diff options
| author | Adam Harvey <adam@ahprojects.com> | 2019-01-07 17:36:50 +0100 |
|---|---|---|
| committer | Adam Harvey <adam@ahprojects.com> | 2019-01-07 17:36:50 +0100 |
| commit | 55b9734d131a197166156566d1b999a8bb59169b (patch) | |
| tree | 4c0f8fec46ebd4e1fb9ef7449224fa3647582f55 | |
| parent | 7cb810ed222cdf9ba94ba6d88d34bed06f3e84bd (diff) | |
add scut-fbp beauty predictor
| -rw-r--r-- | megapixels/app/processors/face_beauty.py | 69 | ||||
| -rw-r--r-- | megapixels/commands/demo/face_beauty.py | 121 |
2 files changed, 186 insertions, 4 deletions
diff --git a/megapixels/app/processors/face_beauty.py b/megapixels/app/processors/face_beauty.py index a1ddd9f8..2e8221b7 100644 --- a/megapixels/app/processors/face_beauty.py +++ b/megapixels/app/processors/face_beauty.py @@ -1,3 +1,4 @@ +import sys import os from os.path import join from pathlib import Path @@ -6,6 +7,20 @@ import math import cv2 as cv import numpy as np import imutils +import pickle + +os.environ['CUDA_VISIBLE_DEVICES'] = '' +import keras +from keras.layers import Conv2D, Input, MaxPool2D,Flatten, Dense, Permute, GlobalAveragePooling2D +from keras.models import Model +from keras.optimizers import adam +import os.path +from keras.models import Sequential +from keras.applications.resnet50 import ResNet50 +#from keras.applications.resnet50 import Dense +from keras.layers import Dense +from keras.optimizers import Adam +from keras.layers import Dropout from app.utils import im_utils, logger_utils from app.models.bbox import BBox @@ -18,10 +33,56 @@ class FaceBeauty: # Estimates beauty using CNN - def __init__(self): + def __init__(self, gpu=-1): + # don't really need GPU, CPU is quick enough self.log = logger_utils.Logger.getLogger() - pass + resnet = ResNet50(include_top=False, pooling='avg') + self.model = Sequential() + self.model.add(resnet) + self.model.add(Dense(5, activation='softmax')) + self.model.layers[0].trainable = False + fp_model = join(cfg.DIR_MODELS_KERAS, 'model-ldl-resnet.h5') + self.model.load_weights(fp_model) + + + def beauty(self, im, bbox_dim): + '''Predicts facial "beauty" score based on SCUT-FBP attractiveness labels + :param im: (numpy.ndarray) BGR image + :param bbox_dim: (BBox) dimensioned BBox + :returns (float) 0.0-1.0 with 1 being most attractive + ''' + + face = bbox_dim.to_xyxy() + self.log.debug(f'face: {face}') + + cropped_im = im[face[1]:face[3], face[0]:face[2]] + + im_resized = cv.resize(cropped_im, (224, 224)) # force size + im_norm = np.array([(im_resized - 127.5) / 127.5]) # subtract mean + + # forward pass + pred = self.model.predict(im_norm) + + # combines score to make final estimate? + ldList = pred[0] + score = 1 * ldList[0] + 2 * ldList[1] + 3 * ldList[2] + 4 * ldList[3] + 5 * ldList[4] + return score/5.0 + + + def score_mapping(self, score): + '''(deprecated) + ''' + # if score <= 1.9: + # score_mapped = ((4 - 2.5) / (1.9 - 1.0)) * (score-1.0) + 2.5 + # elif score <= 2.8: + # score_mapped = ((5.5 - 4) / (2.8 - 1.9)) * (score-1.9) + 4 + # elif score <= 3.4: + # score_mapped = ((6.5 - 5.5) / (3.4 - 2.8)) * (score-2.8) + 5.5 + # elif score <= 4: + # score_mapped = ((8 - 6.5) / (4 - 3.4)) * (score-3.4) + 6.5 + # elif score < 5: + # score_mapped = ((9 - 8) / (5 - 4)) * (score-4) + 8 - def beauty(self): - return 0.5
