diff options
Diffstat (limited to 'cli/app/commands/process')
| -rw-r--r-- | cli/app/commands/process/fetch.py | 47 | ||||
| -rw-r--r-- | cli/app/commands/process/random.py | 47 |
2 files changed, 89 insertions, 5 deletions
diff --git a/cli/app/commands/process/fetch.py b/cli/app/commands/process/fetch.py index a558d94..5b6c102 100644 --- a/cli/app/commands/process/fetch.py +++ b/cli/app/commands/process/fetch.py @@ -3,6 +3,9 @@ import click from app.utils import click_utils from app.settings import app_cfg +from os.path import join +from subprocess import call + @click.command('') # @click.option('-i', '--input', 'opt_dir_in', required=True, # help='Path to input image glob directory') @@ -10,11 +13,45 @@ from app.settings import app_cfg @click.pass_context def cli(ctx): """ - Converts directory of images to BigGAN* vectors """ - # ------------------------------------------------ - # imports - # app_cfg.MODELZOO_CFG - pass + import gensim + + # from nltk.corpus import wordnet as wn + # synsets = wordnet.synsets("fir_tree") + # synonyms = [ lemma.name() for lemma in synsets[0].lemmas() ] + + imagenet = Imagenet() + + sentence = "The quick brown fox jumps over the lazy dog" + tokens = gensim.utils.simple_preprocess(sentence) + +class Imagenet: + def __init__(): + tokens = {} + with open(app_cfg.FP_IMAGENET_WORDS, "r") as fp: + for line in fp.readlines(): + wordnet_id, word_list = line.split('\t') + words = [word.trim() for word in word_list.split(',')] + for word in words: + tokens[word] = wordnet_id + self.tokens = tokens + + def get_wordnet_ids_for_words(tokens): + # for token in tokens: + # if token in tokens: + pass + + def images_from_wordnet_id(wordnet_id): + """ + Given a Wordnet ID, download images for this class + """ + call([ + "python", + join(app_cfg.DIR_APP, "../ImageNet-Datasets-Downloader/downloader.py"), + '-data_root', app_cfg.FP_IMAGENET, + '-use_class_list', 'True', + '-class_list', wordnet_id, + '-images_per_class', app_cfg.IMAGENET_IMAGES_PER_CLASS + ]) diff --git a/cli/app/commands/process/random.py b/cli/app/commands/process/random.py new file mode 100644 index 0000000..77551aa --- /dev/null +++ b/cli/app/commands/process/random.py @@ -0,0 +1,47 @@ +import click + +from app.utils import click_utils +from app.settings import app_cfg + +from os.path import join +import time + +from PIL import Image + +@click.command('') +# @click.option('-i', '--input', 'opt_dir_in', required=True, +# help='Path to input image glob directory') +# @click.option('-r', '--recursive', 'opt_recursive', is_flag=True) +@click.pass_context +def cli(ctx): + """ + """ + module = hub.Module('https://tfhub.dev/deepmind/bigbigan-resnet50/1') + + # Sample a batch of 8 random latent vectors (z) from the Gaussian prior. Then + # call the generator on the latent samples to generate a batch of images with + # shape [8, 128, 128, 3] and range [-1, 1]. + z = tf.random.normal([8, 120]) # latent samples + gen_samples = module(z, signature='generate', as_dict=True)['upsampled'] + + for sample in gen_samples: + img = Image.fromarray(sample, "RGB") + fp_img_out = int(time.time() * 1000) + '.png' + img.save(join(app_cfg.DIR_OUTPUTS, fp_img_out)) + # # Given a batch of 256x256 RGB images in range [-1, 1], call the encoder to + # # compute predicted latents z and other features (e.g. for use in downstream + # # recognition tasks). + # images = tf.placeholder(tf.float32, shape=[None, 256, 256, 3]) + # features = module(images, signature='encode', as_dict=True) + + # # Get the predicted latent sample `z_sample` from the dict of features. + # # Other available features include `avepool_feat` and `bn_crelu_feat`, used in + # # the representation learning results. + # z_sample = features['z_sample'] # shape [?, 120] + + # # Compute reconstructions of the input `images` by passing the encoder's output + # # `z_sample` back through the generator. Note that raw generator outputs are + # # half the resolution of encoder inputs (128x128). To get upsampled generator + # # outputs matching the encoder input resolution (256x256), instead use: + # # recons = module(z_sample, signature='generate', as_dict=True)['upsampled'] + # recons = module(z_sample, signature='generate') # shape [?, 128, 128, 3] |
