summaryrefslogtreecommitdiff
path: root/inversion
diff options
context:
space:
mode:
authorJules Laplace <julescarbon@gmail.com>2019-12-15 11:45:11 +0100
committerJules Laplace <julescarbon@gmail.com>2019-12-15 11:45:11 +0100
commit7fc01cb41ab974915b16f907f0fbe776d800824b (patch)
tree2e6049d8d4300aeda0b2b792aad13ae73236e8a6 /inversion
parent4f88ceb7729bc4d3f06f61b3ccf7c118f57fc13f (diff)
17
Diffstat (limited to 'inversion')
-rw-r--r--inversion/image_inversion_inception.py28
1 files changed, 14 insertions, 14 deletions
diff --git a/inversion/image_inversion_inception.py b/inversion/image_inversion_inception.py
index b220a55..80c1729 100644
--- a/inversion/image_inversion_inception.py
+++ b/inversion/image_inversion_inception.py
@@ -254,14 +254,14 @@ if params.features:
gen_feat = gen_feat_ex["InceptionV3/Conv2d_1a_3x3"]
target_feat = target_feat_ex["InceptionV3/Conv2d_1a_3x3"]
feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1])
- feat_loss = tf.reduce_mean(feat_square_diff) * 0.25
- img_feat_err = tf.reduce_mean(feat_square_diff, axis=1) * 0.25
+ feat_loss = tf.reduce_mean(feat_square_diff) * 0.5
+ img_feat_err = tf.reduce_mean(feat_square_diff, axis=1) * 0.5
- gen_feat = gen_feat_ex["InceptionV3/Conv2d_2a_3x3"]
- target_feat = target_feat_ex["InceptionV3/Conv2d_2a_3x3"]
- feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1])
- feat_loss += tf.reduce_mean(feat_square_diff) * 0.25
- img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) * 0.25
+ # gen_feat = gen_feat_ex["InceptionV3/Conv2d_2a_3x3"]
+ # target_feat = target_feat_ex["InceptionV3/Conv2d_2a_3x3"]
+ # feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1])
+ # feat_loss += tf.reduce_mean(feat_square_diff) * 0.25
+ # img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) * 0.25
# gen_feat = gen_feat_ex["InceptionV3/Conv2d_3b_1x1"]
# target_feat = target_feat_ex["InceptionV3/Conv2d_3b_1x1"]
@@ -269,17 +269,17 @@ if params.features:
# feat_loss += tf.reduce_mean(feat_square_diff) * 0.2
# img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) * 0.2
- gen_feat = gen_feat_ex["InceptionV3/Conv2d_4a_3x3"]
- target_feat = target_feat_ex["InceptionV3/Conv2d_4a_3x3"]
- feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1])
- feat_loss += tf.reduce_mean(feat_square_diff) * 0.25
- img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) * 0.25
+ # gen_feat = gen_feat_ex["InceptionV3/Conv2d_4a_3x3"]
+ # target_feat = target_feat_ex["InceptionV3/Conv2d_4a_3x3"]
+ # feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1])
+ # feat_loss += tf.reduce_mean(feat_square_diff) * 0.25
+ # img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) * 0.25
gen_feat = gen_feat_ex["InceptionV3/Mixed_7a"]
target_feat = target_feat_ex["InceptionV3/Mixed_7a"]
feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1])
- feat_loss += tf.reduce_mean(feat_square_diff) * 0.25
- img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) * 0.25
+ feat_loss += tf.reduce_mean(feat_square_diff) * 0.5
+ img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) * 0.5
else:
feat_loss = tf.constant(0.0)