summaryrefslogtreecommitdiff
path: root/megapixels/app/server/tasks/demo.py
diff options
context:
space:
mode:
Diffstat (limited to 'megapixels/app/server/tasks/demo.py')
-rw-r--r--megapixels/app/server/tasks/demo.py244
1 files changed, 244 insertions, 0 deletions
diff --git a/megapixels/app/server/tasks/demo.py b/megapixels/app/server/tasks/demo.py
new file mode 100644
index 00000000..acc5dbac
--- /dev/null
+++ b/megapixels/app/server/tasks/demo.py
@@ -0,0 +1,244 @@
+
+import app.settings.app_cfg as cfg
+from app.server.tasks import celery
+
+from celery.utils.log import get_task_logger
+log = get_task_logger(__name__)
+
+opt_size = (256, 256,)
+
+@celery.task(bind=True)
+def demo_task(self, uuid_name, fn):
+
+ import sys
+ import os
+ from os.path import join
+ from pathlib import Path
+ import time
+
+ import numpy as np
+ import cv2 as cv
+ import dlib
+ from PIL import Image
+ import matplotlib.pyplot as plt
+
+ from app.utils import logger_utils, file_utils, im_utils, display_utils, draw_utils
+ from app.utils import plot_utils
+ from app.processors import face_detector, face_landmarks
+ from app.models.data_store import DataStore
+
+ # TODO add selective testing
+ opt_gpu = -1
+ opt_run_pose = True
+ opt_run_2d_68 = True
+ opt_run_3d_68 = True
+ opt_run_3d_68 = True
+ paths
+
+ meta = {
+ 'step': 0,
+ 'total': 3,
+ 'message': 'Starting',
+ 'uuid': uuid_name,
+ 'data': {},
+ }
+ paths = []
+
+ def step(msg, step=0):
+ meta['step'] += step
+ meta['message'] = msg
+ log.debug('> {}'.format(msg))
+ self.update_state(state='PROCESSING', meta=meta)
+
+ step('Loading image')
+ self.update_state(state='PROCESSING', meta=meta)
+
+ # os.path.join('/user_content/', fn)
+
+ # -------------------------------------------------
+ # init here
+
+ # load image
+ im = cv.imread(fn)
+ im_resized = im_utils.resize(im, width=opt_size[0], height=opt_size[1])
+
+ # ----------------------------------------------------------------------------
+ # detect face
+
+ face_detector_instance = face_detector.DetectorDLIBCNN(gpu=opt_gpu) # -1 for CPU
+ step('Detecting face')
+ st = time.time()
+ bboxes = face_detector_instance.detect(im_resized, largest=True)
+ bbox = bboxes[0]
+ dim = im_resized.shape[:2][::-1]
+ bbox_dim = bbox.to_dim(dim)
+ if not bbox:
+ log.error('No face detected')
+ meta['error'] = 'No face detected'
+ self.update_state(state='FAILURE', meta=meta)
+ return meta
+ else:
+ log.info(f'Detected face in {(time.time() - st):.2f}s')
+
+
+ # ----------------------------------------------------------------------------
+ # detect 3D landmarks
+
+ step('Generating 3D Landmarks')
+ log.info('loading 3D landmark generator files...')
+ landmark_detector_3d_68 = face_landmarks.FaceAlignment3D_68(gpu=opt_gpu) # -1 for CPU
+ log.info('generating 3D landmarks...')
+ st = time.time()
+ points_3d_68 = landmark_detector_3d_68.landmarks(im_resized, bbox_dim.to_xyxy())
+ log.info(f'generated 3D landmarks in {(time.time() - st):.2f}s')
+ log.info('')
+
+ # draw 3d landmarks
+ im_landmarks_3d_68 = im_resized.copy()
+ draw_utils.draw_landmarks3D(im_landmarks_3d_68, points_3d_68)
+ draw_utils.draw_bbox(im_landmarks_3d_68, bbox_dim)
+
+ save_image('landmarks_3d_68', '3D Landmarks', im_landmarks_3d_68)
+
+ def save_image(key, title, data):
+ fn = '{}_{}.jpg'.format(uuid_name, key)
+ fpath = os.path.join(cfg.DIR_SITE_USER_CONTENT, fn)
+ paths.append(fpath)
+ cv.imwrite(fpath, im_landmarks_3d_68)
+
+ meta['data']['landmarks_3d_68'] = {
+ 'title': '3D Landmarks',
+ 'url': os.path.join('/user_content/', fn),
+ }
+ step('Generated 3D Landmarks', step=0)
+
+ # ----------------------------------------------------------------------------
+ # generate 3D GIF animation
+
+ # step('Generating GIF Animation')
+ # log.info('generating 3D animation...')
