diff options
| author | Hiroshiba Kazuyuki <hihokaruta@gmail.com> | 2018-03-12 00:08:43 +0900 |
|---|---|---|
| committer | Hiroshiba Kazuyuki <hihokaruta@gmail.com> | 2018-03-12 00:08:43 +0900 |
| commit | 210e8225e4f7c95d6d0c89309b5b1eb20e41e744 (patch) | |
| tree | 2bd9f737040217ffb1eefda7ce61f1a3198390d8 /become_yukarin/voice_changer.py | |
| parent | f8823b1913c29ce2710f92d51b74cb84b74323b0 (diff) | |
リアルタイム機能を切り分け
Diffstat (limited to 'become_yukarin/voice_changer.py')
| -rw-r--r-- | become_yukarin/voice_changer.py | 252 |
1 files changed, 0 insertions, 252 deletions
diff --git a/become_yukarin/voice_changer.py b/become_yukarin/voice_changer.py index 7f7bbe4..698244c 100644 --- a/become_yukarin/voice_changer.py +++ b/become_yukarin/voice_changer.py @@ -1,15 +1,8 @@ -from abc import ABCMeta, abstractproperty, abstractmethod -from typing import List, Callable, Any -from typing import NamedTuple - import numpy -from become_yukarin.param import Param from .acoustic_converter import AcousticConverter from .data_struct import AcousticFeature -from .data_struct import Wave from .super_resolution import SuperResolution -from .vocoder import Vocoder class VoiceChanger(object): @@ -31,248 +24,3 @@ class VoiceChanger(object): s_high = self.super_resolution.convert(f_low.spectrogram.astype(numpy.float32)) f_high = self.super_resolution.convert_to_feature(s_high, f_low) return f_high - - -class BaseSegment(ABCMeta): - start_time: float - - @property - @abstractmethod - def time_length(self) -> float: - pass - - @property - @abstractmethod - def end_time(self) -> float: - pass - - -class FeatureSegment(NamedTuple, BaseSegment): - start_time: float - feature: AcousticFeature - frame_period: float - - @property - def time_length(self): - return len(self.feature.f0) * self.frame_period / 1000 - - @property - def end_time(self): - return self.time_length + self.start_time - - -class WaveSegment(NamedTuple, BaseSegment): - start_time: float - wave: Wave - - @property - def time_length(self): - return len(self.wave.wave) / self.wave.sampling_rate - - @property - def end_time(self): - return self.time_length + self.start_time - - -class VoiceChangerStream(object): - def __init__( - self, - sampling_rate: int, - frame_period: float, - order: int, - in_dtype=numpy.float32, - ): - self.sampling_rate = sampling_rate - self.frame_period = frame_period - self.order = order - self.in_dtype = in_dtype - - self.voice_changer: VoiceChanger = None - self.vocoder: Vocoder = None - self._data_stream = [] # type: List[WaveSegment] - self._in_feature_stream = [] # type: List[FeatureSegment] - self._out_feature_stream = [] # type: List[FeatureSegment] - - def add_wave(self, start_time: float, wave: Wave): - # validation - assert wave.sampling_rate == self.sampling_rate - assert wave.wave.dtype == self.in_dtype - - segment = WaveSegment(start_time=start_time, wave=wave) - self._data_stream.append(segment) - - def add_in_feature(self, start_time: float, feature: AcousticFeature, frame_period: float): - # validation - assert frame_period == self.frame_period - assert feature.f0.dtype == self.in_dtype - - segment = FeatureSegment(start_time=start_time, feature=feature, frame_period=self.frame_period) - self._in_feature_stream.append(segment) - - def add_out_feature(self, start_time: float, feature: AcousticFeature, frame_period: float): - # validation - assert frame_period == self.frame_period - - segment = FeatureSegment(start_time=start_time, feature=feature, frame_period=self.frame_period) - self._out_feature_stream.append(segment) - - def remove(self, end_time: float): - self._data_stream = list(filter(lambda s: s.end_time > end_time, self._data_stream)) - self._in_feature_stream = list(filter(lambda s: s.end_time > end_time, self._in_feature_stream)) - self._out_feature_stream = list(filter(lambda s: s.end_time > end_time, self._out_feature_stream)) - - @staticmethod - def fetch( - start_time: float, - time_length: float, - data_stream: List[BaseSegment], - rate: float, - pad_function: Callable[[int], Any], - pick_function: Callable[[Any, int, int], Any], - concat_function: Callable[[List], Any], - extra_time: float = 0, - ): - start_time -= extra_time - time_length += extra_time * 2 - - end_time = start_time + time_length - buffer_list = [] - stream = filter(lambda s: not (end_time < s.start_time or s.end_time < start_time), data_stream) - - start_time_buffer = start_time - remaining_time = time_length - for segment in stream: - # padding - if