summaryrefslogtreecommitdiff
path: root/megapixels/app/server
diff options
context:
space:
mode:
authorJules Laplace <julescarbon@gmail.com>2019-01-13 22:20:06 +0100
committerJules Laplace <julescarbon@gmail.com>2019-01-13 22:20:06 +0100
commit198147bef9976a41046c3c513dc4d33babf7a238 (patch)
tree3ae86e13c32dc894d533d937b62e34d551a61084 /megapixels/app/server
parentb4ed297a6dc73ec5f5cf2772ca1b754ea3f98cae (diff)
extracting 3d facial vectors
Diffstat (limited to 'megapixels/app/server')
-rw-r--r--megapixels/app/server/api.py2
-rw-r--r--megapixels/app/server/api_task.py13
-rw-r--r--megapixels/app/server/tasks/__init__.py15
-rw-r--r--megapixels/app/server/tasks/blur.py15
-rw-r--r--megapixels/app/server/tasks/demo.py244
-rw-r--r--megapixels/app/server/tasks/fullmonte.py199
6 files changed, 271 insertions, 217 deletions
diff --git a/megapixels/app/server/api.py b/megapixels/app/server/api.py
index 5ad454d8..b3bce9bc 100644
--- a/megapixels/app/server/api.py
+++ b/megapixels/app/server/api.py
@@ -1,5 +1,3 @@
-import logging
-import logging.handlers
import os
import re
import time
diff --git a/megapixels/app/server/api_task.py b/megapixels/app/server/api_task.py
index c9bc19ed..57ae9f7d 100644
--- a/megapixels/app/server/api_task.py
+++ b/megapixels/app/server/api_task.py
@@ -27,7 +27,8 @@ def task_status(task_name, task_id):
if task_name in task_lookup:
task = task_lookup[task_name]['task'].AsyncResult(task_id)
# task = AsyncResult(task_id, app=celery)
- else:
+
+ if task_name not in task_lookup or task.info is None:
return jsonify({
'state': 'error',
'percent': 100,
@@ -75,10 +76,16 @@ def sleep_test():
@api_task.route('/upload/blur', methods=['POST'])
def upload():
+ return process('blur')
+
+@api_task.route('/upload/demo', methods=['POST'])
+def demo():
+ return process('demo')
+
+def process(style):
"""
- Process a images in a particular style
+ Process an image in a particular style
"""
- style = 'blur'
print('style: {}'.format(style))
if style in task_lookup:
task = task_lookup[style]['task']
diff --git a/megapixels/app/server/tasks/__init__.py b/megapixels/app/server/tasks/__init__.py
index fd6e398a..c0db0be5 100644
--- a/megapixels/app/server/tasks/__init__.py
+++ b/megapixels/app/server/tasks/__init__.py
@@ -6,6 +6,7 @@ celery = Celery(__name__, backend=cfg.CELERY_RESULT_BACKEND, broker=cfg.CELERY_B
from app.server.tasks.sleep import sleep_task
from app.server.tasks.blur import blur_task
+from app.server.tasks.demo import demo_task
def list_active_tasks():
dropdown = {}
@@ -35,12 +36,12 @@ task_lookup = {
'blur': {
'title': 'Blur',
'task': blur_task,
- 'active': False,
+ 'active': True,
},
- # 'fullmonte': {
- # 'title': 'TIA facial processing pipeline',
- # 'task': fullmonte,
- # 'active': True,
- # 'default': True,
- # }
+ 'demo': {
+ 'title': 'Facial processing pipeline',
+ 'task': demo_task,
+ 'active': True,
+ 'default': True,
+ }
}
diff --git a/megapixels/app/server/tasks/blur.py b/megapixels/app/server/tasks/blur.py
index 42977097..74798cee 100644
--- a/megapixels/app/server/tasks/blur.py
+++ b/megapixels/app/server/tasks/blur.py
@@ -14,14 +14,14 @@ import app.settings.app_cfg as cfg
from app.server.tasks import celery
from celery.utils.log import get_task_logger
-celery_logger = get_task_logger(__name__)
+log = get_task_logger(__name__)
import imutils
@celery.task(bind=True)
def blur_task(self, uuid_name, fn):
"""Process image and update during"""
- celery_logger.debug('process_image_task, uuid: {}'.format(uuid_name))
- celery_logger.debug('fn: {}'.format(fn))
+ log.debug('process_image_task, uuid: {}'.format(uuid_name))
+ log.debug('fn: {}'.format(fn))
files = []
@@ -48,7 +48,7 @@ def blur_task(self, uuid_name, fn):
fn = uuid_name + '_blur.jpg'
fpath = os.path.join(cfg.DIR_SITE_USER_CONTENT, fn)
im_blur_pil.save(fpath, 'JPEG', quality=80)
- celery_logger.debug('fpath: {}'.format(fpath))
+ log.debug('fpath: {}'.format(fpath))
print('fpath: {}'.format(fpath))
# files.append({
@@ -58,7 +58,10 @@ def blur_task(self, uuid_name, fn):
meta['step'] += 1
meta['message'] = 'Applying blur'
- meta['data']['blur_fn'] = os.path.join('/user_content/', fn)
+ meta['data']['blur_fn'] = {
+ 'title': 'Blurred image',
+ 'url': os.path.join('/user_content/', fn)
+ }
self.update_state(state='PROCESSING', meta=meta)
time.sleep(3)
@@ -70,7 +73,7 @@ def blur_task(self, uuid_name, fn):
self.update_state(state='PROCESSING', meta=meta)
time.sleep(2)
- celery_logger.debug('done!!')
