summaryrefslogtreecommitdiff
path: root/megapixels/app/processors
diff options
context:
space:
mode:
authorAdam Harvey <adam@ahprojects.com>2019-01-07 17:36:50 +0100
committerAdam Harvey <adam@ahprojects.com>2019-01-07 17:36:50 +0100
commit55b9734d131a197166156566d1b999a8bb59169b (patch)
tree4c0f8fec46ebd4e1fb9ef7449224fa3647582f55 /megapixels/app/processors
parent7cb810ed222cdf9ba94ba6d88d34bed06f3e84bd (diff)
add scut-fbp beauty predictor
Diffstat (limited to 'megapixels/app/processors')
-rw-r--r--megapixels/app/processors/face_beauty.py69
1 files changed, 65 insertions, 4 deletions
diff --git a/megapixels/app/processors/face_beauty.py b/megapixels/app/processors/face_beauty.py
index a1ddd9f8..2e8221b7 100644
--- a/megapixels/app/processors/face_beauty.py
+++ b/megapixels/app/processors/face_beauty.py
@@ -1,3 +1,4 @@
+import sys
import os
from os.path import join
from pathlib import Path
@@ -6,6 +7,20 @@ import math
import cv2 as cv
import numpy as np
import imutils
+import pickle
+
+os.environ['CUDA_VISIBLE_DEVICES'] = ''
+import keras
+from keras.layers import Conv2D, Input, MaxPool2D,Flatten, Dense, Permute, GlobalAveragePooling2D
+from keras.models import Model
+from keras.optimizers import adam
+import os.path
+from keras.models import Sequential
+from keras.applications.resnet50 import ResNet50
+#from keras.applications.resnet50 import Dense
+from keras.layers import Dense
+from keras.optimizers import Adam
+from keras.layers import Dropout
from app.utils import im_utils, logger_utils
from app.models.bbox import BBox
@@ -18,10 +33,56 @@ class FaceBeauty:
# Estimates beauty using CNN
- def __init__(self):
+ def __init__(self, gpu=-1):
+ # don't really need GPU, CPU is quick enough
self.log = logger_utils.Logger.getLogger()
- pass
+ resnet = ResNet50(include_top=False, pooling='avg')
+ self.model = Sequential()
+ self.model.add(resnet)
+ self.model.add(Dense(5, activation='softmax'))
+ self.model.layers[0].trainable = False
+ fp_model = join(cfg.DIR_MODELS_KERAS, 'model-ldl-resnet.h5')
+ self.model.load_weights(fp_model)
+
+
+ def beauty(self, im, bbox_dim):
+ '''Predicts facial "beauty" score based on SCUT-FBP attractiveness labels
+ :param im: (numpy.ndarray) BGR image
+ :param bbox_dim: (BBox) dimensioned BBox
+ :returns (float) 0.0-1.0 with 1 being most attractive
+ '''
+
+ face = bbox_dim.to_xyxy()
+ self.log.debug(f'face: {face}')
+
+ cropped_im = im[face[1]:face[3], face[0]:face[2]]
+
+ im_resized = cv.resize(cropped_im, (224, 224)) # force size
+ im_norm = np.array([(im_resized - 127.5) / 127.5]) # subtract mean
+
+ # forward pass
+ pred = self.model.predict(im_norm)
+
+ # combines score to make final estimate?
+ ldList = pred[0]
+ score = 1 * ldList[0] + 2 * ldList[1] + 3 * ldList[2] + 4 * ldList[3] + 5 * ldList[4]
+ return score/5.0
+
+
+ def score_mapping(self, score):
+ '''(deprecated)
+ '''
+ # if score <= 1.9:
+ # score_mapped = ((4 - 2.5) / (1.9 - 1.0)) * (score-1.0) + 2.5
+ # elif score <= 2.8:
+ # score_mapped = ((5.5 - 4) / (2.8 - 1.9)) * (score-1.9) + 4
+ # elif score <= 3.4:
+ # score_mapped = ((6.5 - 5.5) / (3.4 - 2.8)) * (score-2.8) + 5.5
+ # elif score <= 4:
+ # score_mapped = ((8 - 6.5) / (4 - 3.4)) * (score-3.4) + 6.5
+ # elif score < 5:
+ # score_mapped = ((9 - 8) / (5 - 4)) * (score-4) + 8
- def beauty(self):
- return 0.5 \ No newline at end of file
+ # return score_mapped
+ return False