\ No newline at end of file + # return score_mapped + return False diff --git a/megapixels/commands/demo/face_beauty.py b/megapixels/commands/demo/face_beauty.py new file mode 100644 index 00000000..b1612f7c --- /dev/null +++ b/megapixels/commands/demo/face_beauty.py @@ -0,0 +1,121 @@ +""" +""" + +import click + +from app.settings import types +from app.utils import click_utils +from app.settings import app_cfg as cfg + + +@click.command() +@click.option('-i', '--input', 'opt_fp_in', default=None, required=True, + help='Image filepath') +@click.option('-o', '--output', 'opt_fp_out', default=None, + help='GIF output path') +@click.option('--size', 'opt_size', + type=(int, int), default=(300, 300), + help='Output image size') +@click.option('-g', '--gpu', 'opt_gpu', default=0, + help='GPU index') +@click.option('-f', '--force', 'opt_force', is_flag=True, + help='Force overwrite file') +@click.option('--display/--no-display', 'opt_display', is_flag=True, default=False, + help='Display detections to debug') +@click.pass_context +def cli(ctx, opt_fp_in, opt_fp_out, opt_gpu, opt_size, opt_force, opt_display): + """Face detector demo""" + + import sys + import os + from os.path import join + from pathlib import Path + import time + + from tqdm import tqdm + import numpy as np + import pandas as pd + import cv2 as cv + import dlib + + from app.utils import logger_utils, file_utils, im_utils, display_utils, draw_utils + from app.utils import plot_utils + from app.processors import face_detector, face_beauty + from app.models.data_store import DataStore + + + log = logger_utils.Logger.getLogger() + + + # ------------------------------------------------- + # load image + + im = cv.imread(opt_fp_in) + # im = cv.cvtColor(im, cv.COLOR_BGR2RGB) + if im.shape[0] > 1280: + new_shape = (1280, im.shape[1] * 1280 / im.shape[0]) + elif im.shape[1] > 1280: + new_shape = (im.shape[0] * 1280 / im.shape[1], 1280) + elif im.shape[0] < 640 or im.shape[1] < 640: + new_shape = (im.shape[0] * 2, im.shape[1] * 2) + else: + new_shape = im.shape[0:2] + + im_resized = cv.resize(im, (int(new_shape[1]), int(new_shape[0]))) + + #im_resized = im_utils.resize(im, width=opt_size[0], height=opt_size[1]) + + + # ---------------------------------------------------------------------------- + # detect face + + face_detector = face_detector.DetectorDLIBCNN() # -1 for CPU + bboxes = face_detector.detect(im_resized, largest=True) + bbox = bboxes[0] + dim = im_resized.shape[:2][::-1] + bbox_dim = bbox.to_dim(dim) + if not bbox: + log.error('no face detected') + return + else: + log.info(f'face detected: {bbox_dim.to_xyxy()}') + + # ---------------------------------------------------------------------------- + # beauty + + beauty_predictor = face_beauty.FaceBeauty() + beauty_score = beauty_predictor.beauty(im_resized, bbox_dim) + + + # ---------------------------------------------------------------------------- + # output + + log.info(f'Face coords: {bbox_dim} face') + log.info(f'beauty score: {(100*beauty_score):.2f}') + + + # ---------------------------------------------------------------------------- + # draw + + # draw 2d landmarks + im_beauty = im_resized.copy() + draw_utils.draw_bbox(im_beauty, bbox_dim) + txt = f'Beauty score: {(100*beauty_score):.2f}' + draw_utils.draw_text(im_beauty, bbox_dim.pt_tl, txt) + + + # ---------------------------------------------------------------------------- + # save + + if opt_fp_out: + # save pose only + cv.imwrite(opt_fp_out, im_beauty) + + + # ---------------------------------------------------------------------------- + # display + + if opt_display: + # show all images here + cv.imshow('Beauty', im_beauty) + display_utils.handle_keyboard()
\ No newline at end of file |
