1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
|
import os
import glob
import time
import pandas as pd
from sqlalchemy import create_engine, Table, Column, String, Integer, DateTime, Float, func
from sqlalchemy.orm import sessionmaker
from sqlalchemy.ext.declarative import declarative_base
from app.utils.file_utils import load_recipe, load_csv_safe
from app.settings import app_cfg as cfg
connection_url = "mysql+mysqlconnector://{}:{}@{}/{}?charset=utf8mb4".format(
os.getenv("DB_USER"),
os.getenv("DB_PASS"),
os.getenv("DB_HOST"),
os.getenv("DB_NAME")
)
loaded = False
Session = None
class FileRecord(self.base_model):
__tablename__ = self.name + "_file_record"
id = Column(Integer, primary_key=True)
ext = Column(String(3, convert_unicode=True), nullable=False)
fn = Column(String(36, convert_unicode=True), nullable=False)
identity_key = Column(String(36, convert_unicode=True), nullable=False)
sha256 = Column(String(36, convert_unicode=True), nullable=False)
def toJSON(self):
return {
'id': self.id,
'uuid': self.uuid,
'identity_id': self.identity_id,
}
def load_sql_datasets(replace=False, base_model=None):
global datasets, loaded, Session
if loaded:
return datasets
engine = create_engine(connection_url, encoding="utf-8", pool_recycle=3600)
# db.set_character_set('utf8')
# dbc = db.cursor()
# dbc.execute('SET NAMES utf8;')
# dbc.execute('SET CHARACTER SET utf8;')
# dbc.execute('SET character_set_connection=utf8;')
Session = sessionmaker(bind=engine)
for path in glob.iglob(os.path.join(cfg.DIR_FAISS_METADATA, "*")):
dataset = load_sql_dataset(path, replace, engine, base_model)
datasets[dataset.name] = dataset
loaded = True
return datasets
def load_sql_dataset(path, replace=False, engine=None, base_model=None):
name = os.path.basename(path)
dataset = SqlDataset(name, base_model=base_model)
for fn in glob.iglob(os.path.join(path, "*.csv")):
key = os.path.basename(fn).replace(".csv", "")
table = dataset.get_table(key)
if table is None:
continue
if replace:
print('loading dataset {}'.format(fn))
df = pd.read_csv(fn)
# fix columns that are named "index", a sql reserved word
df.reindex_axis(sorted(df.columns), axis=1)
columns = [column.name for column in table.__table__.columns]
df.columns = columns
df.to_sql(name=table.__tablename__, con=engine, if_exists='replace', index=False)
return dataset
class SqlDataset:
"""
Bridge between the facial information CSVs connected to the datasets, and MySQL
- each dataset should have files that can be loaded into these database models
- names will be fixed to work in SQL (index -> id)
- we can then have more generic models for fetching this info after doing a FAISS query
"""
def __init__(self, name, engine=None, base_model=None):
self.name = name
self.tables = {}
if base_model is None:
self.engine = create_engine(connection_url, encoding="utf-8", pool_recycle=3600)
base_model = declarative_base(engine)
self.base_model = base_model
def describe(self):
"""
List the available SQL tables for a given dataset.
"""
return {
'name': self.name,
'tables': list(self.tables.keys()),
}
def get_identity(self, id):
"""
Get an identity given an ID.
"""
# id += 1
file_record_table = self.get_table('file_record')
file_record = file_record_table.query.filter(file_record_table.id == id).first()
if not file_record:
return None
identity_table = self.get_table('identity')
identity = identity_table.query.filter(identity_table.id == file_record.identity_id).first()
if not identity:
return None
return {
'file_record': file_record.toJSON(),
'identity': identity.toJSON(),
'face_roi': self.select('face_roi', id),
'face_pose': self.select('face_pose', id),
}
def search_name(self, q):
"""
Find an identity by name.
"""
table = self.get_table('identity')
identity_list = table.query.filter(table.fullname.ilike(q)).order_by(table.fullname.desc()).limit(15)
return identity_list
def search_description(self, q):
"""
Find an identity by description.
"""
table = self.get_table('identity')
identity_list = table.query.filter(table.description.ilike(q)).order_by(table.description.desc()).limit(15)
return identity_list
def get_file_records_for_identities(self, identity_list):
"""
Given a list of identities, map these to file records.
"""
identities = []
file_record_table = self.get_table('file_record')
for row in identity_list:
file_record = file_record_table.query.filter(file_record_table.identity_id == row.id).first()
if file_record:
identities.append({
'file_record': file_record.toJSON(),
'identity': row.toJSON(),
})
return identities
def select(self, table, id):
"""
Perform a generic select.
"""
table = self.get_table(table)
if not table:
return None
session = Session()
# for obj in session.query(table).filter_by(id=id):
# print(table)
obj = session.query(table).filter(table.id == id).first()
session.close()
return obj.toJSON()
|