summaryrefslogtreecommitdiff
path: root/become_yukarin/voice_changer.py
blob: 7f7bbe4bf0d652dabdd6d3d07467b2fd90e5b7ec (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
from abc import ABCMeta, abstractproperty, abstractmethod
from typing import List, Callable, Any
from typing import NamedTuple

import numpy

from become_yukarin.param import Param
from .acoustic_converter import AcousticConverter
from .data_struct import AcousticFeature
from .data_struct import Wave
from .super_resolution import SuperResolution
from .vocoder import Vocoder


class VoiceChanger(object):
    def __init__(
            self,
            acoustic_converter: AcousticConverter,
            super_resolution: SuperResolution,
            output_sampling_rate: int = None,
    ) -> None:
        if output_sampling_rate is None:
            output_sampling_rate = super_resolution.config.dataset.param.voice_param.sample_rate

        self.acoustic_converter = acoustic_converter
        self.super_resolution = super_resolution
        self.output_sampling_rate = output_sampling_rate

    def convert_from_acoustic_feature(self, f_in: AcousticFeature):
        f_low = self.acoustic_converter.convert_to_feature(f_in)
        s_high = self.super_resolution.convert(f_low.spectrogram.astype(numpy.float32))
        f_high = self.super_resolution.convert_to_feature(s_high, f_low)
        return f_high


class BaseSegment(ABCMeta):
    start_time: float

    @property
    @abstractmethod
    def time_length(self) -> float:
        pass

    @property
    @abstractmethod
    def end_time(self) -> float:
        pass


class FeatureSegment(NamedTuple, BaseSegment):
    start_time: float
    feature: AcousticFeature
    frame_period: float

    @property
    def time_length(self):
        return len(self.feature.f0) * self.frame_period / 1000

    @property
    def end_time(self):
        return self.time_length + self.start_time


class WaveSegment(NamedTuple, BaseSegment):
    start_time: float
    wave: Wave

    @property
    def time_length(self):
        return len(self.wave.wave) / self.wave.sampling_rate

    @property
    def end_time(self):
        return self.time_length + self.start_time


class VoiceChangerStream(object):
    def __init__(
            self,
            sampling_rate: int,
            frame_period: float,
            order: int,
            in_dtype=numpy.float32,
    ):
        self.sampling_rate = sampling_rate
        self.frame_period = frame_period
        self.order = order
        self.in_dtype = in_dtype

        self.voice_changer: VoiceChanger = None
        self.vocoder: Vocoder = None
        self._data_stream = []  # type: List[WaveSegment]
        self._in_feature_stream = []  # type: List[FeatureSegment]
        self._out_feature_stream = []  # type: List[FeatureSegment]

    def add_wave(self, start_time: float, wave: Wave):
        # validation
        assert wave.sampling_rate == self.sampling_rate
        assert wave.wave.dtype == self.in_dtype

        segment = WaveSegment(start_time=start_time, wave=wave)
        self._data_stream.append(segment)

    def add_in_feature(self, start_time: float, feature: AcousticFeature, frame_period: float):
        # validation
        assert frame_period == self.frame_period
        assert feature.f0.dtype == self.in_dtype

        segment = FeatureSegment(start_time=start_time, feature=feature, frame_period=self.frame_period)
        self._in_feature_stream.append(segment)

    def add_out_feature(self, start_time: float, feature: AcousticFeature, frame_period: float):
        # validation
        assert frame_period == self.frame_period

        segment = FeatureSegment(start_time=start_time, feature=feature, frame_period=self.frame_period)
        self._out_feature_stream.append(segment)

    def remove(self, end_time: float):
        self._data_stream = list(filter(lambda s: s.end_time > end_time, self._data_stream))
        self._in_feature_stream = list(filter(lambda s: s.end_time > end_time, self._in_feature_stream))
        self._out_feature_stream = list(filter(lambda s: s.end_time > end_time, self._out_feature_stream))

    @staticmethod
    def fetch(
            start_time: float,
            time_length: float,
            data_stream: List[BaseSegment],
            rate: float,
            pad_function: Callable[[int], Any],
            pick_function: Callable[[Any, int, int], Any],
            concat_function: Callable[[List], Any],
            extra_time: float = 0,
    ):
        start_time -= extra_time
        time_length += extra_time * 2

        end_time = start_time + time_length
        buffer_list = []
        stream = filter(lambda s: not (end_time < s.start_time or s.end_time < start_time), data_stream)

        start_time_buffer = start_time
        remaining_time = time_length
        for segment in stream:
            # padding
            if segment.start_time > start_time_buffer:
                length = int((segment.start_time - start_time_buffer) * rate)
                pad = pad_function(length)
                buffer_list.append(pad)
                start_time_buffer = segment.start_time