+ log.debug('done!!')
meta['step'] = meta['total']
meta['state'] = 'complete'
diff --git a/megapixels/app/server/tasks/demo.py b/megapixels/app/server/tasks/demo.py
new file mode 100644
index 00000000..acc5dbac
--- /dev/null
+++ b/megapixels/app/server/tasks/demo.py
@@ -0,0 +1,244 @@
+
+import app.settings.app_cfg as cfg
+from app.server.tasks import celery
+
+from celery.utils.log import get_task_logger
+log = get_task_logger(__name__)
+
+opt_size = (256, 256,)
+
+@celery.task(bind=True)
+def demo_task(self, uuid_name, fn):
+
+ import sys
+ import os
+ from os.path import join
+ from pathlib import Path
+ import time
+
+ import numpy as np
+ import cv2 as cv
+ import dlib
+ from PIL import Image
+ import matplotlib.pyplot as plt
+
+ from app.utils import logger_utils, file_utils, im_utils, display_utils, draw_utils
+ from app.utils import plot_utils
+ from app.processors import face_detector, face_landmarks
+ from app.models.data_store import DataStore
+
+ # TODO add selective testing
+ opt_gpu = -1
+ opt_run_pose = True
+ opt_run_2d_68 = True
+ opt_run_3d_68 = True
+ opt_run_3d_68 = True
+ paths
+
+ meta = {
+ 'step': 0,
+ 'total': 3,
+ 'message': 'Starting',
+ 'uuid': uuid_name,
+ 'data': {},
+ }
+ paths = []
+
+ def step(msg, step=0):
+ meta['step'] += step
+ meta['message'] = msg
+ log.debug('> {}'.format(msg))
+ self.update_state(state='PROCESSING', meta=meta)
+
+ step('Loading image')
+ self.update_state(state='PROCESSING', meta=meta)
+
+ # os.path.join('/user_content/', fn)
+
+ # -------------------------------------------------
+ # init here
+
+ # load image
+ im = cv.imread(fn)
+ im_resized = im_utils.resize(im, width=opt_size[0], height=opt_size[1])
+
+ # ----------------------------------------------------------------------------
+ # detect face
+
+ face_detector_instance = face_detector.DetectorDLIBCNN(gpu=opt_gpu) # -1 for CPU
+ step('Detecting face')
+ st = time.time()
+ bboxes = face_detector_instance.detect(im_resized, largest=True)
+ bbox = bboxes[0]
+ dim = im_resized.shape[:2][::-1]
+ bbox_dim = bbox.to_dim(dim)
+ if not bbox:
+ log.error('No face detected')
+ meta['error'] = 'No face detected'
+ self.update_state(state='FAILURE', meta=meta)
+ return meta
+ else:
+ log.info(f'Detected face in {(time.time() - st):.2f}s')
+
+
+ # ----------------------------------------------------------------------------
+ # detect 3D landmarks
+
+ step('Generating 3D Landmarks')
+ log.info('loading 3D landmark generator files...')
+ landmark_detector_3d_68 = face_landmarks.FaceAlignment3D_68(gpu=opt_gpu) # -1 for CPU
+ log.info('generating 3D landmarks...')
