summaryrefslogtreecommitdiff
path: root/megapixels/app/processors/face_detector.py
blob: 75ba54d4ed89e535a7b20d69979430f0ac485ef2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import os
from os.path import join
from pathlib import Path

import cv2 as cv
import numpy as np
import imutils
import operator

from app.utils import im_utils, logger_utils
from app.models.bbox import BBox
from app.settings import app_cfg as cfg
from app.settings import types


class DetectorMTCNN:
  
  # https://github.com/ipazc/mtcnn
  # pip install mtcnn

  dnn_size = (300, 300)

  def __init__(self, size=(400,400)):
    from mtcnn.mtcnn import MTCNN
    self.detector = MTCNN()

  def detect(self, im, size=(400,400), conf_thresh=None, pyramids=None, largest=False, zone=None):
    '''Detects face using MTCNN and returns (list) of BBox
    :param im: (numpy.ndarray) image
    :returns list of BBox
    '''
    bboxes = []
    #conf_thresh = self.conf_thresh if conf_thresh is None else conf_thresh
    #pyramids = self.pyramids if pyramids is None else pyramids
    dnn_size = self.dnn_size if size is None else size

    im = im_utils.resize(im, width=dnn_size[0], height=dnn_size[1])
    dim = im.shape[:2][::-1]
    dets = self.detector.detect_faces(im)
    for det in dets:
      rect = det['box']
      #keypoints = det['keypoints']  # not using here. see 'face_landmarks.py'
      bbox = BBox.from_xywh_dim(*rect, dim)
      bboxes.append(bbox)

    if largest and len(bboxes) > 1:
      # only keep largest
      bboxes.sort(key=operator.attrgetter('area'), reverse=True)
      bboxes = [bboxes[0]]

    return bboxes


class DetectorHaar:

  im_size = (400, 400)
  cascade_name = types.HaarCascade.FRONTAL

  def __init__(self, cascade=types.HaarCascade.FRONTAL):
    self.log = logger_utils.Logger.getLogger()

  def detect(self, im, scale_factor=1.05, overlaps=5):
    pass
    

class DetectorDLIBCNN:
  

  dnn_size = (300, 300)
  pyramids = 0
  conf_thresh = 0.85

  def __init__(self, gpu=0):
    import dlib
    self.log = logger_utils.Logger.getLogger()
    cuda_visible_devices = os.getenv('CUDA_VISIBLE_DEVICES', '')
    os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu)
    self.log.info('load model: {}'.format(cfg.DIR_MODELS_DLIB_CNN))
    self.detector = dlib.cnn_face_detection_model_v1(cfg.DIR_MODELS_DLIB_CNN)
    os.environ['CUDA_VISIBLE_DEVICES'] = cuda_visible_devices  # reset

  def detect(self, im, size=None, conf_thresh=None, pyramids=None, largest=False, zone=None):
    bboxes = []
    conf_thresh = self.conf_thresh if conf_thresh is None else conf_thresh
    pyramids = self.pyramids if pyramids is None else pyramids
    dnn_size = self.dnn_size if size is None else size
    # resize image
    im = im_utils.resize(im, width=dnn_size[0], height=dnn_size[1])
    dim = im.shape[:2][::-1]
    im = im_utils.bgr2rgb(im)  # convert to RGB for dlib
    # run detector
    mmod_rects = self.detector(im, pyramids)
    # sort results
    for mmod_rect in mmod_rects:
      if mmod_rect.confidence > conf_thresh:
        bbox = BBox.from_dlib_dim(mmod_rect.rect, dim)
        bboxes.append(bbox)

    if zone:
      bboxes = [b for b in bboxes if b.cx > zone[0] and b.cx < 1.0 - zone[0] \
        and b.cy > zone[1] and b.cy < 1.0 - zone[1]]

    if largest and len(bboxes) > 1:
      # only keep largest
      bboxes.sort(key=operator.attrgetter('area'), reverse=True)
      bboxes = [bboxes[0]]

    return bboxes


class DetectorDLIBHOG:

  size = (320, 240)
  pyramids = 0
  conf_thresh = 0.85

  def __init__(self):
    import dlib
    self.log = logger_utils.Logger.getLogger()
    self.detector = dlib.get_frontal_face_detector()

  def detect(self, im, size=None, conf_thresh=None, pyramids=0, largest=False):
    conf_thresh = self.conf_thresh if conf_thresh is None else conf_thresh
    dnn_size = self.size if size is None else size
    pyramids = self.pyramids if pyramids is None else pyramids
    
    im = im_utils.resize(im, width=dnn_size[0], height=dnn_size[1])
    dim = im.shape[:2][::-1]
    im = im_utils.bgr2rgb(im)  # ?
    hog_results = self.detector.run(im, pyramids)
    
    bboxes = []
    if len(hog_results[0]) > 0:
      for rect, score, direction in zip(*hog_results):
        if score > conf_thresh:
          bbox = BBox.from_dlib_dim(rect, dim)
          bboxes.append(bbox)
    
    if largest and len(bboxes) > 1:
      # only keep largest
      bboxes.sort(key=operator.attrgetter('area'), reverse=True)
      bboxes = [bboxes[0]]

    return bboxes

class DetectorCVDNN:

  dnn_scale = 1.0  # fixed
  dnn_mean = (104.0, 177.0, 123.0)  # fixed
  dnn_crop = False  # crop or force resize
  size = (300, 300)
  conf_thresh = 0.85
  
  def __init__(self):
    import dlib
    fp_prototxt = join(cfg.DIR_MODELS_CAFFE, 'face_detect', 'opencv_face_detector.prototxt')
    fp_model = join(cfg.DIR_MODELS_CAFFE, 'face_detect', 'opencv_face_detector.caffemodel')
    self.net = cv.dnn.readNet(fp_prototxt, fp_model)
    self.net.setPreferableBackend(cv.dnn.DNN_BACKEND_OPENCV)
    self.net.setPreferableTarget(cv.dnn.DNN_TARGET_CPU)

  def detect(self, im, size=None, conf_thresh=None, largest=False, pyramids=None):
    """Detects faces and returns (list) of (BBox)"""
    conf_thresh = self.conf_thresh if conf_thresh is None else conf_thresh
    dnn_size = self.size if size is None else size
    im = cv.resize(im, dnn_size)
    blob = cv.dnn.blobFromImage(im, self.dnn_scale, dnn_size, self.dnn_mean)
    self.net.setInput(blob)
    net_outputs = self.net.forward()

    bboxes = []
    for i in range(0, net_outputs.shape[2]):
      conf = net_outputs[0, 0, i, 2]
      if conf > conf_thresh:
        rect_norm = net_outputs[0, 0, i, 3:7]
        bboxes.append(BBox(*rect_norm))
    
    if largest and len(bboxes) > 1:
      # only keep largest
      bboxes.sort(key=operator.attrgetter('area'), reverse=True)
      bboxes = [bboxes[0]]

    return bboxes