summaryrefslogtreecommitdiff
path: root/cli/app/search/search_class.py
diff options
context:
space:
mode:
authorJules Laplace <julescarbon@gmail.com>2020-01-08 01:31:23 +0100
committerJules Laplace <julescarbon@gmail.com>2020-01-08 01:31:23 +0100
commit1365305eaaeb63c6b9b1bce30b33fcb364708389 (patch)
treeb2176a3a134967aa2005b262141e6492ee667bd1 /cli/app/search/search_class.py
parent3ee509c0d76f35d0d2fc062712306538aeabd451 (diff)
getting latent search updates working...
Diffstat (limited to 'cli/app/search/search_class.py')
-rw-r--r--cli/app/search/search_class.py4
1 files changed, 2 insertions, 2 deletions
diff --git a/cli/app/search/search_class.py b/cli/app/search/search_class.py
index 420c0de..c59bc9b 100644
--- a/cli/app/search/search_class.py
+++ b/cli/app/search/search_class.py
@@ -103,7 +103,7 @@ def find_nearest_vector(sess, generator, opt_fp_in, opt_dims, out_images, out_la
opt_clip = 1.0
clipped_encoding = tf.where(tf.abs(input_z) >= opt_clip,
- tf.random.uniform([BATCH_SIZE, Z_DIM], minval=-opt_clip, maxval=opt_clip), input_z)
+ tf.random.uniform([batch_size, z_dim], minval=-opt_clip, maxval=opt_clip), input_z)
clip_latent = tf.assign(input_z, clipped_encoding)
target = tf.compat.v1.placeholder(tf.float32, shape=(batch_size, img_size, img_size, num_channels))
@@ -138,7 +138,7 @@ def find_nearest_vector(sess, generator, opt_fp_in, opt_dims, out_images, out_la
layer_name = feature_layer_names[layer]
gen_feat = gen_feat_ex[layer_name]
target_feat = target_feat_ex[layer_name]
- feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1])
+ feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [batch_size, -1])
feat_loss += tf.reduce_mean(feat_square_diff) / len(opt_feature_layers)
# Batch reconstruction error.