+ # if not opt_fp_out:
+ # fpp_im = Path(opt_fp_in)
+ # fp_out = join(fpp_im.parent, f'{fpp_im.stem}_anim.gif')
+ # else:
+ # fp_out = opt_fp_out
+ # st = time.time()
+ # plot_utils.generate_3d_landmark_anim(np.array(points_3d_68), fp_out,
+ # size=opt_gif_size, num_frames=opt_gif_frames)
+ # log.info(f'Generated animation in {(time.time() - st):.2f}s')
+ # log.info(f'Saved to: {fp_out}')
+ # log.info('')
+
+
+ # # ----------------------------------------------------------------------------
+ # # generate face vectors, only to test if feature extraction works
+
+ # step('Generating face vectors')
+ # log.info('initialize face recognition model...')
+ # from app.processors import face_recognition
+ # face_rec = face_recognition.RecognitionDLIB()
+ # st = time.time()
+ # log.info('generating face vector...')
+ # vec = face_rec.vec(im_resized, bbox_dim)
+ # log.info(f'generated face vector in {(time.time() - st):.2f}s')
+ # log.info('')
+
+
+ # # ----------------------------------------------------------------------------
+ # # generate 68 point landmarks using dlib
+
+ # step('Generating 2D 68PT landmarks')
+ # log.info('initializing face landmarks 68 dlib...')
+ # from app.processors import face_landmarks
+ # landmark_detector_2d_68 = face_landmarks.Dlib2D_68()
+ # log.info('generating 2D 68PT landmarks...')
+ # st = time.time()
+ # points_2d_68 = landmark_detector_2d_68.landmarks(im_resized, bbox_dim)
+ # log.info(f'generated 2D 68PT face landmarks in {(time.time() - st):.2f}s')
+ # log.info('')
+
+
+ # # ----------------------------------------------------------------------------
+ # # generate pose from 68 point 2D landmarks
+
+ # if opt_run_pose:
+ # step('Generating pose')
+ # log.info('initialize pose...')
+ # from app.processors import face_pose
+ # pose_detector = face_pose.FacePoseDLIB()
+ # log.info('generating pose...')
+ # st = time.time()
+ # pose_data = pose_detector.pose(points_2d_68, dim)
+ # log.info(f'generated pose {(time.time() - st):.2f}s')
+ # log.info('')
+
+
+ # # ----------------------------------------------------------------------------
+ # # generate pose from 68 point 2D landmarks
+
+ step('Done')
+
+ # done
+ # self.log.debug('Add age real')
+ # self.log.debug('Add age apparent')
+ # self.log.debug('Add gender')
+
+
+ # # 3DDFA
+ # self.log.debug('Add depth')
+ # self.log.debug('Add pncc')
+
+ # # TODO
+ # self.log.debug('Add 3D face model')
+ # self.log.debug('Add face texture flat')
+ # self.log.debug('Add ethnicity')
+
+ # display
+ # draw bbox
+
+ # # draw 2d landmarks
+ # im_landmarks_2d_68 = im_resized.copy()
+ # draw_utils.draw_landmarks2D(im_landmarks_2d_68, points_2d_68)
+ # draw_utils.draw_bbox(im_landmarks_2d_68, bbox_dim)
+
+ # # draw pose
+ # if opt_run_pose:
+ # im_pose = im_resized.copy()
+ # draw_utils.draw_pose(im_pose, pose_data['point_nose'], pose_data['points'])
+ # draw_utils.draw_degrees(im_pose, pose_data)
+
+ # # draw animated GIF
+ # im = Image.open(fp_out)
+ # im_frames = []
+ # duration = im.info['duration']
+ # try:
+ # while True:
+ # im.seek(len(im_frames))
+ # mypalette = im.getpalette()
+ # im.putpalette(mypalette)
+ # im_jpg = Image.new("RGB", im.size)
+ # im_jpg.paste(im)
+ # im_np = im_utils.pil2np(im_jpg.copy())
+ # im_frames.append(im_np)
+ # except EOFError:
+ # pass # end of GIF sequence
+
+ # n_frames = len(im_frames)
+ # frame_number = 0
+
+ # # show all images here
+ # cv.imshow('Original', im_resized)
+ # cv.imshow('2D 68PT Landmarks', im_landmarks_2d_68)
+ # cv.imshow('3D 68PT Landmarks', im_landmarks_3d_68)
+ # cv.imshow('Pose', im_pose)
+ # cv.imshow('3D 68pt GIF', im_frames[frame_number])
+
+ log.debug('done!!')
+
+ for path in paths:
+ if os.path.exists(path):
+ os.remove(path)
+
+ meta['step'] = meta['total']
+ meta['state'] = 'SUCCESS'
+ return meta