segment.start_time > start_time_buffer: - length = int((segment.start_time - start_time_buffer) * rate) - pad = pad_function(length) - buffer_list.append(pad) - start_time_buffer = segment.start_time - - if remaining_time > segment.end_time - start_time_buffer: - one_time_length = segment.end_time - start_time_buffer - else: - one_time_length = remaining_time - - first_index = int((start_time_buffer - segment.start_time) * rate) - last_index = int(first_index + one_time_length * rate) - one_buffer = pick_function(segment, first_index, last_index) - buffer_list.append(one_buffer) - - start_time_buffer += one_time_length - remaining_time -= one_time_length - - if start_time_buffer >= end_time: - break - else: - # last padding - length = int((end_time - start_time_buffer) * rate) - pad = pad_function(length) - buffer_list.append(pad) - - buffer = concat_function(buffer_list) - return buffer - - def pre_convert(self, start_time: float, time_length: float, extra_time: float): - wave = self.fetch( - start_time=start_time, - time_length=time_length, - extra_time=extra_time, - data_stream=self._data_stream, - rate=self.sampling_rate, - pad_function=lambda length: numpy.zeros(shape=length, dtype=self.in_dtype), - pick_function=lambda segment, first, last: segment.wave.wave[first:last], - concat_function=numpy.concatenate, - ) - in_wave = Wave(wave=wave, sampling_rate=self.sampling_rate) - in_feature = self.vocoder.encode(in_wave) - - pad = int(extra_time / (self.vocoder.acoustic_feature_param.frame_period / 1000)) - in_feature = in_feature.pick(pad, -pad) - return in_feature - - def convert(self, start_time: float, time_length: float, extra_time: float): - sizes = AcousticFeature.get_sizes(sampling_rate=self.sampling_rate, order=self.order) - keys = ['f0', 'aperiodicity', 'mfcc', 'voiced'] - in_feature = self.fetch( - start_time=start_time, - time_length=time_length, - extra_time=extra_time, - data_stream=self._in_feature_stream, - rate=1000 / self.frame_period, - pad_function=lambda length: AcousticFeature.silent(length, sizes=sizes, keys=keys), - pick_function=lambda segment, first, last: segment.feature.pick(first, last), - concat_function=lambda buffers: AcousticFeature.concatenate(buffers, keys=keys), - ) - out_feature = self.voice_changer.convert_from_acoustic_feature(in_feature) - - pad = int(extra_time * 1000 / self.frame_period) - out_feature = out_feature.pick(pad, -pad) - return out_feature - - def post_convert(self, start_time: float, time_length: float): - sizes = AcousticFeature.get_sizes(sampling_rate=self.sampling_rate, order=self.order) - keys = ['f0', 'aperiodicity', 'spectrogram', 'voiced'] - out_feature = self.fetch( - start_time=start_time, - time_length=time_length, - data_stream=self._out_feature_stream, - rate=1000 / self.frame_period, - pad_function=lambda length: AcousticFeature.silent(length, sizes=sizes, keys=keys), - pick_function=lambda segment, first, last: segment.feature.pick(first, last), - concat_function=lambda buffers: AcousticFeature.concatenate(buffers, keys=keys), - ) - - out_wave = self.vocoder.decode( - acoustic_feature=out_feature, - ) - return out_wave - - -class VoiceChangerStreamWrapper(object): - def __init__( - self, - voice_changer_stream: VoiceChangerStream, - extra_time_pre: float = 0.0, - extra_time: float = 0.0, - ): - self.voice_changer_stream = voice_changer_stream - self.extra_time_pre = extra_time_pre - self.extra_time = extra_time - self._current_time_pre = 0 - self._current_time = 0 - self._current_time_post = 0 - - def pre_convert_next(self, time_length: float): - in_feature = self.voice_changer_stream.pre_convert( - start_time=self._current_time_pre, - time_length=time_length, - extra_time=self.extra_time_pre, - ) - self._current_time_pre += time_length - return in_feature - - def convert_next(self, time_length: float): - out_feature = self.voice_changer_stream.convert( - start_time=self._current_time, - time_length=time_length, - extra_time=self.extra_time, - ) - self._current_time += time_length - return out_feature - - def post_convert_next(self, time_length: float): - out_wave = self.voice_changer_stream.post_convert( - start_time=self._current_time_post, - time_length=time_length, - ) - self._current_time_post += time_length - return out_wave - - def remove_previous(self): - end_time = min( - self._current_time_pre - self.extra_time_pre, - self._current_time - self.extra_time, - self._current_time_post, - ) - self.voice_changer_stream.remove(end_time=end_time) |
