summaryrefslogtreecommitdiff
path: root/cli/app/search/search_class.py
diff options
context:
space:
mode:
authorJules Laplace <julescarbon@gmail.com>2020-01-08 01:29:41 +0100
committerJules Laplace <julescarbon@gmail.com>2020-01-08 01:29:41 +0100
commit3ee509c0d76f35d0d2fc062712306538aeabd451 (patch)
treebb6a93aab73625c886d6a13a798cbb5f57331f4c /cli/app/search/search_class.py
parentf86e1d17776f022861ed1799d6f58a7a362bafde (diff)
getting latent search updates working...
Diffstat (limited to 'cli/app/search/search_class.py')
-rw-r--r--cli/app/search/search_class.py7
1 files changed, 5 insertions, 2 deletions
diff --git a/cli/app/search/search_class.py b/cli/app/search/search_class.py
index 6bf6a59..420c0de 100644
--- a/cli/app/search/search_class.py
+++ b/cli/app/search/search_class.py
@@ -100,8 +100,10 @@ def find_nearest_vector(sess, generator, opt_fp_in, opt_dims, out_images, out_la
## clip the Z encoding
- clipped_encoding = tf.where(tf.abs(input_z) >= params.clip,
- tf.random.uniform([BATCH_SIZE, Z_DIM], minval=-params.clip, maxval=params.clip), input_z)
+ opt_clip = 1.0
+
+ clipped_encoding = tf.where(tf.abs(input_z) >= opt_clip,
+ tf.random.uniform([BATCH_SIZE, Z_DIM], minval=-opt_clip, maxval=opt_clip), input_z)
clip_latent = tf.assign(input_z, clipped_encoding)
target = tf.compat.v1.placeholder(tf.float32, shape=(batch_size, img_size, img_size, num_channels))
@@ -112,6 +114,7 @@ def find_nearest_vector(sess, generator, opt_fp_in, opt_dims, out_images, out_la
## if computing Feature loss, use these encoders
if opt_use_feature_detector:
+ print("Initializing feature detector...")
pix_square_diff = tf.square((target_img - gen_img) / 2.0)
mse_loss = tf.reduce_mean(pix_square_diff)