diff options
| author | Jules Laplace <julescarbon@gmail.com> | 2018-11-18 15:03:27 +0100 |
|---|---|---|
| committer | Jules Laplace <julescarbon@gmail.com> | 2018-11-18 15:03:27 +0100 |
| commit | 0d2314ef1ce689a8281f89ffd1bcfc3a677cc3cd (patch) | |
| tree | cf59fc211cbbfe685ac55505cd3eda58a71064ce /README.md | |
just code
Diffstat (limited to 'README.md')
| -rw-r--r-- | README.md | 34 |
1 files changed, 34 insertions, 0 deletions
diff --git a/README.md b/README.md new file mode 100644 index 0000000..f1e6019 --- /dev/null +++ b/README.md @@ -0,0 +1,34 @@ +# Deep Video Super-Resolution Network Using Dynamic Upsampling Filters Without Explicit Motion Compensation + +This is a tensorflow implementation of the paper. [PDF](http://yhjo09.github.io/files/VSR-DUF_CVPR18.pdf) + +## directory +`./inputs/G/` Ground-truth video frames +`./inputs/L/` Low-resolution video frames + +`./results/<L>L/G/` Outputs from given ground-truth video frames using <L> depth network +`./results/<L>L/L/` Outputs from given low-resolution video frames using <L> depth network + +## test +Put your video frames to the input directory and run `test.py` with arguments `<L>` and `<T>`. +``` +python test.py <L> <T> +``` +`<L>` is the depth of network of 16, 28, 52. +`<T>` is the type of input frames, `G` denotes GT inputs and `L` denotes LR inputs. + +For example, `python test.py 16 G` super-resolve input frames in `./inputs/G/*` using `16` depth network. + +## video +[](./supple/VSR_supple_crf28.mp4?raw=true) + +## bibtex +``` +@InProceedings{Jo_2018_CVPR, + author = {Jo, Younghyun and Oh, Seoung Wug and Kang, Jaeyeon and Kim, Seon Joo}, + title = {Deep Video Super-Resolution Network Using Dynamic Upsampling Filters Without Explicit Motion Compensation}, + booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, + year = {2018} +} +``` + |