+ st = time.time()
+ points_3d_68 = landmark_detector_3d_68.landmarks(im_resized, bbox_dim.to_xyxy())
+ log.info(f'generated 3D landmarks in {(time.time() - st):.2f}s')
+ log.info('')
+
+ # draw 3d landmarks
+ im_landmarks_3d_68 = im_resized.copy()
+ draw_utils.draw_landmarks3D(im_landmarks_3d_68, points_3d_68)
+ draw_utils.draw_bbox(im_landmarks_3d_68, bbox_dim)
+
+ save_image('landmarks_3d_68', '3D Landmarks', im_landmarks_3d_68)
+
+ def save_image(key, title, data):
+ fn = '{}_{}.jpg'.format(uuid_name, key)
+ fpath = os.path.join(cfg.DIR_SITE_USER_CONTENT, fn)
+ paths.append(fpath)
+ cv.imwrite(fpath, im_landmarks_3d_68)
+
+ meta['data']['landmarks_3d_68'] = {
+ 'title': '3D Landmarks',
+ 'url': os.path.join('/user_content/', fn),
+ }
+ step('Generated 3D Landmarks', step=0)
+
+ # ----------------------------------------------------------------------------
+ # generate 3D GIF animation
+
+ # step('Generating GIF Animation')
+ # log.info('generating 3D animation...')
+ # if not opt_fp_out:
+ # fpp_im = Path(opt_fp_in)
+ # fp_out = join(fpp_im.parent, f'{fpp_im.stem}_anim.gif')
+ # else:
+ # fp_out = opt_fp_out
+ # st = time.time()
+ # plot_utils.generate_3d_landmark_anim(np.array(points_3d_68), fp_out,
+ # size=opt_gif_size, num_frames=opt_gif_frames)
+ # log.info(f'Generated animation in {(time.time() - st):.2f}s')
+ # log.info(f'Saved to: {fp_out}')
+ # log.info('')
+
+
+ # # ----------------------------------------------------------------------------
+ # # generate face vectors, only to test if feature extraction works
+
+ # step('Generating face vectors')
+ # log.info('initialize face recognition model...')
+ # from app.processors import face_recognition
+ # face_rec = face_recognition.RecognitionDLIB()
+ # st = time.time()
+ # log.info('generating face vector...')
+ # vec = face_rec.vec(im_resized, bbox_dim)
+ # log.info(f'generated face vector in {(time.time() - st):.2f}s')
+ # log.info('')
+
+
+ # # ----------------------------------------------------------------------------
+ # # generate 68 point landmarks using dlib
+
+ # step('Generating 2D 68PT landmarks')
+ # log.info('initializing face landmarks 68 dlib...')
+ # from app.processors import face_landmarks
+ # landmark_detector_2d_68 = face_landmarks.Dlib2D_68()
+ # log.info('generating 2D 68PT landmarks...')
+ # st = time.time()
+ # points_2d_68 = landmark_detector_2d_68.landmarks(im_resized, bbox_dim)
+ # log.info(f'generated 2D 68PT face landmarks in {(time.time() - st):.2f}s')
+ # log.info('')
+
+
+ # # ----------------------------------------------------------------------------
+ # # generate pose from 68 point 2D landmarks
+
+ # if opt_run_pose:
+ # step('Generating pose')
+ # log.info('initialize pose...')
+ # from app.processors import face_pose
+ # pose_detector = face_pose.FacePoseDLIB()
+ # log.info('generating pose...')