            if remaining_time > segment.end_time - start_time_buffer:
                one_time_length = segment.end_time - start_time_buffer
            else:
                one_time_length = remaining_time

            first_index = int((start_time_buffer - segment.start_time) * rate)
            last_index = int(first_index + one_time_length * rate)
            one_buffer = pick_function(segment, first_index, last_index)
            buffer_list.append(one_buffer)

            start_time_buffer += one_time_length
            remaining_time -= one_time_length

            if start_time_buffer >= end_time:
                break
        else:
            # last padding
            length = int((end_time - start_time_buffer) * rate)
            pad = pad_function(length)
            buffer_list.append(pad)

        buffer = concat_function(buffer_list)
        return buffer

    def pre_convert(self, start_time: float, time_length: float, extra_time: float):
        wave = self.fetch(
            start_time=start_time,
            time_length=time_length,
            extra_time=extra_time,
            data_stream=self._data_stream,
            rate=self.sampling_rate,
            pad_function=lambda length: numpy.zeros(shape=length, dtype=self.in_dtype),
            pick_function=lambda segment, first, last: segment.wave.wave[first:last],
            concat_function=numpy.concatenate,
        )
        in_wave = Wave(wave=wave, sampling_rate=self.sampling_rate)
        in_feature = self.vocoder.encode(in_wave)

        pad = int(extra_time / (self.vocoder.acoustic_feature_param.frame_period / 1000))
        in_feature = in_feature.pick(pad, -pad)
        return in_feature

    def convert(self, start_time: float, time_length: float, extra_time: float):
        sizes = AcousticFeature.get_sizes(sampling_rate=self.sampling_rate, order=self.order)
        keys = ['f0', 'aperiodicity', 'mfcc', 'voiced']
        in_feature = self.fetch(
            start_time=start_time,
            time_length=time_length,
            extra_time=extra_time,
            data_stream=self._in_feature_stream,
            rate=1000 / self.frame_period,
            pad_function=lambda length: AcousticFeature.silent(length, sizes=sizes, keys=keys),
            pick_function=lambda segment, first, last: segment.feature.pick(first, last),
            concat_function=lambda buffers: AcousticFeature.concatenate(buffers, keys=keys),
        )
        out_feature = self.voice_changer.convert_from_acoustic_feature(in_feature)

        pad = int(extra_time * 1000 / self.frame_period)
        out_feature = out_feature.pick(pad, -pad)
        return out_feature

    def post_convert(self, start_time: float, time_length: float):
        sizes = AcousticFeature.get_sizes(sampling_rate=self.sampling_rate, order=self.order)
        keys = ['f0', 'aperiodicity', 'spectrogram', 'voiced']
        out_feature = self.fetch(
            start_time=start_time,
            time_length=time_length,
            data_stream=self._out_feature_stream,
            rate=1000 / self.frame_period,
            pad_function=lambda length: AcousticFeature.silent(length, sizes=sizes, keys=keys),
            pick_function=lambda segment, first, last: segment.feature.pick(first, last),
            concat_function=lambda buffers: AcousticFeature.concatenate(buffers, keys=keys),
        )

        out_wave = self.vocoder.decode(
            acoustic_feature=out_feature,
        )
        return out_wave


class VoiceChangerStreamWrapper(object):
    def __init__(
            self,
            voice_changer_stream: VoiceChangerStream,
            extra_time_pre: float = 0.0,
            extra_time: float = 0.0,
    ):
        self.voice_changer_stream = voice_changer_stream
        self.extra_time_pre = extra_time_pre
        self.extra_time = extra_time
        self._current_time_pre = 0
        self._current_time = 0
        self._current_time_post = 0

    def pre_convert_next(self, time_length: float):
        in_feature = self.voice_changer_stream.pre_convert(
            start_time=self._current_time_pre,
            time_length=time_length,
            extra_time=self.extra_time_pre,
        )
        self._current_time_pre += time_length
        return in_feature

    def convert_next(self, time_length: float):
        out_feature = self.voice_changer_stream.convert(
            start_time=self._current_time,
            time_length=time_length,
            extra_time=self.extra_time,
        )
        self._current_time += time_length
        return out_feature

    def post_convert_next(self, time_length: float):
        out_wave = self.voice_changer_stream.post_convert(
            start_time=self._current_time_post,
            time_length=time_length,
        )
        self._current_time_post += time_length
        return out_wave

    def remove_previous(self):
        end_time = min(
            self._current_time_pre - self.extra_time_pre,
            self._current_time - self.extra_time,
            self._current_time_post,
        )
        self.voice_changer_stream.remove(end_time=end_time)