summaryrefslogtreecommitdiff
path: root/inversion/image_inversion_inception.py
diff options
context:
space:
mode:
Diffstat (limited to 'inversion/image_inversion_inception.py')
-rw-r--r--inversion/image_inversion_inception.py28
1 files changed, 14 insertions, 14 deletions
diff --git a/inversion/image_inversion_inception.py b/inversion/image_inversion_inception.py
index 92a472a..1b7b349 100644
--- a/inversion/image_inversion_inception.py
+++ b/inversion/image_inversion_inception.py
@@ -223,14 +223,14 @@ if params.features:
gen_feat = gen_feat_ex["InceptionV3/Mixed_7a"]
target_feat = target_feat_ex["InceptionV3/Mixed_7a"]
feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1])
- feat_loss = tf.reduce_mean(feat_square_diff) * 0.34
- img_feat_err = tf.reduce_mean(feat_square_diff, axis=1) * 0.34
+ feat_loss = tf.reduce_mean(feat_square_diff) * 0.5
+ img_feat_err = tf.reduce_mean(feat_square_diff, axis=1) * 0.5
- # gen_feat = gen_feat_ex["InceptionV3/Mixed_6a"]
- # target_feat = target_feat_ex["InceptionV3/Mixed_6a"]
- # feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1])
- # feat_loss += tf.reduce_mean(feat_square_diff) * 0.5
- # img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) * 0.5
+ gen_feat = gen_feat_ex["InceptionV3/Mixed_6a"]
+ target_feat = target_feat_ex["InceptionV3/Mixed_6a"]
+ feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1])
+ feat_loss += tf.reduce_mean(feat_square_diff) * 0.34
+ img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) * 0.25
# gen_feat = gen_feat_ex["InceptionV3/Mixed_5a"]
# target_feat = target_feat_ex["InceptionV3/Mixed_5a"]
@@ -238,17 +238,17 @@ if params.features:
# feat_loss += tf.reduce_mean(feat_square_diff)
# img_feat_err += tf.reduce_mean(feat_square_diff, axis=1)
- gen_feat = gen_feat_ex["InceptionV3/Mixed_7b"]
- target_feat = target_feat_ex["InceptionV3/Mixed_7b"]
- feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1])
- feat_loss += tf.reduce_mean(feat_square_diff) * 0.33
- img_feat_err += tf.reduce_mean(feat_square_diff, axis=1)
+ # gen_feat = gen_feat_ex["InceptionV3/Mixed_7b"]
+ # target_feat = target_feat_ex["InceptionV3/Mixed_7b"]
+ # feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1])
+ # feat_loss += tf.reduce_mean(feat_square_diff) * 0.33
+ # img_feat_err += tf.reduce_mean(feat_square_diff, axis=1)
gen_feat = gen_feat_ex["InceptionV3/Mixed_7c"]
target_feat = target_feat_ex["InceptionV3/Mixed_7c"]
feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1])
- feat_loss += tf.reduce_mean(feat_square_diff) * 0.33
- img_feat_err += tf.reduce_mean(feat_square_diff, axis=1)
+ feat_loss += tf.reduce_mean(feat_square_diff) * 0.34
+ img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) * 0.25
else:
feat_loss = tf.constant(0.0)