diff options
| author | Jules Laplace <julescarbon@gmail.com> | 2019-12-12 17:01:10 +0100 |
|---|---|---|
| committer | Jules Laplace <julescarbon@gmail.com> | 2019-12-12 17:01:10 +0100 |
| commit | 28bc61bd7aa9f6bb2de1dccb96a4074b89eef946 (patch) | |
| tree | 2ad3670f0b35562e229eb442552bb7d676b5caff /inversion | |
| parent | 8dcb4c7efdbf64f89e0905a32e3e06e2f8feeb2a (diff) | |
another experiment
Diffstat (limited to 'inversion')
| -rw-r--r-- | inversion/image_inversion_inception.py | 28 |
1 files changed, 14 insertions, 14 deletions
diff --git a/inversion/image_inversion_inception.py b/inversion/image_inversion_inception.py index 92a472a..1b7b349 100644 --- a/inversion/image_inversion_inception.py +++ b/inversion/image_inversion_inception.py @@ -223,14 +223,14 @@ if params.features: gen_feat = gen_feat_ex["InceptionV3/Mixed_7a"] target_feat = target_feat_ex["InceptionV3/Mixed_7a"] feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1]) - feat_loss = tf.reduce_mean(feat_square_diff) * 0.34 - img_feat_err = tf.reduce_mean(feat_square_diff, axis=1) * 0.34 + feat_loss = tf.reduce_mean(feat_square_diff) * 0.5 + img_feat_err = tf.reduce_mean(feat_square_diff, axis=1) * 0.5 - # gen_feat = gen_feat_ex["InceptionV3/Mixed_6a"] - # target_feat = target_feat_ex["InceptionV3/Mixed_6a"] - # feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1]) - # feat_loss += tf.reduce_mean(feat_square_diff) * 0.5 - # img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) * 0.5 + gen_feat = gen_feat_ex["InceptionV3/Mixed_6a"] + target_feat = target_feat_ex["InceptionV3/Mixed_6a"] + feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1]) + feat_loss += tf.reduce_mean(feat_square_diff) * 0.34 + img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) * 0.25 # gen_feat = gen_feat_ex["InceptionV3/Mixed_5a"] # target_feat = target_feat_ex["InceptionV3/Mixed_5a"] @@ -238,17 +238,17 @@ if params.features: # feat_loss += tf.reduce_mean(feat_square_diff) # img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) - gen_feat = gen_feat_ex["InceptionV3/Mixed_7b"] - target_feat = target_feat_ex["InceptionV3/Mixed_7b"] - feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1]) - feat_loss += tf.reduce_mean(feat_square_diff) * 0.33 - img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) + # gen_feat = gen_feat_ex["InceptionV3/Mixed_7b"] + # target_feat = target_feat_ex["InceptionV3/Mixed_7b"] + # feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1]) + # feat_loss += tf.reduce_mean(feat_square_diff) * 0.33 + # img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) gen_feat = gen_feat_ex["InceptionV3/Mixed_7c"] target_feat = target_feat_ex["InceptionV3/Mixed_7c"] feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1]) - feat_loss += tf.reduce_mean(feat_square_diff) * 0.33 - img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) + feat_loss += tf.reduce_mean(feat_square_diff) * 0.34 + img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) * 0.25 else: feat_loss = tf.constant(0.0) |