+ # st = time.time()
+ # pose_data = pose_detector.pose(points_2d_68, dim)
+ # log.info(f'generated pose {(time.time() - st):.2f}s')
+ # log.info('')
+
+
+ # # ----------------------------------------------------------------------------
+ # # generate pose from 68 point 2D landmarks
+
+ step('Done')
+
+ # done
+ # self.log.debug('Add age real')
+ # self.log.debug('Add age apparent')
+ # self.log.debug('Add gender')
+
+
+ # # 3DDFA
+ # self.log.debug('Add depth')
+ # self.log.debug('Add pncc')
+
+ # # TODO
+ # self.log.debug('Add 3D face model')
+ # self.log.debug('Add face texture flat')
+ # self.log.debug('Add ethnicity')
+
+ # display
+ # draw bbox
+
+ # # draw 2d landmarks
+ # im_landmarks_2d_68 = im_resized.copy()
+ # draw_utils.draw_landmarks2D(im_landmarks_2d_68, points_2d_68)
+ # draw_utils.draw_bbox(im_landmarks_2d_68, bbox_dim)
+
+ # # draw pose
+ # if opt_run_pose:
+ # im_pose = im_resized.copy()
+ # draw_utils.draw_pose(im_pose, pose_data['point_nose'], pose_data['points'])
+ # draw_utils.draw_degrees(im_pose, pose_data)
+
+ # # draw animated GIF
+ # im = Image.open(fp_out)
+ # im_frames = []
+ # duration = im.info['duration']
+ # try:
+ # while True:
+ # im.seek(len(im_frames))
+ # mypalette = im.getpalette()
+ # im.putpalette(mypalette)
+ # im_jpg = Image.new("RGB", im.size)
+ # im_jpg.paste(im)
+ # im_np = im_utils.pil2np(im_jpg.copy())
+ # im_frames.append(im_np)
+ # except EOFError:
+ # pass # end of GIF sequence
+
+ # n_frames = len(im_frames)
+ # frame_number = 0
+
+ # # show all images here
+ # cv.imshow('Original', im_resized)
+ # cv.imshow('2D 68PT Landmarks', im_landmarks_2d_68)
+ # cv.imshow('3D 68PT Landmarks', im_landmarks_3d_68)
+ # cv.imshow('Pose', im_pose)
+ # cv.imshow('3D 68pt GIF', im_frames[frame_number])
+
+ log.debug('done!!')
+
+ for path in paths:
+ if os.path.exists(path):
+ os.remove(path)
+
+ meta['step'] = meta['total']
+ meta['state'] = 'SUCCESS'
+ return meta
diff --git a/megapixels/app/server/tasks/fullmonte.py b/megapixels/app/server/tasks/fullmonte.py
deleted file mode 100644
index 8215656a..00000000
--- a/megapixels/app/server/tasks/fullmonte.py
+++ /dev/null
@@ -1,199 +0,0 @@
-
-import sys
-import os
-from os.path import join
-from pathlib import Path
-import time
-
-import numpy as np
-import cv2 as cv
-import dlib
-from PIL import Image
-import matplotlib.pyplot as plt
-
-from app.utils import logger_utils, file_utils, im_utils, display_utils, draw_utils
-from app.utils import plot_utils
-from app.processors import face_detector, face_landmarks
-from app.models.data_store import DataStore
-
-@celery.task(bind=True)
-def fullmonte_task(self, uuid_name, fn):
- # TOOD add selective testing
- opt_run_pose = True
- opt_run_2d_68 = True
- opt_run_3d_68 = True
- opt_run_3d_68 = True
-
- return
-
- # -------------------------------------------------
- # init here
-
-
- log = logger_utils.Logger.getLogger()
-
- # load image
- im = cv.imread(opt_fp_in)
- im_resized = im_utils.resize(im, width=opt_size[0], height=opt_size[1])
-
-
- # ----------------------------------------------------------------------------
- # detect face
-
- face_detector = face_detector.DetectorDLIBCNN(gpu=opt_gpu) # -1 for CPU
- log.info('detecting face...')
- st = time.time()
- bboxes = face_detector.detect(im_resized, largest=True)
- bbox = bboxes[0]
- dim = im_resized.shape[:2][::-1]
- bbox_dim = bbox.to_dim(dim)
- if not bbox:
- log.error('no face detected')
- return
- else:
- log.info(f'Detected face in {(time.time() - st):.2f}s')
- log.info('')
-
-
- # ----------------------------------------------------------------------------
- # detect 3D landmarks
-
- log.info('loading 3D landmark generator files...')
- landmark_detector_3d_68 = face_landmarks.FaceAlignment3D_68(gpu=opt_gpu) # -1 for CPU
- log.info('generating 3D landmarks...')
- st = time.time()
- points_3d_68 = landmark_detector_3d_68.landmarks(im_resized, bbox_dim.to_xyxy())
- log.info(f'generated 3D landmarks in {(time.time() - st):.2f}s')
- log.info('')
-
-
- # ----------------------------------------------------------------------------
- # generate 3D GIF animation
-
- log.info('generating 3D animation...')
