summaryrefslogtreecommitdiff
path: root/cli/app/commands/process/random.py
diff options
context:
space:
mode:
Diffstat (limited to 'cli/app/commands/process/random.py')
-rw-r--r--cli/app/commands/process/random.py47
1 files changed, 47 insertions, 0 deletions
diff --git a/cli/app/commands/process/random.py b/cli/app/commands/process/random.py
new file mode 100644
index 0000000..77551aa
--- /dev/null
+++ b/cli/app/commands/process/random.py
@@ -0,0 +1,47 @@
+import click
+
+from app.utils import click_utils
+from app.settings import app_cfg
+
+from os.path import join
+import time
+
+from PIL import Image
+
+@click.command('')
+# @click.option('-i', '--input', 'opt_dir_in', required=True,
+# help='Path to input image glob directory')
+# @click.option('-r', '--recursive', 'opt_recursive', is_flag=True)
+@click.pass_context
+def cli(ctx):
+ """
+ """
+ module = hub.Module('https://tfhub.dev/deepmind/bigbigan-resnet50/1')
+
+ # Sample a batch of 8 random latent vectors (z) from the Gaussian prior. Then
+ # call the generator on the latent samples to generate a batch of images with
+ # shape [8, 128, 128, 3] and range [-1, 1].
+ z = tf.random.normal([8, 120]) # latent samples
+ gen_samples = module(z, signature='generate', as_dict=True)['upsampled']
+
+ for sample in gen_samples:
+ img = Image.fromarray(sample, "RGB")
+ fp_img_out = int(time.time() * 1000) + '.png'
+ img.save(join(app_cfg.DIR_OUTPUTS, fp_img_out))
+ # # Given a batch of 256x256 RGB images in range [-1, 1], call the encoder to
+ # # compute predicted latents z and other features (e.g. for use in downstream
+ # # recognition tasks).
+ # images = tf.placeholder(tf.float32, shape=[None, 256, 256, 3])
+ # features = module(images, signature='encode', as_dict=True)
+
+ # # Get the predicted latent sample `z_sample` from the dict of features.
+ # # Other available features include `avepool_feat` and `bn_crelu_feat`, used in
+ # # the representation learning results.
+ # z_sample = features['z_sample'] # shape [?, 120]
+
+ # # Compute reconstructions of the input `images` by passing the encoder's output
+ # # `z_sample` back through the generator. Note that raw generator outputs are
+ # # half the resolution of encoder inputs (128x128). To get upsampled generator
+ # # outputs matching the encoder input resolution (256x256), instead use:
+ # # recons = module(z_sample, signature='generate', as_dict=True)['upsampled']
+ # recons = module(z_sample, signature='generate') # shape [?, 128, 128, 3]