diff options
| author | Adam Harvey <adam@ahprojects.com> | 2019-01-07 17:36:50 +0100 |
|---|---|---|
| committer | Adam Harvey <adam@ahprojects.com> | 2019-01-07 17:36:50 +0100 |
| commit | 55b9734d131a197166156566d1b999a8bb59169b (patch) | |
| tree | 4c0f8fec46ebd4e1fb9ef7449224fa3647582f55 /megapixels/app/processors | |
| parent | 7cb810ed222cdf9ba94ba6d88d34bed06f3e84bd (diff) | |
add scut-fbp beauty predictor
Diffstat (limited to 'megapixels/app/processors')
| -rw-r--r-- | megapixels/app/processors/face_beauty.py | 69 |
1 files changed, 65 insertions, 4 deletions
diff --git a/megapixels/app/processors/face_beauty.py b/megapixels/app/processors/face_beauty.py index a1ddd9f8..2e8221b7 100644 --- a/megapixels/app/processors/face_beauty.py +++ b/megapixels/app/processors/face_beauty.py @@ -1,3 +1,4 @@ +import sys import os from os.path import join from pathlib import Path @@ -6,6 +7,20 @@ import math import cv2 as cv import numpy as np import imutils +import pickle + +os.environ['CUDA_VISIBLE_DEVICES'] = '' +import keras +from keras.layers import Conv2D, Input, MaxPool2D,Flatten, Dense, Permute, GlobalAveragePooling2D +from keras.models import Model +from keras.optimizers import adam +import os.path +from keras.models import Sequential +from keras.applications.resnet50 import ResNet50 +#from keras.applications.resnet50 import Dense +from keras.layers import Dense +from keras.optimizers import Adam +from keras.layers import Dropout from app.utils import im_utils, logger_utils from app.models.bbox import BBox @@ -18,10 +33,56 @@ class FaceBeauty: # Estimates beauty using CNN - def __init__(self): + def __init__(self, gpu=-1): + # don't really need GPU, CPU is quick enough self.log = logger_utils.Logger.getLogger() - pass + resnet = ResNet50(include_top=False, pooling='avg') + self.model = Sequential() + self.model.add(resnet) + self.model.add(Dense(5, activation='softmax')) + self.model.layers[0].trainable = False + fp_model = join(cfg.DIR_MODELS_KERAS, 'model-ldl-resnet.h5') + self.model.load_weights(fp_model) + + + def beauty(self, im, bbox_dim): + '''Predicts facial "beauty" score based on SCUT-FBP attractiveness labels + :param im: (numpy.ndarray) BGR image + :param bbox_dim: (BBox) dimensioned BBox + :returns (float) 0.0-1.0 with 1 being most attractive + ''' + + face = bbox_dim.to_xyxy() + self.log.debug(f'face: {face}') + + cropped_im = im[face[1]:face[3], face[0]:face[2]] + + im_resized = cv.resize(cropped_im, (224, 224)) # force size + im_norm = np.array([(im_resized - 127.5) / 127.5]) # subtract mean + + # forward pass + pred = self.model.predict(im_norm) + + # combines score to make final estimate? + ldList = pred[0] + score = 1 * ldList[0] + 2 * ldList[1] + 3 * ldList[2] + 4 * ldList[3] + 5 * ldList[4] + return score/5.0 + + + def score_mapping(self, score): + '''(deprecated) + ''' + # if score <= 1.9: + # score_mapped = ((4 - 2.5) / (1.9 - 1.0)) * (score-1.0) + 2.5 + # elif score <= 2.8: + # score_mapped = ((5.5 - 4) / (2.8 - 1.9)) * (score-1.9) + 4 + # elif score <= 3.4: + # score_mapped = ((6.5 - 5.5) / (3.4 - 2.8)) * (score-2.8) + 5.5 + # elif score <= 4: + # score_mapped = ((8 - 6.5) / (4 - 3.4)) * (score-3.4) + 6.5 + # elif score < 5: + # score_mapped = ((9 - 8) / (5 - 4)) * (score-4) + 8 - def beauty(self): - return 0.5
\ No newline at end of file + # return score_mapped + return False |