- if not opt_fp_out:
- fpp_im = Path(opt_fp_in)
- fp_out = join(fpp_im.parent, f'{fpp_im.stem}_anim.gif')
- else:
- fp_out = opt_fp_out
- st = time.time()
- plot_utils.generate_3d_landmark_anim(np.array(points_3d_68), fp_out,
- size=opt_gif_size, num_frames=opt_gif_frames)
- log.info(f'Generated animation in {(time.time() - st):.2f}s')
- log.info(f'Saved to: {fp_out}')
- log.info('')
-
-
- # ----------------------------------------------------------------------------
- # generate face vectors, only to test if feature extraction works
-
- log.info('initialize face recognition model...')
- from app.processors import face_recognition
- face_rec = face_recognition.RecognitionDLIB()
- st = time.time()
- log.info('generating face vector...')
- vec = face_rec.vec(im_resized, bbox_dim)
- log.info(f'generated face vector in {(time.time() - st):.2f}s')
- log.info('')
-
-
- # ----------------------------------------------------------------------------
- # generate 68 point landmarks using dlib
-
- log.info('initializing face landmarks 68 dlib...')
- from app.processors import face_landmarks
- landmark_detector_2d_68 = face_landmarks.Dlib2D_68()
- log.info('generating 2D 68PT landmarks...')
- st = time.time()
- points_2d_68 = landmark_detector_2d_68.landmarks(im_resized, bbox_dim)
- log.info(f'generated 2D 68PT face landmarks in {(time.time() - st):.2f}s')
- log.info('')
-
-
- # ----------------------------------------------------------------------------
- # generate pose from 68 point 2D landmarks
-
- if opt_run_pose:
- log.info('initialize pose...')
- from app.processors import face_pose
- pose_detector = face_pose.FacePoseDLIB()
- log.info('generating pose...')
- st = time.time()
- pose_data = pose_detector.pose(points_2d_68, dim)
- log.info(f'generated pose {(time.time() - st):.2f}s')
- log.info('')
-
-
- # ----------------------------------------------------------------------------
- # generate pose from 68 point 2D landmarks
-
- # done
- self.log.debug('Add age real')
- self.log.debug('Add age apparent')
- self.log.debug('Add gender')
-
-
- # 3DDFA
- self.log.debug('Add depth')
- self.log.debug('Add pncc')
-
- # TODO
- self.log.debug('Add 3D face model')
- self.log.debug('Add face texture flat')
- self.log.debug('Add ethnicity')
-
- # display
- if opt_display:
-
- # draw bbox
-
- # draw 3d landmarks
- im_landmarks_3d_68 = im_resized.copy()
- draw_utils.draw_landmarks3D(im_landmarks_3d_68, points_3d_68)
- draw_utils.draw_bbox(im_landmarks_3d_68, bbox_dim)
-
- # draw 2d landmarks
- im_landmarks_2d_68 = im_resized.copy()
- draw_utils.draw_landmarks2D(im_landmarks_2d_68, points_2d_68)
- draw_utils.draw_bbox(im_landmarks_2d_68, bbox_dim)
-
- # draw pose
- if opt_run_pose:
- im_pose = im_resized.copy()
- draw_utils.draw_pose(im_pose, pose_data['point_nose'], pose_data['points'])
- draw_utils.draw_degrees(im_pose, pose_data)
-
- # draw animated GIF
- im = Image.open(fp_out)
- im_frames = []
- duration = im.info['duration']
- try:
- while True:
- im.seek(len(im_frames))
- mypalette = im.getpalette()
- im.putpalette(mypalette)
- im_jpg = Image.new("RGB", im.size)
- im_jpg.paste(im)
- im_np = im_utils.pil2np(im_jpg.copy())
- im_frames.append(im_np)
- except EOFError:
- pass # end of GIF sequence
-
- n_frames = len(im_frames)
- frame_number = 0
-
- while True:
- # show all images here
- cv.imshow('Original', im_resized)
- cv.imshow('2D 68PT Landmarks', im_landmarks_2d_68)
- cv.imshow('3D 68PT Landmarks', im_landmarks_3d_68)
- cv.imshow('Pose', im_pose)
- cv.imshow('3D 68pt GIF', im_frames[frame_number])
- frame_number = (frame_number + 1) % n_frames
- k = cv.waitKey(duration) & 0xFF
- if k == 27 or k == ord('q'): # ESC
- cv.destroyAllWindows()
- sys.exit()
- elif k != 255:
- # any key to continue
- break \ No newline at end of file