATIVE) + + # project points + #pts_im, jac = cv.projectPoints(axis, rot_vec, tran_vec, cam_mat, dist_coeffs) + #pts_model, jac2 = cv.projectPoints(model_points, rot_vec, tran_vec, cam_mat, dist_coeffs) + rvec_matrix = cv.Rodrigues(rot_vec)[0] + + # convert to degrees + proj_matrix = np.hstack((rvec_matrix, tran_vec)) + eulerAngles = cv.decomposeProjectionMatrix(proj_matrix)[6] + pitch, yaw, roll = [math.radians(x) for x in eulerAngles] + pitch = math.degrees(math.asin(math.sin(pitch))) + roll = -math.degrees(math.asin(math.sin(roll))) + yaw = math.degrees(math.asin(math.sin(yaw))) + degrees = {'pitch': pitch, 'roll': roll, 'yaw': yaw} + + # add nose point + #pt_nose = tuple(landmarks[pose_points_idx[0]]) + return degrees + #return pts_im, pts_model, degrees, pt_nose + + +def draw_pose(im, pts_im, pts_model, pt_nose): + cv.line(im, pt_nose, tuple(pts_im[1].ravel()), (0,255,0), 3) #GREEN + cv.line(im, pt_nose, tuple(pts_im[0].ravel()), (255,0,), 3) #BLUE + cv.line(im, pt_nose, tuple(pts_im[2].ravel()), (0,0,255), 3) #RED + return im + + +def draw_degrees(im, degrees, color=(0,255,0)): + for i, item in enumerate(degrees.items()): + k, v = item + t = '{}: {:.2f}'.format(k, v) + origin = (10, 30 + (25 * i)) + cv.putText(im, t, origin, cv.FONT_HERSHEY_SIMPLEX, 0.5, color, thickness=2, lineType=2)
\ No newline at end of file diff --git a/megapixels/app/processors/face_recognition.py b/megapixels/app/processors/face_recognition.py new file mode 100644 index 00000000..9c3a301d --- /dev/null +++ b/megapixels/app/processors/face_recognition.py @@ -0,0 +1,43 @@ +import os +from os.path import join +from pathlib import Path + +import cv2 as cv +import numpy as np +import dlib +import imutils + +from app.utils import im_utils, logger_utils +from app.models.bbox import BBox +from app.settings import app_cfg as cfg +from app.settings import types + +class RecognitionDLIB: + + # https://github.com/davisking/dlib/blob/master/python_examples/face_recognition.py + # facerec.compute_face_descriptor(img, shape, 100, 0.25) + + def __init__(self, opt_gpu=0): + self.log = logger_utils.Logger.getLogger() + if opt_gpu > 0: + cuda_visible_devices = os.getenv('CUDA_VISIBLE_DEVICES', '') + os.environ['CUDA_VISIBLE_DEVICES'] = str(opt_gpu) + self.predictor = dlib.shape_predictor(cfg.DIR_MODELS_DLIB_5PT) + self.facerec = dlib.face_recognition_model_v1(cfg.DIR_MODELS_DLIB_FACEREC_RESNET) + os.environ['CUDA_VISIBLE_DEVICES'] = cuda_visible_devices # reset GPU env + + def vec(self, im, bbox, width=100, + jitters=cfg.DLIB_FACEREC_JITTERS, padding=cfg.DLIB_FACEREC_PADDING): + # Converts image and bbox into 128d vector + # scale the image so the face is always 100x100 pixels + + scale = width / bbox.width + im = cv.resize(im, (scale, scale), interploation=cv.INTER_LANCZOS4) + bbox_dlib = bbox.to_dlib() + face_shape = self.predictor(im, bbox_dlib) + vec = self.facerec.compute_face_descriptor(im, face_shape, jitters, padding) + return vec + + + def similarity(self, query_enc, known_enc): + return np.linalg.norm(query_enc - known_enc, axis=1) |
