diff options
| author | Adam Harvey <adam@ahprojects.com> | 2019-01-03 19:58:03 +0100 |
|---|---|---|
| committer | Adam Harvey <adam@ahprojects.com> | 2019-01-03 19:58:03 +0100 |
| commit | b7aba5109bfdab302b82fe9021f16f73edbeb11d (patch) | |
| tree | 02cfaa9601116995066307615103fbb4b5bb0d79 /megapixels/app/processors | |
| parent | 7dc93ae7b3da903e6f9ab3c80e74616b559f7f4d (diff) | |
fix face detectors
Diffstat (limited to 'megapixels/app/processors')
| -rw-r--r-- | megapixels/app/processors/face_detector.py | 15 | ||||
| -rw-r--r-- | megapixels/app/processors/face_landmarks_3d.py | 56 |
2 files changed, 65 insertions, 6 deletions
diff --git a/megapixels/app/processors/face_detector.py b/megapixels/app/processors/face_detector.py index 75ba54d4..a805a474 100644 --- a/megapixels/app/processors/face_detector.py +++ b/megapixels/app/processors/face_detector.py @@ -119,7 +119,7 @@ class DetectorDLIBHOG: self.log = logger_utils.Logger.getLogger() self.detector = dlib.get_frontal_face_detector() - def detect(self, im, size=None, conf_thresh=None, pyramids=0, largest=False): + def detect(self, im, size=None, conf_thresh=None, pyramids=0, largest=False, zone=False): conf_thresh = self.conf_thresh if conf_thresh is None else conf_thresh dnn_size = self.size if size is None else size pyramids = self.pyramids if pyramids is None else pyramids @@ -136,8 +136,13 @@ class DetectorDLIBHOG: bbox = BBox.from_dlib_dim(rect, dim) bboxes.append(bbox) + # filter to keep on faces inside zone + if zone: + bboxes = [b for b in bboxes if b.cx > zone[0] and b.cx < 1.0 - zone[0] \ + and b.cy > zone[1] and b.cy < 1.0 - zone[1]] + + # filter to keep only largest face if largest and len(bboxes) > 1: - # only keep largest bboxes.sort(key=operator.attrgetter('area'), reverse=True) bboxes = [bboxes[0]] @@ -159,7 +164,7 @@ class DetectorCVDNN: self.net.setPreferableBackend(cv.dnn.DNN_BACKEND_OPENCV) self.net.setPreferableTarget(cv.dnn.DNN_TARGET_CPU) - def detect(self, im, size=None, conf_thresh=None, largest=False, pyramids=None): + def detect(self, im, size=None, conf_thresh=None, largest=False, pyramids=None, zone=False): """Detects faces and returns (list) of (BBox)""" conf_thresh = self.conf_thresh if conf_thresh is None else conf_thresh dnn_size = self.size if size is None else size @@ -175,6 +180,10 @@ class DetectorCVDNN: rect_norm = net_outputs[0, 0, i, 3:7] bboxes.append(BBox(*rect_norm)) + if zone: + bboxes = [b for b in bboxes if b.cx > zone[0] and b.cx < 1.0 - zone[0] \ + and b.cy > zone[1] and b.cy < 1.0 - zone[1]] + if largest and len(bboxes) > 1: # only keep largest bboxes.sort(key=operator.attrgetter('area'), reverse=True) diff --git a/megapixels/app/processors/face_landmarks_3d.py b/megapixels/app/processors/face_landmarks_3d.py index 84a423b0..28aff592 100644 --- a/megapixels/app/processors/face_landmarks_3d.py +++ b/megapixels/app/processors/face_landmarks_3d.py @@ -17,11 +17,61 @@ from app.settings import types class FaceLandmarks3D: # Estimates 3D facial landmarks + import face_alignment + from skimage import io def __init__(self): self.log = logger_utils.Logger.getLogger() - pass + self.fa = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D, flip_input=False) + def landmarks(self, im): + preds = self.fa.get_landmarks(im) + return preds - def landmarks(self): - return [1,2,3,4,100]
\ No newline at end of file + def draw(self, im): + '''draws landmarks in 3d scene''' + + ''' + import face_alignment + import numpy as np + from mpl_toolkits.mplot3d import Axes3D + import matplotlib.pyplot as plt + from skimage import io + + # Run the 3D face alignment on a test image, without CUDA. + fa = face_alignment.FaceAlignment(face_alignment.LandmarksType._3D, device='cuda:0', flip_input=True) + + input = io.imread('../test/assets/aflw-test.jpg') + preds = fa.get_landmarks(input)[-1] + + #TODO: Make this nice + fig = plt.figure(figsize=plt.figaspect(.5)) + ax = fig.add_subplot(1, 2, 1) + ax.imshow(input) + ax.plot(preds[0:17,0],preds[0:17,1],marker='o',markersize=6,linestyle='-',color='w',lw=2) + ax.plot(preds[17:22,0],preds[17:22,1],marker='o',markersize=6,linestyle='-',color='w',lw=2) + ax.plot(preds[22:27,0],preds[22:27,1],marker='o',markersize=6,linestyle='-',color='w',lw=2) + ax.plot(preds[27:31,0],preds[27:31,1],marker='o',markersize=6,linestyle='-',color='w',lw=2) + ax.plot(preds[31:36,0],preds[31:36,1],marker='o',markersize=6,linestyle='-',color='w',lw=2) + ax.plot(preds[36:42,0],preds[36:42,1],marker='o',markersize=6,linestyle='-',color='w',lw=2) + ax.plot(preds[42:48,0],preds[42:48,1],marker='o',markersize=6,linestyle='-',color='w',lw=2) + ax.plot(preds[48:60,0],preds[48:60,1],marker='o',markersize=6,linestyle='-',color='w',lw=2) + ax.plot(preds[60:68,0],preds[60:68,1],marker='o',markersize=6,linestyle='-',color='w',lw=2) + ax.axis('off') + + ax = fig.add_subplot(1, 2, 2, projection='3d') + surf = ax.scatter(preds[:,0]*1.2,preds[:,1],preds[:,2],c="cyan", alpha=1.0, edgecolor='b') + ax.plot3D(preds[:17,0]*1.2,preds[:17,1], preds[:17,2], color='blue' ) + ax.plot3D(preds[17:22,0]*1.2,preds[17:22,1],preds[17:22,2], color='blue') + ax.plot3D(preds[22:27,0]*1.2,preds[22:27,1],preds[22:27,2], color='blue') + ax.plot3D(preds[27:31,0]*1.2,preds[27:31,1],preds[27:31,2], color='blue') + ax.plot3D(preds[31:36,0]*1.2,preds[31:36,1],preds[31:36,2], color='blue') + ax.plot3D(preds[36:42,0]*1.2,preds[36:42,1],preds[36:42,2], color='blue') + ax.plot3D(preds[42:48,0]*1.2,preds[42:48,1],preds[42:48,2], color='blue') + ax.plot3D(preds[48:,0]*1.2,preds[48:,1],preds[48:,2], color='blue' ) + + ax.view_init(elev=90., azim=90.) + ax.set_xlim(ax.get_xlim()[::-1]) + plt.show() + ''' + return False
\ No newline at end of file |
